Pub Date : 2024-11-04DOI: 10.1158/1535-7163.MCT-23-0572
Suna Erdem, Hyojae James Lee, Jayanth Surya Narayanan Shankara Narayanan, Mohottige Don Neranjan Tharuka, Jorge De la Torre, Tianchen Ren, Yixuan Kuang, Tharindumala Abeywardana, Kevin Li, Allison J Berger, Andrew M Lowy, Rebekah R White, Yuan Chen
Improvement of outcome in patients with pancreatic ductal adenocarcinoma (PDAC) requires exploration of novel therapeutic targets. Thus far, most studies of PDAC therapies, including those inhibiting small ubiquitin-like modifications (SUMOylation), have focused on PDAC epithelial cell biology, yet SUMOylation occurs in a variety of cell types. The mechanisms by which SUMOylation impacts PDAC in the context of its tumor microenvironment are poorly understood. We used clinically relevant orthotopic PDAC mouse models to investigate the effect of SUMOylation inhibition using a specific, clinical-stage compound, TAK-981. In contrast to its inhibition of PDAC cell proliferation in vitro, the survival benefit conferred by TAK-981 in vivo is dependent on the presence of T cells, suggesting that induction of adaptive antitumor immunity is an important antitumor effect of SUMOylation inhibition in vivo. To understand how this adaptive antitumor immunity is promoted, we investigated how SUMOylation inhibition in vivo alters major cell types/subtypes and their communications in the PDAC tumor microenvironment by performing transcriptomic analyses at single-cell resolution, which allowed mapping of cells in our orthotopic mouse model to cells in human PDAC tumors based on gene expression profiles. Findings are further validated by flow cytometry, immunofluorescence, IHC, western blots, and qPCR. The single-cell transcriptome dataset provided here suggests several combination strategies to augment adaptive immune responses that are necessary for durable disease control in patients with PDAC.
{"title":"Inhibition of SUMOylation Induces Adaptive Antitumor Immunity against Pancreatic Cancer through Multiple Effects on the Tumor Microenvironment.","authors":"Suna Erdem, Hyojae James Lee, Jayanth Surya Narayanan Shankara Narayanan, Mohottige Don Neranjan Tharuka, Jorge De la Torre, Tianchen Ren, Yixuan Kuang, Tharindumala Abeywardana, Kevin Li, Allison J Berger, Andrew M Lowy, Rebekah R White, Yuan Chen","doi":"10.1158/1535-7163.MCT-23-0572","DOIUrl":"10.1158/1535-7163.MCT-23-0572","url":null,"abstract":"<p><p>Improvement of outcome in patients with pancreatic ductal adenocarcinoma (PDAC) requires exploration of novel therapeutic targets. Thus far, most studies of PDAC therapies, including those inhibiting small ubiquitin-like modifications (SUMOylation), have focused on PDAC epithelial cell biology, yet SUMOylation occurs in a variety of cell types. The mechanisms by which SUMOylation impacts PDAC in the context of its tumor microenvironment are poorly understood. We used clinically relevant orthotopic PDAC mouse models to investigate the effect of SUMOylation inhibition using a specific, clinical-stage compound, TAK-981. In contrast to its inhibition of PDAC cell proliferation in vitro, the survival benefit conferred by TAK-981 in vivo is dependent on the presence of T cells, suggesting that induction of adaptive antitumor immunity is an important antitumor effect of SUMOylation inhibition in vivo. To understand how this adaptive antitumor immunity is promoted, we investigated how SUMOylation inhibition in vivo alters major cell types/subtypes and their communications in the PDAC tumor microenvironment by performing transcriptomic analyses at single-cell resolution, which allowed mapping of cells in our orthotopic mouse model to cells in human PDAC tumors based on gene expression profiles. Findings are further validated by flow cytometry, immunofluorescence, IHC, western blots, and qPCR. The single-cell transcriptome dataset provided here suggests several combination strategies to augment adaptive immune responses that are necessary for durable disease control in patients with PDAC.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1597-1612"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534524/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1158/1535-7163.MCT-24-0325
Yu-Chi Chen, Christopher G Bazewicz, Saketh S Dinavahi, Nicholas D Huntington, Todd D Schell, Gavin P Robertson
The p53 pathway plays an important role in role in cancer immunity. Mutation or downregulation of the proteins in the p53 pathway are prevalent in many cancers, contributing to tumor progression and immune dysregulation. Recent findings suggest that the activity of p53 within tumor cells, immune cells, and the tumor microenvironment can play an important role modulating natural killer (NK) cell-mediated immunity. Consequently, efforts to restore p53 pathway activity are being actively pursued to modulate this form of immunity. This review focuses on p53 activity regulating the infiltration and the activation of NK cells in the tumor immune microenvironment, which are illustrated in the Graphical Abstract for this review. Furthermore, impact of p53 and its regulation of NK cells on immunogenic cell death within solid tumors and the abscopal effect is reviewed. Finally, future avenues for therapeutically restoring p53 activity to improve NK cell-mediated anti-tumor immunity and optimize the effectiveness of cancer therapies are discussed.
