首页 > 最新文献

Molecular Cancer Therapeutics最新文献

英文 中文
Inhibition of SUMOylation Induces Adaptive Antitumor Immunity against Pancreatic Cancer through Multiple Effects on the Tumor Microenvironment. 抑制 SUMOylation 可通过对肿瘤微环境的多重影响诱导对胰腺癌的适应性抗肿瘤免疫力
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-11-04 DOI: 10.1158/1535-7163.MCT-23-0572
Suna Erdem, Hyojae James Lee, Jayanth Surya Narayanan Shankara Narayanan, Mohottige Don Neranjan Tharuka, Jorge De la Torre, Tianchen Ren, Yixuan Kuang, Tharindumala Abeywardana, Kevin Li, Allison J Berger, Andrew M Lowy, Rebekah R White, Yuan Chen

Improvement of outcome in patients with pancreatic ductal adenocarcinoma (PDAC) requires exploration of novel therapeutic targets. Thus far, most studies of PDAC therapies, including those inhibiting small ubiquitin-like modifications (SUMOylation), have focused on PDAC epithelial cell biology, yet SUMOylation occurs in a variety of cell types. The mechanisms by which SUMOylation impacts PDAC in the context of its tumor microenvironment are poorly understood. We used clinically relevant orthotopic PDAC mouse models to investigate the effect of SUMOylation inhibition using a specific, clinical-stage compound, TAK-981. In contrast to its inhibition of PDAC cell proliferation in vitro, the survival benefit conferred by TAK-981 in vivo is dependent on the presence of T cells, suggesting that induction of adaptive antitumor immunity is an important antitumor effect of SUMOylation inhibition in vivo. To understand how this adaptive antitumor immunity is promoted, we investigated how SUMOylation inhibition in vivo alters major cell types/subtypes and their communications in the PDAC tumor microenvironment by performing transcriptomic analyses at single-cell resolution, which allowed mapping of cells in our orthotopic mouse model to cells in human PDAC tumors based on gene expression profiles. Findings are further validated by flow cytometry, immunofluorescence, IHC, western blots, and qPCR. The single-cell transcriptome dataset provided here suggests several combination strategies to augment adaptive immune responses that are necessary for durable disease control in patients with PDAC.

改善胰腺导管腺癌(PDAC)患者的预后需要探索新的治疗靶点。迄今为止,大多数有关 PDAC 疗法(包括抑制泛素样小修饰(SUMOylation)的疗法)的研究都集中在 PDAC 上皮细胞生物学方面,但 SUMOylation 存在于多种细胞类型中。人们对 SUMOylation 在肿瘤微环境中影响 PDAC 的机制还知之甚少。我们利用与临床相关的正位 PDAC 小鼠模型,使用一种特定的临床阶段化合物 TAK-981 来研究 SUMOylation 抑制的效果。与体外抑制 PDAC 细胞增殖不同的是,TAK-981 在体内带来的生存益处依赖于 T 细胞的存在,这表明诱导适应性抗肿瘤免疫是体内 SUMO 抑制的重要抗肿瘤效应。为了了解这种适应性抗肿瘤免疫是如何促进的,我们研究了体内 SUMO 抑制是如何改变 PDAC 肿瘤微环境中的主要细胞类型/亚型及其交流的,方法是进行单细胞分辨率的转录组分析,从而根据基因表达谱将我们的小鼠正位模型中的细胞映射到人类 PDAC 肿瘤中的细胞。流式细胞术、免疫荧光、IHC、Western 印迹和 qPCR 进一步验证了研究结果。本文提供的单细胞转录组数据集提示了几种增强适应性免疫反应的组合策略,这些策略是 PDAC 患者持久控制疾病所必需的。
{"title":"Inhibition of SUMOylation Induces Adaptive Antitumor Immunity against Pancreatic Cancer through Multiple Effects on the Tumor Microenvironment.","authors":"Suna Erdem, Hyojae James Lee, Jayanth Surya Narayanan Shankara Narayanan, Mohottige Don Neranjan Tharuka, Jorge De la Torre, Tianchen Ren, Yixuan Kuang, Tharindumala Abeywardana, Kevin Li, Allison J Berger, Andrew M Lowy, Rebekah R White, Yuan Chen","doi":"10.1158/1535-7163.MCT-23-0572","DOIUrl":"10.1158/1535-7163.MCT-23-0572","url":null,"abstract":"<p><p>Improvement of outcome in patients with pancreatic ductal adenocarcinoma (PDAC) requires exploration of novel therapeutic targets. Thus far, most studies of PDAC therapies, including those inhibiting small ubiquitin-like modifications (SUMOylation), have focused on PDAC epithelial cell biology, yet SUMOylation occurs in a variety of cell types. The mechanisms by which SUMOylation impacts PDAC in the context of its tumor microenvironment are poorly understood. We used clinically relevant orthotopic PDAC mouse models to investigate the effect of SUMOylation inhibition using a specific, clinical-stage compound, TAK-981. In contrast to its inhibition of PDAC cell proliferation in vitro, the survival benefit conferred by TAK-981 in vivo is dependent on the presence of T cells, suggesting that induction of adaptive antitumor immunity is an important antitumor effect of SUMOylation inhibition in vivo. To understand how this adaptive antitumor immunity is promoted, we investigated how SUMOylation inhibition in vivo alters major cell types/subtypes and their communications in the PDAC tumor microenvironment by performing transcriptomic analyses at single-cell resolution, which allowed mapping of cells in our orthotopic mouse model to cells in human PDAC tumors based on gene expression profiles. Findings are further validated by flow cytometry, immunofluorescence, IHC, western blots, and qPCR. The single-cell transcriptome dataset provided here suggests several combination strategies to augment adaptive immune responses that are necessary for durable disease control in patients with PDAC.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1597-1612"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534524/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Role of the p53 Pathway in Modulating Natural Killer Cell Mediated Immunity. p53 通路在调节自然杀伤细胞介导的免疫中的新作用。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-10-29 DOI: 10.1158/1535-7163.MCT-24-0325
Yu-Chi Chen, Christopher G Bazewicz, Saketh S Dinavahi, Nicholas D Huntington, Todd D Schell, Gavin P Robertson