p53 通路在癌症免疫中发挥着重要作用。在许多癌症中,p53 通路中的蛋白质普遍发生突变或下调,导致肿瘤进展和免疫失调。最近的研究结果表明,p53 在肿瘤细胞、免疫细胞和肿瘤微环境中的活性对自然杀伤细胞(NK)介导的免疫起着重要的调节作用。因此,人们正在积极努力恢复 p53 通路的活性,以调节这种形式的免疫。本综述的重点是 p53 活性调节 NK 细胞在肿瘤免疫微环境中的浸润和活化。此外,还综述了 p53 及其对 NK 细胞的调控对实体瘤内免疫原性细胞死亡和脱落效应的影响。最后,还讨论了恢复 p53 活性以改善 NK 细胞介导的抗肿瘤免疫力和优化癌症疗法有效性的未来治疗途径。
{"title":"Emerging Role of the p53 Pathway in Modulating Natural Killer Cell Mediated Immunity.","authors":"Yu-Chi Chen, Christopher G Bazewicz, Saketh S Dinavahi, Nicholas D Huntington, Todd D Schell, Gavin P Robertson","doi":"10.1158/1535-7163.MCT-24-0325","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0325","url":null,"abstract":"<p><p>The p53 pathway plays an important role in role in cancer immunity. Mutation or downregulation of the proteins in the p53 pathway are prevalent in many cancers, contributing to tumor progression and immune dysregulation. Recent findings suggest that the activity of p53 within tumor cells, immune cells, and the tumor microenvironment can play an important role modulating natural killer (NK) cell-mediated immunity. Consequently, efforts to restore p53 pathway activity are being actively pursued to modulate this form of immunity. This review focuses on p53 activity regulating the infiltration and the activation of NK cells in the tumor immune microenvironment, which are illustrated in the Graphical Abstract for this review. Furthermore, impact of p53 and its regulation of NK cells on immunogenic cell death within solid tumors and the abscopal effect is reviewed. Finally, future avenues for therapeutically restoring p53 activity to improve NK cell-mediated anti-tumor immunity and optimize the effectiveness of cancer therapies are discussed.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1158/1535-7163.MCT-24-0371
Matthew R Levengood, Christopher M Carosino, Xinqun Zhang, Sasha Lucas, David J Ortiz, Lori Westendorf, Alice P Chin, Arlan D Martin, Abbie Wong, Shawna M Hengel, Hao Sun, Weiping Zeng, Roma Yumul, Melissa Mc Dominguez, Yufei Chen, Janet H Zheng, Courtney A B Karlsson, Vivian H Trang, Peter D Senter, Shyra J Gardai
CD47 is a cell surface glycoprotein that is expressed on normal human tissues and has a key role as a marker of self. Tumor cells have coopted CD47 overexpression to evade immune surveillance and thus blockade of CD47 is a highly active area of clinical exploration in oncology. However, clinical development of CD47-targeted agents has been complicated by its robust expression in normal tissues and the toxicities that arise from blocking this inhibitory signal. Further, pro-phagocytic signals are not uniformly expressed in tumors and antibody blockade alone is often not sufficient to drive antitumor activity. The inclusion of an IgG1 antibody backbone into therapeutic design has been shown to serve as an additional pro-phagocytic signal but also exacerbates toxicities in normal tissues. Therefore, a need persists for more selective therapeutic modalities targeting CD47. To address these challenges, we developed SGN-CD47M, a humanized anti-CD47 IgG1 monoclonal antibody linked to novel masking peptides through linkers designed to be cleaved by active proteases enriched in the tumor microenvironment. Masking technology has the potential to increase the amount of drug that reaches the tumor microenvironment, while concomitantly reducing systemic toxicities. We demonstrate that SGN-CD47M is well tolerated in cynomolgus monkeys and displays a 20-fold improvement in tolerability to hematologic toxicities when compared to the unmasked antibody. SGN-CD47M also displays preferential activation in the tumor microenvironment that leads to robust single-agent antitumor activity. For these reasons, SGN-CD47M may have enhanced antitumor activity and improved tolerability relative to existing therapies that target the CD47-SIRPα interaction.
{"title":"Preclinical development of SGN-CD47M: Protease-activated antibody technology enables selective tumor targeting of the innate immune checkpoint receptor CD47.","authors":"Matthew R Levengood, Christopher M Carosino, Xinqun Zhang, Sasha Lucas, David J Ortiz, Lori Westendorf, Alice P Chin, Arlan D Martin, Abbie Wong, Shawna M Hengel, Hao Sun, Weiping Zeng, Roma Yumul, Melissa Mc Dominguez, Yufei Chen, Janet H Zheng, Courtney A B Karlsson, Vivian H Trang, Peter D Senter, Shyra J Gardai","doi":"10.1158/1535-7163.MCT-24-0371","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0371","url":null,"abstract":"<p><p>CD47 is a cell surface glycoprotein that is expressed on normal human tissues and has a key role as a marker of self. Tumor cells have coopted CD47 overexpression to evade immune surveillance and thus blockade of CD47 is a highly active area of clinical exploration in oncology. However, clinical development of CD47-targeted agents has been complicated by its robust expression in normal tissues and the toxicities that arise from blocking this inhibitory signal. Further, pro-phagocytic signals are not uniformly expressed in tumors and antibody blockade alone is often not sufficient to drive antitumor activity. The inclusion of an IgG1 antibody backbone into therapeutic design has been shown to serve as an additional pro-phagocytic signal but also exacerbates toxicities in normal tissues. Therefore, a need persists for more selective therapeutic modalities targeting CD47. To address these challenges, we developed SGN-CD47M, a humanized anti-CD47 IgG1 monoclonal antibody linked to novel masking peptides through linkers designed to be cleaved by active proteases enriched in the tumor microenvironment. Masking technology has the potential to increase the amount of drug that reaches the tumor microenvironment, while concomitantly reducing systemic toxicities. We demonstrate that SGN-CD47M is well tolerated in cynomolgus monkeys and displays a 20-fold improvement in tolerability to hematologic toxicities when compared to the unmasked antibody. SGN-CD47M also displays preferential activation in the tumor microenvironment that leads to robust single-agent antitumor activity. For these reasons, SGN-CD47M may have enhanced antitumor activity and improved tolerability relative to existing therapies that target the CD47-SIRPα interaction.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antibody-drug conjugates (ADCs) are a rapidly advancing category of therapeutic agents with notable anti-cancer efficacy. However, the emergence of interstitial lung disease (ILD) as a severe ADC-associated adverse event highlights the need to better understand the underlying mechanisms. In this study, xenograft model mice with tumors expressing different levels of the trophoblast antigen 2 (TROP2) were generated by subcutaneously transplanting the various TROP2-expression cancer lines. The mice received different doses of TROP2-eribulin, a novel TROP2-targeting ADC, composed of an anti-TROP2 antibody and the eribulin payload, joined by a cleavable linker. The concentration and distribution of TROP2-eribulin, as well as the pharmacokinetics of eribulin release, were assessed in tumor and lung tissues. Analysis of tumor tissue showed that the concentration of released eribulin was approximately 10-fold higher in NCI-H2110 (high TROP2 expression) than in A549 (low TROP2 expression), while analysis of lung tissue showed that TROP2-eribulin was distributed in lung tissue in a dose-dependent manner of TROP2-eribulin regardless of TROP2 expression, with significantly more eribulin released in the high-dose group than in the other dose groups (P < 0.05). Immunofluorescence assay analysis showed that TROP2-eribuilin localized to alveolar macrophages. In the analysis using human- leukemia monocytic cell, the concentration of eribulin released from TROP2-eribuilin was significantly reduced by the use of an Fc receptor inhibitor (P < 0.05). These results revealed that Fcγ-receptor-mediated uptake by alveolar macrophages releases cytotoxic payload into lung tissue, helping to clarify the pathogenesis of ADC-induced ILD.