The p53 pathway plays an important role in role in cancer immunity. Mutation or downregulation of the proteins in the p53 pathway are prevalent in many cancers, contributing to tumor progression and immune dysregulation. Recent findings suggest that the activity of p53 within tumor cells, immune cells, and the tumor microenvironment can play an important role modulating natural killer (NK) cell-mediated immunity. Consequently, efforts to restore p53 pathway activity are being actively pursued to modulate this form of immunity. This review focuses on p53 activity regulating the infiltration and the activation of NK cells in the tumor immune microenvironment, which are illustrated in the Graphical Abstract for this review. Furthermore, impact of p53 and its regulation of NK cells on immunogenic cell death within solid tumors and the abscopal effect is reviewed. Finally, future avenues for therapeutically restoring p53 activity to improve NK cell-mediated anti-tumor immunity and optimize the effectiveness of cancer therapies are discussed.

p53 通路在癌症免疫中发挥着重要作用。在许多癌症中,p53 通路中的蛋白质普遍发生突变或下调,导致肿瘤进展和免疫失调。最近的研究结果表明,p53 在肿瘤细胞、免疫细胞和肿瘤微环境中的活性对自然杀伤细胞(NK)介导的免疫起着重要的调节作用。因此,人们正在积极努力恢复 p53 通路的活性,以调节这种形式的免疫。本综述的重点是 p53 活性调节 NK 细胞在肿瘤免疫微环境中的浸润和活化。此外,还综述了 p53 及其对 NK 细胞的调控对实体瘤内免疫原性细胞死亡和脱落效应的影响。最后,还讨论了恢复 p53 活性以改善 NK 细胞介导的抗肿瘤免疫力和优化癌症疗法有效性的未来治疗途径。
{"title":"Emerging Role of the p53 Pathway in Modulating Natural Killer Cell Mediated Immunity.","authors":"Yu-Chi Chen, Christopher G Bazewicz, Saketh S Dinavahi, Nicholas D Huntington, Todd D Schell, Gavin P Robertson","doi":"10.1158/1535-7163.MCT-24-0325","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0325","url":null,"abstract":"<p><p>The p53 pathway plays an important role in role in cancer immunity. Mutation or downregulation of the proteins in the p53 pathway are prevalent in many cancers, contributing to tumor progression and immune dysregulation. Recent findings suggest that the activity of p53 within tumor cells, immune cells, and the tumor microenvironment can play an important role modulating natural killer (NK) cell-mediated immunity. Consequently, efforts to restore p53 pathway activity are being actively pursued to modulate this form of immunity. This review focuses on p53 activity regulating the infiltration and the activation of NK cells in the tumor immune microenvironment, which are illustrated in the Graphical Abstract for this review. Furthermore, impact of p53 and its regulation of NK cells on immunogenic cell death within solid tumors and the abscopal effect is reviewed. Finally, future avenues for therapeutically restoring p53 activity to improve NK cell-mediated anti-tumor immunity and optimize the effectiveness of cancer therapies are discussed.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preclinical development of SGN-CD47M: Protease-activated antibody technology enables selective tumor targeting of the innate immune checkpoint receptor CD47. SGN-CD47M 的临床前开发:蛋白酶激活抗体技术实现了先天性免疫检查点受体 CD47 的选择性肿瘤靶向。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-10-28 DOI: 10.1158/1535-7163.MCT-24-0371
Matthew R Levengood, Christopher M Carosino, Xinqun Zhang, Sasha Lucas, David J Ortiz, Lori Westendorf, Alice P Chin, Arlan D Martin, Abbie Wong, Shawna M Hengel, Hao Sun, Weiping Zeng, Roma Yumul, Melissa Mc Dominguez, Yufei Chen, Janet H Zheng, Courtney A B Karlsson, Vivian H Trang, Peter D Senter, Shyra J Gardai

CD47 is a cell surface glycoprotein that is expressed on normal human tissues and has a key role as a marker of self. Tumor cells have coopted CD47 overexpression to evade immune surveillance and thus blockade of CD47 is a highly active area of clinical exploration in oncology. However, clinical development of CD47-targeted agents has been complicated by its robust expression in normal tissues and the toxicities that arise from blocking this inhibitory signal. Further, pro-phagocytic signals are not uniformly expressed in tumors and antibody blockade alone is often not sufficient to drive antitumor activity. The inclusion of an IgG1 antibody backbone into therapeutic design has been shown to serve as an additional pro-phagocytic signal but also exacerbates toxicities in normal tissues. Therefore, a need persists for more selective therapeutic modalities targeting CD47. To address these challenges, we developed SGN-CD47M, a humanized anti-CD47 IgG1 monoclonal antibody linked to novel masking peptides through linkers designed to be cleaved by active proteases enriched in the tumor microenvironment. Masking technology has the potential to increase the amount of drug that reaches the tumor microenvironment, while concomitantly reducing systemic toxicities. We demonstrate that SGN-CD47M is well tolerated in cynomolgus monkeys and displays a 20-fold improvement in tolerability to hematologic toxicities when compared to the unmasked antibody. SGN-CD47M also displays preferential activation in the tumor microenvironment that leads to robust single-agent antitumor activity. For these reasons, SGN-CD47M may have enhanced antitumor activity and improved tolerability relative to existing therapies that target the CD47-SIRPα interaction.

CD47 是一种细胞表面糖蛋白,在正常人体组织中表达,作为自身标志物起着关键作用。肿瘤细胞借助 CD47 的过度表达来逃避免疫监视,因此阻断 CD47 是肿瘤学中一个非常活跃的临床探索领域。然而,由于 CD47 在正常组织中的强表达以及阻断这种抑制信号所产生的毒性,CD47 靶向药物的临床开发变得复杂起来。此外,促吞噬信号在肿瘤中的表达并不一致,仅靠抗体阻断往往不足以激发抗肿瘤活性。在治疗设计中加入 IgG1 抗体骨架已被证明可作为额外的促吞噬信号,但也会加重正常组织的毒性。因此,针对 CD47 的更具选择性的治疗模式仍有存在的必要。为了应对这些挑战,我们开发了 SGN-CD47M,这是一种人源化的抗 CD47 IgG1 单克隆抗体,通过设计成可被肿瘤微环境中富集的活性蛋白酶裂解的连接体与新型掩蔽肽相连。掩蔽技术有可能增加到达肿瘤微环境的药物量,同时降低全身毒性。我们的研究表明,SGN-CD47M 在猴体内耐受性良好,与未掩蔽抗体相比,血液毒性耐受性提高了 20 倍。SGN-CD47M 还能优先激活肿瘤微环境,从而产生强大的单药抗肿瘤活性。由于这些原因,与针对 CD47-SIRPα 相互作用的现有疗法相比,SGN-CD47M 可能具有更强的抗肿瘤活性和更好的耐受性。
{"title":"Preclinical development of SGN-CD47M: Protease-activated antibody technology enables selective tumor targeting of the innate immune checkpoint receptor CD47.","authors":"Matthew R Levengood, Christopher M Carosino, Xinqun Zhang, Sasha Lucas, David J Ortiz, Lori Westendorf, Alice P Chin, Arlan D Martin, Abbie Wong, Shawna M Hengel, Hao Sun, Weiping Zeng, Roma Yumul, Melissa Mc Dominguez, Yufei Chen, Janet H Zheng, Courtney A B Karlsson, Vivian H Trang, Peter D Senter, Shyra J Gardai","doi":"10.1158/1535-7163.MCT-24-0371","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0371","url":null,"abstract":"<p><p>CD47 is a cell surface glycoprotein that is expressed on normal human tissues and has a key role as a marker of self. Tumor cells have coopted CD47 overexpression to evade immune surveillance and thus blockade of CD47 is a highly active area of clinical exploration in oncology. However, clinical development of CD47-targeted agents has been complicated by its robust expression in normal tissues and the toxicities that arise from blocking this inhibitory signal. Further, pro-phagocytic signals are not uniformly expressed in tumors and antibody blockade alone is often not sufficient to drive antitumor activity. The inclusion of an IgG1 antibody backbone into therapeutic design has been shown to serve as an additional pro-phagocytic signal but also exacerbates toxicities in normal tissues. Therefore, a need persists for more selective therapeutic modalities targeting CD47. To address these challenges, we developed SGN-CD47M, a humanized anti-CD47 IgG1 monoclonal antibody linked to novel masking peptides through linkers designed to be cleaved by active proteases enriched in the tumor microenvironment. Masking technology has the potential to increase the amount of drug that reaches the tumor microenvironment, while concomitantly reducing systemic toxicities. We demonstrate that SGN-CD47M is well tolerated in cynomolgus monkeys and displays a 20-fold improvement in tolerability to hematologic toxicities when compared to the unmasked antibody. SGN-CD47M also displays preferential activation in the tumor microenvironment that leads to robust single-agent antitumor activity. For these reasons, SGN-CD47M may have enhanced antitumor activity and improved tolerability relative to existing therapies that target the CD47-SIRPα interaction.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential mechanisms of interstitial lung disease induced by antibody-drug conjugates based on quantitative analysis of drug distribution. 基于药物分布定量分析的抗体药物共轭物诱发间质性肺病的潜在机制。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-10-25 DOI: 10.1158/1535-7163.MCT-24-0267
Shigehiro Koganemaru, Hirobumi Fuchigami, Chihiro Morizono, Hiroko Shinohara, Yasutoshi Kuboki, Keiji Fruuchi, Toshimitsu Uenaka, Toshihiko Doi, Masahiro Yasunaga

Antibody-drug conjugates (ADCs) are a rapidly advancing category of therapeutic agents with notable anti-cancer efficacy. However, the emergence of interstitial lung disease (ILD) as a severe ADC-associated adverse event highlights the need to better understand the underlying mechanisms. In this study, xenograft model mice with tumors expressing different levels of the trophoblast antigen 2 (TROP2) were generated by subcutaneously transplanting the various TROP2-expression cancer lines. The mice received different doses of TROP2-eribulin, a novel TROP2-targeting ADC, composed of an anti-TROP2 antibody and the eribulin payload, joined by a cleavable linker. The concentration and distribution of TROP2-eribulin, as well as the pharmacokinetics of eribulin release, were assessed in tumor and lung tissues. Analysis of tumor tissue showed that the concentration of released eribulin was approximately 10-fold higher in NCI-H2110 (high TROP2 expression) than in A549 (low TROP2 expression), while analysis of lung tissue showed that TROP2-eribulin was distributed in lung tissue in a dose-dependent manner of TROP2-eribulin regardless of TROP2 expression, with significantly more eribulin released in the high-dose group than in the other dose groups (P < 0.05). Immunofluorescence assay analysis showed that TROP2-eribuilin localized to alveolar macrophages. In the analysis using human- leukemia monocytic cell, the concentration of eribulin released from TROP2-eribuilin was significantly reduced by the use of an Fc receptor inhibitor (P < 0.05). These results revealed that Fcγ-receptor-mediated uptake by alveolar macrophages releases cytotoxic payload into lung tissue, helping to clarify the pathogenesis of ADC-induced ILD.

抗体-药物共轭物(ADC)是一类发展迅速的治疗药物,具有显著的抗癌疗效。然而,间质性肺病(ILD)作为一种与 ADC 相关的严重不良反应的出现,凸显了更好地了解其潜在机制的必要性。在这项研究中,通过皮下移植不同的TROP2表达癌系,产生了表达不同水平滋养层抗原2(TROP2)的肿瘤异种移植模型小鼠。小鼠接受了不同剂量的TROP2-麦布林,这是一种新型的TROP2靶向ADC,由抗TROP2抗体和麦布林有效载荷组成,并由可裂解连接体连接。研究人员评估了TROP2-埃里布林在肿瘤和肺组织中的浓度、分布以及释放埃里布林的药代动力学。对肿瘤组织的分析表明,NCI-H2110(TROP2高表达)释放的艾瑞布林浓度比A549(TROP2低表达)高约10倍;而对肺组织的分析表明,无论TROP2表达与否,TROP2-艾瑞布林在肺组织中的分布呈剂量依赖性,高剂量组释放的艾瑞布林明显多于其他剂量组(P<0.05)。免疫荧光分析表明,TROP2-麦角蛋白定位于肺泡巨噬细胞。在使用人白血病单核细胞进行的分析中,使用 Fc 受体抑制剂可显著降低 TROP2-eribuilin 释放的麦角林浓度(P < 0.05)。这些结果表明,Fcγ受体介导的肺泡巨噬细胞摄取将细胞毒性载荷释放到肺组织中,有助于阐明ADC诱导的ILD的发病机制。
{"title":"Potential mechanisms of interstitial lung disease induced by antibody-drug conjugates based on quantitative analysis of drug distribution.","authors":"Shigehiro Koganemaru, Hirobumi Fuchigami, Chihiro Morizono, Hiroko Shinohara, Yasutoshi Kuboki, Keiji Fruuchi, Toshimitsu Uenaka, Toshihiko Doi, Masahiro Yasunaga","doi":"10.1158/1535-7163.MCT-24-0267","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0267","url":null,"abstract":"<p><p>Antibody-drug conjugates (ADCs) are a rapidly advancing category of therapeutic agents with notable anti-cancer efficacy. However, the emergence of interstitial lung disease (ILD) as a severe ADC-associated adverse event highlights the need to better understand the underlying mechanisms. In this study, xenograft model mice with tumors expressing different levels of the trophoblast antigen 2 (TROP2) were generated by subcutaneously transplanting the various TROP2-expression cancer lines. The mice received different doses of TROP2-eribulin, a novel TROP2-targeting ADC, composed of an anti-TROP2 antibody and the eribulin payload, joined by a cleavable linker. The concentration and distribution of TROP2-eribulin, as well as the pharmacokinetics of eribulin release, were assessed in tumor and lung tissues. Analysis of tumor tissue showed that the concentration of released eribulin was approximately 10-fold higher in NCI-H2110 (high TROP2 expression) than in A549 (low TROP2 expression), while analysis of lung tissue showed that TROP2-eribulin was distributed in lung tissue in a dose-dependent manner of TROP2-eribulin regardless of TROP2 expression, with significantly more eribulin released in the high-dose group than in the other dose groups (P < 0.05). Immunofluorescence assay analysis showed that TROP2-eribuilin localized to alveolar macrophages. In the analysis using human- leukemia monocytic cell, the concentration of eribulin released from TROP2-eribuilin was significantly reduced by the use of an Fc receptor inhibitor (P < 0.05). These results revealed that Fcγ-receptor-mediated uptake by alveolar macrophages releases cytotoxic payload into lung tissue, helping to clarify the pathogenesis of ADC-induced ILD.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA-PK inhibition shows differential radiosensitization in orthotopic GBM PDX models based on DDR pathway deficits. DNA-PK 抑制在正位 GBM PDX 模型中显示出基于 DDR 通路缺陷的不同放射增敏作用。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-10-23 DOI: 10.1158/1535-7163.MCT-24-0003
Sonja Dragojevic, Emily J Smith, Michael S Regan, Sylwia A Stopka, Gerard Baquer, Zhiyi Xue, Wenjuan Zhang, Margaret A Connors, Jake A Kloeber, Zeng Hu, Katrina K Bakken, Lauren L Ott, Brett L Carlson, Danielle M Burgenske, Paul A Decker, Shulan Tian, Shiv K Gupta, Daniel J Laverty, Jeanette E Eckel-Passow, William F Elmquist, Nathalie Y R Agar, Zachary D Nagel, Jann N Sarkaria, Cameron M Callaghan