抗体-药物共轭物(ADC)是一类发展迅速的治疗药物,具有显著的抗癌疗效。然而,间质性肺病(ILD)作为一种与 ADC 相关的严重不良反应的出现,凸显了更好地了解其潜在机制的必要性。在这项研究中,通过皮下移植不同的TROP2表达癌系,产生了表达不同水平滋养层抗原2(TROP2)的肿瘤异种移植模型小鼠。小鼠接受了不同剂量的TROP2-麦布林,这是一种新型的TROP2靶向ADC,由抗TROP2抗体和麦布林有效载荷组成,并由可裂解连接体连接。研究人员评估了TROP2-埃里布林在肿瘤和肺组织中的浓度、分布以及释放埃里布林的药代动力学。对肿瘤组织的分析表明,NCI-H2110(TROP2高表达)释放的艾瑞布林浓度比A549(TROP2低表达)高约10倍;而对肺组织的分析表明,无论TROP2表达与否,TROP2-艾瑞布林在肺组织中的分布呈剂量依赖性,高剂量组释放的艾瑞布林明显多于其他剂量组(P<0.05)。免疫荧光分析表明,TROP2-麦角蛋白定位于肺泡巨噬细胞。在使用人白血病单核细胞进行的分析中,使用 Fc 受体抑制剂可显著降低 TROP2-eribuilin 释放的麦角林浓度(P < 0.05)。这些结果表明,Fcγ受体介导的肺泡巨噬细胞摄取将细胞毒性载荷释放到肺组织中,有助于阐明ADC诱导的ILD的发病机制。
{"title":"Potential mechanisms of interstitial lung disease induced by antibody-drug conjugates based on quantitative analysis of drug distribution.","authors":"Shigehiro Koganemaru, Hirobumi Fuchigami, Chihiro Morizono, Hiroko Shinohara, Yasutoshi Kuboki, Keiji Fruuchi, Toshimitsu Uenaka, Toshihiko Doi, Masahiro Yasunaga","doi":"10.1158/1535-7163.MCT-24-0267","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0267","url":null,"abstract":"<p><p>Antibody-drug conjugates (ADCs) are a rapidly advancing category of therapeutic agents with notable anti-cancer efficacy. However, the emergence of interstitial lung disease (ILD) as a severe ADC-associated adverse event highlights the need to better understand the underlying mechanisms. In this study, xenograft model mice with tumors expressing different levels of the trophoblast antigen 2 (TROP2) were generated by subcutaneously transplanting the various TROP2-expression cancer lines. The mice received different doses of TROP2-eribulin, a novel TROP2-targeting ADC, composed of an anti-TROP2 antibody and the eribulin payload, joined by a cleavable linker. The concentration and distribution of TROP2-eribulin, as well as the pharmacokinetics of eribulin release, were assessed in tumor and lung tissues. Analysis of tumor tissue showed that the concentration of released eribulin was approximately 10-fold higher in NCI-H2110 (high TROP2 expression) than in A549 (low TROP2 expression), while analysis of lung tissue showed that TROP2-eribulin was distributed in lung tissue in a dose-dependent manner of TROP2-eribulin regardless of TROP2 expression, with significantly more eribulin released in the high-dose group than in the other dose groups (P < 0.05). Immunofluorescence assay analysis showed that TROP2-eribuilin localized to alveolar macrophages. In the analysis using human- leukemia monocytic cell, the concentration of eribulin released from TROP2-eribuilin was significantly reduced by the use of an Fc receptor inhibitor (P < 0.05). These results revealed that Fcγ-receptor-mediated uptake by alveolar macrophages releases cytotoxic payload into lung tissue, helping to clarify the pathogenesis of ADC-induced ILD.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1158/1535-7163.MCT-24-0003
Sonja Dragojevic, Emily J Smith, Michael S Regan, Sylwia A Stopka, Gerard Baquer, Zhiyi Xue, Wenjuan Zhang, Margaret A Connors, Jake A Kloeber, Zeng Hu, Katrina K Bakken, Lauren L Ott, Brett L Carlson, Danielle M Burgenske, Paul A Decker, Shulan Tian, Shiv K Gupta, Daniel J Laverty, Jeanette E Eckel-Passow, William F Elmquist, Nathalie Y R Agar, Zachary D Nagel, Jann N Sarkaria, Cameron M Callaghan
Glioblastoma (GBM) remains one of the most therapy-resistant malignancies with frequent local failures despite aggressive surgery, chemotherapy, and ionizing radiation (IR). Small molecule inhibitors of DNA-dependent protein kinase (DNA-PKi's) are potent radiosensitizers currently in clinical trials. Determining which patients may benefit from radiosensitization with DNA-PKi's is critical to avoid unnecessary increased risk of normal tissue toxicity. In this study we used GBM patient derived xenografts (PDXs) in orthotopic murine models to study the relationship between molecular features, pharmacokinetics, and the radiosensitizing potential of the DNA-PKi peposertib. We show that peposertib radiosensitizes