Glioblastoma (GBM) remains one of the most therapy-resistant malignancies with frequent local failures despite aggressive surgery, chemotherapy, and ionizing radiation (IR). Small molecule inhibitors of DNA-dependent protein kinase (DNA-PKi's) are potent radiosensitizers currently in clinical trials. Determining which patients may benefit from radiosensitization with DNA-PKi's is critical to avoid unnecessary increased risk of normal tissue toxicity. In this study we used GBM patient derived xenografts (PDXs) in orthotopic murine models to study the relationship between molecular features, pharmacokinetics, and the radiosensitizing potential of the DNA-PKi peposertib. We show that peposertib radiosensitizes established and PDX GBM lines in vitro at 300nM and above, with significant increase in radiosensitization by maintaining post-IR exposure for >12 hours. Radiosensitization by peposertib is mediated by catalytic inhibition of DNA-PK, and knock-down of DNA-PK by short hairpin RNA (shRNA) largely abolished the radiosensitizing effect. Peposertib decreased auto-phosphorylation of DNA-PKcs after IR in a dose-dependent manner with delay in resolution of γH2AX foci at 24 hours. The addition of peposertib to IR significantly increased survival in GBM120 orthotopic xenografts, but not in GBM10. There was no difference in plasma or average tumor concentrations of peposertib in the two cohorts. While the mechanism underpinning this discordant effect in vitro vs. in vivo is not clear, there was an association for greater sensitization in TP53 mutant lines. Transfection of a dominant-negative TP53 mutant in baseline TP53 wildtype GBM lines significantly delayed growth and decreased NHEJ efficiency (but not Homologous Recombination), after peposertib exposure.

胶质母细胞瘤(GBM)仍然是最难治疗的恶性肿瘤之一,尽管进行了积极的手术、化疗和电离辐射(IR),但仍经常出现局部治疗失败。DNA依赖性蛋白激酶(DNA-PKi)小分子抑制剂是目前正在临床试验中的强效放射增敏剂。确定哪些患者可以从 DNA-PKi 的放射增敏作用中获益,对于避免不必要地增加正常组织毒性风险至关重要。在本研究中,我们使用肿瘤坏死性脑胶质瘤患者衍生异种移植物(PDXs)的正位小鼠模型来研究 DNA-PKi peposertib 的分子特征、药代动力学和放射增敏潜力之间的关系。我们的研究结果表明,佩泊塞替布能在体外以 300nM 或更高的剂量使已建立的和 PDX GBM 株系放射致敏,并且在红外线照射后维持 12 小时以上,放射致敏效果会显著增强。培泊色提布的放射增敏作用是通过催化抑制DNA-PK介导的,通过短发夹RNA(shRNA)敲除DNA-PK在很大程度上取消了放射增敏作用。佩泊舍替布以剂量依赖的方式减少了红外辐射后DNA-PKcs的自身磷酸化,并延迟了γH2AX病灶在24小时内的消解。在IR中加入培泊色替布可显著提高GBM120正位异种移植物的存活率,但对GBM10的存活率没有影响。两组患者血浆或平均肿瘤中的培泊色替布浓度没有差异。虽然体外与体内效果不一致的机制尚不清楚,但在TP53突变株中有更大的增敏作用。转染显性阴性 TP53 突变体到基线 TP53 野生型 GBM 株系中,可显著延缓生长并降低 NHEJ 效率(但不包括同源重组)。
{"title":"DNA-PK inhibition shows differential radiosensitization in orthotopic GBM PDX models based on DDR pathway deficits.","authors":"Sonja Dragojevic, Emily J Smith, Michael S Regan, Sylwia A Stopka, Gerard Baquer, Zhiyi Xue, Wenjuan Zhang, Margaret A Connors, Jake A Kloeber, Zeng Hu, Katrina K Bakken, Lauren L Ott, Brett L Carlson, Danielle M Burgenske, Paul A Decker, Shulan Tian, Shiv K Gupta, Daniel J Laverty, Jeanette E Eckel-Passow, William F Elmquist, Nathalie Y R Agar, Zachary D Nagel, Jann N Sarkaria, Cameron M Callaghan","doi":"10.1158/1535-7163.MCT-24-0003","DOIUrl":"10.1158/1535-7163.MCT-24-0003","url":null,"abstract":"<p><p>Glioblastoma (GBM) remains one of the most therapy-resistant malignancies with frequent local failures despite aggressive surgery, chemotherapy, and ionizing radiation (IR). Small molecule inhibitors of DNA-dependent protein kinase (DNA-PKi's) are potent radiosensitizers currently in clinical trials. Determining which patients may benefit from radiosensitization with DNA-PKi's is critical to avoid unnecessary increased risk of normal tissue toxicity. In this study we used GBM patient derived xenografts (PDXs) in orthotopic murine models to study the relationship between molecular features, pharmacokinetics, and the radiosensitizing potential of the DNA-PKi peposertib. We show that peposertib radiosensitizes established and PDX GBM lines in vitro at 300nM and above, with significant increase in radiosensitization by maintaining post-IR exposure for >12 hours. Radiosensitization by peposertib is mediated by catalytic inhibition of DNA-PK, and knock-down of DNA-PK by short hairpin RNA (shRNA) largely abolished the radiosensitizing effect. Peposertib decreased auto-phosphorylation of DNA-PKcs after IR in a dose-dependent manner with delay in resolution of γH2AX foci at 24 hours. The addition of peposertib to IR significantly increased survival in GBM120 orthotopic xenografts, but not in GBM10. There was no difference in plasma or average tumor concentrations of peposertib in the two cohorts. While the mechanism underpinning this discordant effect in vitro vs. in vivo is not clear, there was an association for greater sensitization in TP53 mutant lines. Transfection of a dominant-negative TP53 mutant in baseline TP53 wildtype GBM lines significantly delayed growth and decreased NHEJ efficiency (but not Homologous Recombination), after peposertib exposure.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soluble CD146 cooperates with VEGF-A to generate an immunosuppressive microenvironment in CD146-positive tumors: interest of a combined antibody-based therapy. 可溶性 CD146 与血管内皮生长因子-A 合作在 CD146 阳性肿瘤中产生免疫抑制微环境:基于抗体的联合疗法的意义。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-10-21 DOI: 10.1158/1535-7163.MCT-24-0008
Ahmad Joshkon, Wael Traboulsi, Magali Terme, Richard Bachelier, Hussein Fayyad-Kazan, Françoise Dignat-George, Alexandrine Foucault-Bertaud, Aurelie S Leroyer, Nathalie Bardin, Marcel Blot-Chabaud

Tumor development necessitates immune escape through different mechanisms. To counteract these effects, the development of therapies targeting Immune Checkpoints (ICP) has generated interest as they have produced lasting objective responses in patients with advanced metastatic tumors. However, many tumors do not respond to inhibitors of ICP, necessitating to further study the underlying mechanisms of exhaustion. Vascular Endothelial Growth Factor a (VEGFa), a pro-angiogenic molecule secreted by tumors, was described to participate to tumor immune exhaustion by increasing ICP, justifying in part the use of an anti-VEGFa monoclonal antibody (mAb), bevacizumab, in patients. However, recent studies from our group have demonstrated that tumors can escape anti-VEGFa therapy through the secretion of soluble CD146 (sCD146). In this study, we show that both VEGFa and sCD146 cooperate to create an immunosuppressive microenvironment by increasing the expression of ICP. In addition, sCD146 favors pro-tumoral M2-type macrophages and induces the secretion of pro-inflammatory cytokines. An anti-sCD146 mAb reverses these effects and displays additive effects with anti-VEGFa antibody to eliminate tumors in a syngeneic murine model grafted with melanoma cells. Combining bevacizumab with mucizumab could thus be of major therapeutic interest to prevent immune escape in malignant melanoma and other CD146-positive tumors.

肿瘤的发展需要通过不同的机制逃避免疫。为了抵消这些影响,针对免疫检查点(ICP)的疗法的开发引起了人们的兴趣,因为它们在晚期转移性肿瘤患者中产生了持久的客观反应。然而,许多肿瘤对 ICP 抑制剂没有反应,因此有必要进一步研究衰竭的内在机制。血管内皮生长因子a(VEGFa)是一种由肿瘤分泌的促血管生成分子,据描述,它通过增加ICP参与肿瘤免疫衰竭,这在一定程度上证明了在患者中使用抗VEGFa单克隆抗体(mAb)贝伐珠单抗是正确的。然而,我们小组最近的研究表明,肿瘤可以通过分泌可溶性 CD146(sCD146)来逃避抗血管内皮生长因子a疗法。在本研究中,我们发现 VEGFa 和 sCD146 通过增加 ICP 的表达,共同创造了一种免疫抑制微环境。此外,sCD146 还有利于亲肿瘤的 M2 型巨噬细胞,并诱导促炎细胞因子的分泌。抗 sCD146 mAb 能逆转这些效应,并与抗 VEGFa 抗体一起在移植了黑色素瘤细胞的合成鼠模型中消除肿瘤。因此,将贝伐珠单抗与粘珠单抗相结合,对防止恶性黑色素瘤和其他 CD146 阳性肿瘤的免疫逃逸具有重要的治疗意义。
{"title":"Soluble CD146 cooperates with VEGF-A to generate an immunosuppressive microenvironment in CD146-positive tumors: interest of a combined antibody-based therapy.","authors":"Ahmad Joshkon, Wael Traboulsi, Magali Terme, Richard Bachelier, Hussein Fayyad-Kazan, Françoise Dignat-George, Alexandrine Foucault-Bertaud, Aurelie S Leroyer, Nathalie Bardin, Marcel Blot-Chabaud","doi":"10.1158/1535-7163.MCT-24-0008","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0008","url":null,"abstract":"<p><p>Tumor development necessitates immune escape through different mechanisms. To counteract these effects, the development of therapies targeting Immune Checkpoints (ICP) has generated interest as they have produced lasting objective responses in patients with advanced metastatic tumors. However, many tumors do not respond to inhibitors of ICP, necessitating to further study the underlying mechanisms of exhaustion. Vascular Endothelial Growth Factor a (VEGFa), a pro-angiogenic molecule secreted by tumors, was described to participate to tumor immune exhaustion by increasing ICP, justifying in part the use of an anti-VEGFa monoclonal antibody (mAb), bevacizumab, in patients. However, recent studies from our group have demonstrated that tumors can escape anti-VEGFa therapy through the secretion of soluble CD146 (sCD146). In this study, we show that both VEGFa and sCD146 cooperate to create an immunosuppressive microenvironment by increasing the expression of ICP. In addition, sCD146 favors pro-tumoral M2-type macrophages and induces the secretion of pro-inflammatory cytokines. An anti-sCD146 mAb reverses these effects and displays additive effects with anti-VEGFa antibody to eliminate tumors in a syngeneic murine model grafted with melanoma cells. Combining bevacizumab with mucizumab could thus be of major therapeutic interest to prevent immune escape in malignant melanoma and other CD146-positive tumors.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Lipid Nanoparticle NBF-006 Encapsulating Glutathione S-Transferase P siRNA for the Treatment of KRAS-driven Non-small Cell Lung Cancer. 包裹谷胱甘肽 S 转移酶 P siRNA 的新型脂质纳米粒子 NBF-006 用于治疗 KRAS 驱动的非小细胞肺癌。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-10-17 DOI: 10.1158/1535-7163.MCT-23-0915
Cima Cina, Bharat Majeti, Zhihong O'Brien, Li Wang, Jean Pierre Clamme, Roger Adami, Kwok Yin Tsang, Jens Harborth, Wenbin Ying, Sonya Zabludoff

Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancers, and KRAS mutations occur in 25-30% of NSCLC. Our approach to developing a therapeutic with the potential to target KRAS mutant NSCLC was to identify a new target involved in modulating signaling proteins in the RAS pathway. Glutathione S-Transferase P (GSTP) known as a Phase II detoxification enzyme has more recently been identified as a modulator of MAP kinase-related cell-signaling pathways. Therefore, developing a GSTP siRNA may be an effective therapeutic approach to treat KRAS mutant NSCLC. The lead drug product candidate (NBF-006) is a proprietary siRNA-based lipid nanoparticle (LNP) comprising GSTP siRNA (NDT-05-1040). Here, studies using a panel of KRAS mutant NSCLC cell lines demonstrated that NDT-05-1040 is a very potent and selective GSTP siRNA inhibitor. Our Western blot analysis showed that NDT-05-1040 effectively decreased the phosphorylation of MAPK and PI3K pathway components while upregulating apoptotic signaling cascade. Our in vivo studies revealed statistically significant higher distribution of NBF-006 to the lungs and tumor as compared to liver. In the subcutaneous and orthotopic tumor models, NBF-006 led to a statistically significant and dose dependent anti-tumor growth inhibition. Further, quantitative image analysis of PCNA and PARP staining showed that NBF-006 decreased proliferation and induced apoptosis, respectively, in tumors. Additionally, in a surgically implanted orthotopic lung tumor model, the survival rate of the NBF-006 treatment group was significantly prolonged (P <0.005) as compared to the vehicle control group. Together, these preclinical studies supported advancement of NBF-006 into clinical studies.

非小细胞肺癌(NSCLC)约占肺癌的 85%,而 25-30% 的 NSCLC 会发生 KRAS 突变。我们开发一种有可能针对 KRAS 突变 NSCLC 的疗法的方法是,确定一个参与调节 RAS 通路中信号蛋白的新靶点。谷胱甘肽 S-转移酶 P(GSTP)是一种二期解毒酶,最近被确认为 MAP 激酶相关细胞信号通路的调节剂。因此,开发 GSTP siRNA 可能是治疗 KRAS 突变 NSCLC 的一种有效方法。主要候选药物(NBF-006)是一种基于 siRNA 的专有脂质纳米粒子(LNP),包含 GSTP siRNA(NDT-05-1040)。在这里,使用一组 KRAS 突变 NSCLC 细胞系进行的研究表明,NDT-05-1040 是一种非常有效且具有选择性的 GSTP siRNA 抑制剂。我们的 Western 印迹分析表明,NDT-05-1040 能有效降低 MAPK 和 PI3K 通路成分的磷酸化,同时上调细胞凋亡信号级联。我们的体内研究显示,与肝脏相比,NBF-006在肺部和肿瘤中的分布具有显著的统计学意义。在皮下和正位肿瘤模型中,NBF-006 对肿瘤生长的抑制具有统计学意义和剂量依赖性。此外,PCNA和PARP染色的定量图像分析表明,NBF-006可分别减少肿瘤的增殖和诱导凋亡。此外,在手术植入的正位肺肿瘤模型中,NBF-006 治疗组的存活率明显延长(P<0.05)。
{"title":"A Novel Lipid Nanoparticle NBF-006 Encapsulating Glutathione S-Transferase P siRNA for the Treatment of KRAS-driven Non-small Cell Lung Cancer.","authors":"Cima Cina, Bharat Majeti, Zhihong O'Brien, Li Wang, Jean Pierre Clamme, Roger Adami, Kwok Yin Tsang, Jens Harborth, Wenbin Ying, Sonya Zabludoff","doi":"10.1158/1535-7163.MCT-23-0915","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-23-0915","url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancers, and KRAS mutations occur in 25-30% of NSCLC. Our approach to developing a therapeutic with the potential to target KRAS mutant NSCLC was to identify a new target involved in modulating signaling proteins in the RAS pathway. Glutathione S-Transferase P (GSTP) known as a Phase II detoxification enzyme has more recently been identified as a modulator of MAP kinase-related cell-signaling pathways. Therefore, developing a GSTP siRNA may be an effective therapeutic approach to treat KRAS mutant NSCLC. The lead drug product candidate (NBF-006) is a proprietary siRNA-based lipid nanoparticle (LNP) comprising GSTP siRNA (NDT-05-1040). Here, studies using a panel of KRAS mutant NSCLC cell lines demonstrated that NDT-05-1040 is a very potent and selective GSTP siRNA inhibitor. Our Western blot analysis showed that NDT-05-1040 effectively decreased the phosphorylation of MAPK and PI3K pathway components while upregulating apoptotic signaling cascade. Our in vivo studies revealed statistically significant higher distribution of NBF-006 to the lungs and tumor as compared to liver. In the subcutaneous and orthotopic tumor models, NBF-006 led to a statistically significant and dose dependent anti-tumor growth inhibition. Further, quantitative image analysis of PCNA and PARP staining showed that NBF-006 decreased proliferation and induced apoptosis, respectively, in tumors. Additionally, in a surgically implanted orthotopic lung tumor model, the survival rate of the NBF-006 treatment group was significantly prolonged (P <0.005) as compared to the vehicle control group. Together, these preclinical studies supported advancement of NBF-006 into clinical studies.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathogenesis and Systemic treatment of Hepatocellular Carcinoma: Current Status and Prospects. 肝细胞癌的发病机制和系统治疗:现状与前景。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-10-17 DOI: 10.1158/1535-7163.MCT-24-0403
Wanting Lei, Kexun Zhou, Ye Lei, Qiu Li, Hong Zhu

Hepatocellular carcinoma (HCC) remains one of the major threats to human health worldwide. The emergence of systemic therapeutic options have greatly improved the prognosis of patients with HCC, particularly those with advanced stages of the disease. In this review, we discussed the pathogenesis of HCC, genetic alterations associated with the development of HCC, and alterations in the tumor immune microenvironment. Then, important indicators and emerging technologies related to the diagnosis of HCC are summarized. Also, we reviewed the major advances in treatments for HCC, offering insights into future prospects for next-generation managements.