established and PDX GBM lines in vitro at 300nM and above, with significant increase in radiosensitization by maintaining post-IR exposure for >12 hours. Radiosensitization by peposertib is mediated by catalytic inhibition of DNA-PK, and knock-down of DNA-PK by short hairpin RNA (shRNA) largely abolished the radiosensitizing effect. Peposertib decreased auto-phosphorylation of DNA-PKcs after IR in a dose-dependent manner with delay in resolution of γH2AX foci at 24 hours. The addition of peposertib to IR significantly increased survival in GBM120 orthotopic xenografts, but not in GBM10. There was no difference in plasma or average tumor concentrations of peposertib in the two cohorts. While the mechanism underpinning this discordant effect in vitro vs. in vivo is not clear, there was an association for greater sensitization in TP53 mutant lines. Transfection of a dominant-negative TP53 mutant in baseline TP53 wildtype GBM lines significantly delayed growth and decreased NHEJ efficiency (but not Homologous Recombination), after peposertib exposure.
{"title":"DNA-PK inhibition shows differential radiosensitization in orthotopic GBM PDX models based on DDR pathway deficits.","authors":"Sonja Dragojevic, Emily J Smith, Michael S Regan, Sylwia A Stopka, Gerard Baquer, Zhiyi Xue, Wenjuan Zhang, Margaret A Connors, Jake A Kloeber, Zeng Hu, Katrina K Bakken, Lauren L Ott, Brett L Carlson, Danielle M Burgenske, Paul A Decker, Shulan Tian, Shiv K Gupta, Daniel J Laverty, Jeanette E Eckel-Passow, William F Elmquist, Nathalie Y R Agar, Zachary D Nagel, Jann N Sarkaria, Cameron M Callaghan","doi":"10.1158/1535-7163.MCT-24-0003","DOIUrl":"10.1158/1535-7163.MCT-24-0003","url":null,"abstract":"<p><p>Glioblastoma (GBM) remains one of the most therapy-resistant malignancies with frequent local failures despite aggressive surgery, chemotherapy, and ionizing radiation (IR). Small molecule inhibitors of DNA-dependent protein kinase (DNA-PKi's) are potent radiosensitizers currently in clinical trials. Determining which patients may benefit from radiosensitization with DNA-PKi's is critical to avoid unnecessary increased risk of normal tissue toxicity. In this study we used GBM patient derived xenografts (PDXs) in orthotopic murine models to study the relationship between molecular features, pharmacokinetics, and the radiosensitizing potential of the DNA-PKi peposertib. We show that peposertib radiosensitizes established and PDX GBM lines in vitro at 300nM and above, with significant increase in radiosensitization by maintaining post-IR exposure for >12 hours. Radiosensitization by peposertib is mediated by catalytic inhibition of DNA-PK, and knock-down of DNA-PK by short hairpin RNA (shRNA) largely abolished the radiosensitizing effect. Peposertib decreased auto-phosphorylation of DNA-PKcs after IR in a dose-dependent manner with delay in resolution of γH2AX foci at 24 hours. The addition of peposertib to IR significantly increased survival in GBM120 orthotopic xenografts, but not in GBM10. There was no difference in plasma or average tumor concentrations of peposertib in the two cohorts. While the mechanism underpinning this discordant effect in vitro vs. in vivo is not clear, there was an association for greater sensitization in TP53 mutant lines. Transfection of a dominant-negative TP53 mutant in baseline TP53 wildtype GBM lines significantly delayed growth and decreased NHEJ efficiency (but not Homologous Recombination), after peposertib exposure.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1158/1535-7163.MCT-24-0008
Ahmad Joshkon, Wael Traboulsi, Magali Terme, Richard Bachelier, Hussein Fayyad-Kazan, Françoise Dignat-George, Alexandrine Foucault-Bertaud, Aurelie S Leroyer, Nathalie Bardin, Marcel Blot-Chabaud