肝细胞癌(HCC)仍然是全球人类健康的主要威胁之一。系统治疗方案的出现大大改善了 HCC 患者的预后,尤其是晚期患者。在这篇综述中,我们讨论了 HCC 的发病机制、与 HCC 发展相关的基因改变以及肿瘤免疫微环境的改变。然后,总结了与诊断 HCC 相关的重要指标和新兴技术。此外,我们还回顾了治疗 HCC 的主要进展,为下一代治疗方法的未来前景提供了见解。
{"title":"Pathogenesis and Systemic treatment of Hepatocellular Carcinoma: Current Status and Prospects.","authors":"Wanting Lei, Kexun Zhou, Ye Lei, Qiu Li, Hong Zhu","doi":"10.1158/1535-7163.MCT-24-0403","DOIUrl":"10.1158/1535-7163.MCT-24-0403","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) remains one of the major threats to human health worldwide. The emergence of systemic therapeutic options have greatly improved the prognosis of patients with HCC, particularly those with advanced stages of the disease. In this review, we discussed the pathogenesis of HCC, genetic alterations associated with the development of HCC, and alterations in the tumor immune microenvironment. Then, important indicators and emerging technologies related to the diagnosis of HCC are summarized. Also, we reviewed the major advances in treatments for HCC, offering insights into future prospects for next-generation managements.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances and challenges in RAS signaling targeted therapy in leukemia. 白血病 RAS 信号靶向治疗的进展与挑战。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-10-15 DOI: 10.1158/1535-7163.MCT-24-0504
Yu Chen, Zhenghao Yin, Kenneth D Westover, Zhiwei Zhou, Liping Shu

RAS mutations are prevalent in leukemia, including mutations at G12, G13, T58, Q61, K117, and A146. These mutations are often crucial for tumor initiation, maintenance, and recurrence. While much is known about RAS function in the last 40 years, there is a substantial knowledge gap concerning the mutation-specific biological activities of RAS in cancer and the approaches needed to target specific RAS mutants effectively. The recent approval of KRASG12C inhibitors, adagrasib and sotorasib, has validated KRAS as a direct therapeutic target and demonstrated the feasibility of selectively targeting specific RAS mutants. Nevertheless, KRASG12C remains the only RAS mutant successfully targeted with FDA approved inhibitors for cancer treatment in patients, limiting its applicability for other oncogenic RAS mutants, such as G12D in leukemia. Despite these challenges, new approaches have generated optimism about targeting specific RAS mutations in an allele-dependent manner for cancer therapy, supporting by compelling biochemical and structural evidence, which inspires further exploration of RAS allele-specific vulnerabilities. This review will discuss recent advances and challenges in the development of therapies targeting RAS signaling, highlight emerging therapeutic strategies, and emphasize the importance of allele-specific approaches for leukemia treatment.

白血病中普遍存在 RAS 基因突变,包括 G12、G13、T58、Q61、K117 和 A146 基因突变。这些突变通常对肿瘤的发生、维持和复发至关重要。在过去的 40 年中,人们对 RAS 的功能有了很多了解,但对于 RAS 突变在癌症中的特异性生物活性,以及有效靶向特定 RAS 突变体所需的方法,还存在很大的知识差距。最近批准的 KRASG12C 抑制剂 adagrasib 和 sotorasib 证实了 KRAS 是一个直接治疗靶点,并证明了选择性靶向特定 RAS 突变体的可行性。尽管如此,KRASG12C 仍是唯一成功针对 RAS 突变体使用 FDA 批准的抑制剂治疗癌症的患者,这限制了其对其他致癌 RAS 突变体(如白血病中的 G12D)的适用性。尽管存在这些挑战,但新方法以等位基因依赖的方式靶向特定 RAS 突变进行癌症治疗的前景乐观,令人信服的生化和结构证据支持了这种乐观,激励着人们进一步探索 RAS 等位基因的特异性弱点。本综述将讨论针对 RAS 信号转导的疗法开发方面的最新进展和挑战,重点介绍新兴的治疗策略,并强调等位基因特异性方法对白血病治疗的重要性。
{"title":"Advances and challenges in RAS signaling targeted therapy in leukemia.","authors":"Yu Chen, Zhenghao Yin, Kenneth D Westover, Zhiwei Zhou, Liping Shu","doi":"10.1158/1535-7163.MCT-24-0504","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0504","url":null,"abstract":"<p><p>RAS mutations are prevalent in leukemia, including mutations at G12, G13, T58, Q61, K117, and A146. These mutations are often crucial for tumor initiation, maintenance, and recurrence. While much is known about RAS function in the last 40 years, there is a substantial knowledge gap concerning the mutation-specific biological activities of RAS in cancer and the approaches needed to target specific RAS mutants effectively. The recent approval of KRASG12C inhibitors, adagrasib and sotorasib, has validated KRAS as a direct therapeutic target and demonstrated the feasibility of selectively targeting specific RAS mutants. Nevertheless, KRASG12C remains the only RAS mutant successfully targeted with FDA approved inhibitors for cancer treatment in patients, limiting its applicability for other oncogenic RAS mutants, such as G12D in leukemia. Despite these challenges, new approaches have generated optimism about targeting specific RAS mutations in an allele-dependent manner for cancer therapy, supporting by compelling biochemical and structural evidence, which inspires further exploration of RAS allele-specific vulnerabilities. This review will discuss recent advances and challenges in the development of therapies targeting RAS signaling, highlight emerging therapeutic strategies, and emphasize the importance of allele-specific approaches for leukemia treatment.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting NAD+ Metabolism Vulnerability in FH-Deficient Hereditary Leiomyomatosis and Renal Cell Carcinoma with the novel NAMPT Inhibitor OT-82. 用新型 NAMPT 抑制剂 OT-82 攻克 FH 缺失型遗传性骨髓瘤和肾细胞癌中的 NAD+ 代谢弱点
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-10-14 DOI: 10.1158/1535-7163.MCT-24-0225
Susana S Najera, Christopher J Ricketts, Laura S Schmidt, Julia I Medina, Keita Saito, Lilia Ileva, Jeffrey R Brender, Amy M James, Cody J Peer, Brad Gouker, Baktiar O Karim, Olga Chernova, Catherine Wells, Ming-Hui Wei, Youfeng Yang, Xiaohu Zhang, Carleen Klumpp-Thomas, Jameson Travers, Lu Chen, Kelli M Wilson, Sameer H Issaq, William D Figg, Simone Difilippantonio, Joseph D Kalen, Murali C Krishna, Craig J Thomas, Michele Ceribelli, Christine M Heske, Daniel R Crooks, Jordan L Meier

Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is an inherited cancer syndrome caused by germline pathogenic variants in the fumarate hydratase (FH) gene. Affected individuals are at risk for developing cutaneous and uterine leiomyomas and aggressive FH-deficient renal cell carcinoma (RCC) with a papillary histology. Due to a disrupted TCA cycle, FH-deficient kidney cancers rely on aerobic glycolysis for energy production, potentially creating compensatory metabolic vulnerabilities. This study conducted a high-throughput drug screen in HLRCC cell lines, which identified a critical dependency on nicotinamide adenine dinucleotide (NAD), a redox cofactor produced by the biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT). Human HLRCC tumors and HLRCC-derived cell lines exhibited elevated NAMPT expression compared to controls. FH-deficient HLRCC cells, but not FH-restored HLRCC or normal kidney cells, were sensitive to NAMPT inhibition. HLRCC cell line viability was significantly decreased in both 2D and 3D in vitro cultures in response to the clinically relevant NAMPT inhibitor OT-82. NAMPT inhibition in vitro significantly decreased the total amount of NAD+, NADH, NADP, NADPH, and PAR levels and the effects of NAMPT inhibition could be rescued by the downstream NAD precursor nicotinamide mononucleotide, confirming the on-target activity of OT-82. Moreover, NAMPT inhibition by OT-82 in two HLRCC xenograft models resulted in severely reduced tumor growth. OT-82 treatment of HLRCC xenograft tumors in vivo inhibited glycolytic flux as demonstrated by reduced lactate/pyruvate ratio in hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging experiments. Overall, our data define NAMPT inhibition as a potential therapeutic approach for FH-deficient HLRCC-associated renal cell carcinoma.

遗传性子宫肌瘤和肾细胞癌(HLRCC)是一种遗传性癌症综合征,由富马酸氢化酶(FH)基因的种系致病变异引起。受影响的个体有患皮肤癌和子宫肌瘤以及侵袭性乳头状组织学 FH 缺陷肾细胞癌(RCC)的风险。由于TCA循环紊乱,FH缺陷型肾癌依赖有氧糖酵解产生能量,可能会造成代偿性代谢脆弱性。本研究在 HLRCC 细胞系中进行了高通量药物筛选,发现了对烟酰胺腺嘌呤二核苷酸(NAD)的关键依赖性,NAD 是由生物合成酶烟酰胺磷酸核糖转移酶(NAMPT)产生的氧化还原辅助因子。与对照组相比,人类 HLRCC 肿瘤和 HLRCC 衍生细胞系的 NAMPT 表达升高。FH缺陷的HLRCC细胞对NAMPT抑制敏感,而FH恢复的HLRCC或正常肾细胞则不敏感。在临床相关的 NAMPT 抑制剂 OT-82 的作用下,HLRCC 细胞系在二维和三维体外培养中的存活率均显著下降。体外抑制 NAMPT 可显著降低 NAD+、NADH、NADP、NADPH 和 PAR 的总量,而且 NAD 前体烟酰胺单核苷酸可挽救 NAMPT 抑制的影响,这证实了 OT-82 的靶向活性。此外,在两种 HLRCC 异种移植模型中,OT-82 对 NAMPT 的抑制作用导致肿瘤生长严重减弱。OT-82 对体内 HLRCC 异种移植瘤的治疗抑制了糖酵解通量,超极化 13C 丙酮酸磁共振光谱成像实验中乳酸/丙酮酸比率的降低证明了这一点。总之,我们的数据确定了 NAMPT 抑制是 FH 缺陷 HLRCC 相关肾细胞癌的一种潜在治疗方法。
{"title":"Targeting NAD+ Metabolism Vulnerability in FH-Deficient Hereditary Leiomyomatosis and Renal Cell Carcinoma with the novel NAMPT Inhibitor OT-82.","authors":"Susana S Najera, Christopher J Ricketts, Laura S Schmidt, Julia I Medina, Keita Saito, Lilia Ileva, Jeffrey R Brender, Amy M James, Cody J Peer, Brad Gouker, Baktiar O Karim, Olga Chernova, Catherine Wells, Ming-Hui Wei, Youfeng Yang, Xiaohu Zhang, Carleen Klumpp-Thomas, Jameson Travers, Lu Chen, Kelli M Wilson, Sameer H Issaq, William D Figg, Simone Difilippantonio, Joseph D Kalen, Murali C Krishna, Craig J Thomas, Michele Ceribelli, Christine M Heske, Daniel R Crooks, Jordan L Meier","doi":"10.1158/1535-7163.MCT-24-0225","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0225","url":null,"abstract":"<p><p>Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is an inherited cancer syndrome caused by germline pathogenic variants in the fumarate hydratase (FH) gene. Affected individuals are at risk for developing cutaneous and uterine leiomyomas and aggressive FH-deficient renal cell carcinoma (RCC) with a papillary histology. Due to a disrupted TCA cycle, FH-deficient kidney cancers rely on aerobic glycolysis for energy production, potentially creating compensatory metabolic vulnerabilities. This study conducted a high-throughput drug screen in HLRCC cell lines, which identified a critical dependency on nicotinamide adenine dinucleotide (NAD), a redox cofactor produced by the biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT). Human HLRCC tumors and HLRCC-derived cell lines exhibited elevated NAMPT expression compared to controls. FH-deficient HLRCC cells, but not FH-restored HLRCC or normal kidney cells, were sensitive to NAMPT inhibition. HLRCC cell line viability was significantly decreased in both 2D and 3D in vitro cultures in response to the clinically relevant NAMPT inhibitor OT-82. NAMPT inhibition in vitro significantly decreased the total amount of NAD+, NADH, NADP, NADPH, and PAR levels and the effects of NAMPT inhibition could be rescued by the downstream NAD precursor nicotinamide mononucleotide, confirming the on-target activity of OT-82. Moreover, NAMPT inhibition by OT-82 in two HLRCC xenograft models resulted in severely reduced tumor growth. OT-82 treatment of HLRCC xenograft tumors in vivo inhibited glycolytic flux as demonstrated by reduced lactate/pyruvate ratio in hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging experiments. Overall, our data define NAMPT inhibition as a potential therapeutic approach for FH-deficient HLRCC-associated renal cell carcinoma.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Cancer Therapeutics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1