Tumor development necessitates immune escape through different mechanisms. To counteract these effects, the development of therapies targeting Immune Checkpoints (ICP) has generated interest as they have produced lasting objective responses in patients with advanced metastatic tumors. However, many tumors do not respond to inhibitors of ICP, necessitating to further study the underlying mechanisms of exhaustion. Vascular Endothelial Growth Factor a (VEGFa), a pro-angiogenic molecule secreted by tumors, was described to participate to tumor immune exhaustion by increasing ICP, justifying in part the use of an anti-VEGFa monoclonal antibody (mAb), bevacizumab, in patients. However, recent studies from our group have demonstrated that tumors can escape anti-VEGFa therapy through the secretion of soluble CD146 (sCD146). In this study, we show that both VEGFa and sCD146 cooperate to create an immunosuppressive microenvironment by increasing the expression of ICP. In addition, sCD146 favors pro-tumoral M2-type macrophages and induces the secretion of pro-inflammatory cytokines. An anti-sCD146 mAb reverses these effects and displays additive effects with anti-VEGFa antibody to eliminate tumors in a syngeneic murine model grafted with melanoma cells. Combining bevacizumab with mucizumab could thus be of major therapeutic interest to prevent immune escape in malignant melanoma and other CD146-positive tumors.
{"title":"Soluble CD146 cooperates with VEGF-A to generate an immunosuppressive microenvironment in CD146-positive tumors: interest of a combined antibody-based therapy.","authors":"Ahmad Joshkon, Wael Traboulsi, Magali Terme, Richard Bachelier, Hussein Fayyad-Kazan, Françoise Dignat-George, Alexandrine Foucault-Bertaud, Aurelie S Leroyer, Nathalie Bardin, Marcel Blot-Chabaud","doi":"10.1158/1535-7163.MCT-24-0008","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0008","url":null,"abstract":"<p><p>Tumor development necessitates immune escape through different mechanisms. To counteract these effects, the development of therapies targeting Immune Checkpoints (ICP) has generated interest as they have produced lasting objective responses in patients with advanced metastatic tumors. However, many tumors do not respond to inhibitors of ICP, necessitating to further study the underlying mechanisms of exhaustion. Vascular Endothelial Growth Factor a (VEGFa), a pro-angiogenic molecule secreted by tumors, was described to participate to tumor immune exhaustion by increasing ICP, justifying in part the use of an anti-VEGFa monoclonal antibody (mAb), bevacizumab, in patients. However, recent studies from our group have demonstrated that tumors can escape anti-VEGFa therapy through the secretion of soluble CD146 (sCD146). In this study, we show that both VEGFa and sCD146 cooperate to create an immunosuppressive microenvironment by increasing the expression of ICP. In addition, sCD146 favors pro-tumoral M2-type macrophages and induces the secretion of pro-inflammatory cytokines. An anti-sCD146 mAb reverses these effects and displays additive effects with anti-VEGFa antibody to eliminate tumors in a syngeneic murine model grafted with melanoma cells. Combining bevacizumab with mucizumab could thus be of major therapeutic interest to prevent immune escape in malignant melanoma and other CD146-positive tumors.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1158/1535-7163.MCT-23-0915
Cima Cina, Bharat Majeti, Zhihong O'Brien, Li Wang, Jean Pierre Clamme, Roger Adami, Kwok Yin Tsang, Jens Harborth, Wenbin Ying, Sonya Zabludoff
Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancers, and KRAS mutations occur in 25-30% of NSCLC. Our approach to developing a therapeutic with the potential to target KRAS mutant NSCLC was to identify a new target involved in modulating signaling proteins in the RAS pathway. Glutathione S-Transferase P (GSTP) known as a Phase II detoxification enzyme has more recently been identified as a modulator of MAP kinase-related cell-signaling pathways. Therefore, developing a GSTP siRNA may be an effective therapeutic approach to treat KRAS mutant NSCLC. The lead drug product candidate (NBF-006) is a proprietary siRNA-based lipid nanoparticle (LNP) comprising GSTP siRNA (NDT-05-1040). Here, studies using a panel of KRAS mutant NSCLC cell lines demonstrated that NDT-05-1040 is a very potent and selective GSTP siRNA inhibitor. Our Western blot analysis showed that NDT-05-1040 effectively decreased the phosphorylation of MAPK and PI3K pathway components while upregulating apoptotic signaling cascade. Our in vivo studies revealed statistically significant higher distribution of NBF-006 to the lungs and tumor as compared to liver. In the subcutaneous and orthotopic tumor models, NBF-006 led to a statistically significant and dose dependent anti-tumor growth inhibition. Further, quantitative image analysis of PCNA and PARP staining showed that NBF-006 decreased proliferation and induced apoptosis, respectively, in tumors. Additionally, in a surgically implanted orthotopic lung tumor model, the survival rate of the NBF-006 treatment group was significantly prolonged (P <0.005) as compared to the vehicle control group. Together, these preclinical studies supported advancement of NBF-006 into clinical studies.
{"title":"A Novel Lipid Nanoparticle NBF-006 Encapsulating Glutathione S-Transferase P siRNA for the Treatment of KRAS-driven Non-small Cell Lung Cancer.","authors":"Cima Cina, Bharat Majeti, Zhihong O'Brien, Li Wang, Jean Pierre Clamme, Roger Adami, Kwok Yin Tsang, Jens Harborth, Wenbin Ying, Sonya Zabludoff","doi":"10.1158/1535-7163.MCT-23-0915","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-23-0915","url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancers, and KRAS mutations occur in 25-30% of NSCLC. Our approach to developing a therapeutic with the potential to target KRAS mutant NSCLC was to identify a new target involved in modulating signaling proteins in the RAS pathway. Glutathione S-Transferase P (GSTP) known as a Phase II detoxification enzyme has more recently been identified as a modulator of MAP kinase-related cell-signaling pathways. Therefore, developing a GSTP siRNA may be an effective therapeutic approach to treat KRAS mutant NSCLC. The lead drug product candidate (NBF-006) is a proprietary siRNA-based lipid nanoparticle (LNP) comprising GSTP siRNA (NDT-05-1040). Here, studies using a panel of KRAS mutant NSCLC cell lines demonstrated that NDT-05-1040 is a very potent and selective GSTP siRNA inhibitor. Our Western blot analysis showed that NDT-05-1040 effectively decreased the phosphorylation of MAPK and PI3K pathway components while upregulating apoptotic signaling cascade. Our in vivo studies revealed statistically significant higher distribution of NBF-006 to the lungs and tumor as compared to liver. In the subcutaneous and orthotopic tumor models, NBF-006 led to a statistically significant and dose dependent anti-tumor growth inhibition. Further, quantitative image analysis of PCNA and PARP staining showed that NBF-006 decreased proliferation and induced apoptosis, respectively, in tumors. Additionally, in a surgically implanted orthotopic lung tumor model, the survival rate of the NBF-006 treatment group was significantly prolonged (P <0.005) as compared to the vehicle control group. Together, these preclinical studies supported advancement of NBF-006 into clinical studies.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1158/1535-7163.MCT-24-0403
Wanting Lei, Kexun Zhou, Ye Lei, Qiu Li, Hong Zhu
Hepatocellular carcinoma (HCC) remains one of the major threats to human health worldwide. The emergence of systemic therapeutic options have greatly improved the prognosis of patients with HCC, particularly those with advanced stages of the disease. In this review, we discussed the pathogenesis of HCC, genetic alterations associated with the development of HCC, and alterations in the tumor immune microenvironment. Then, important indicators and emerging technologies related to the diagnosis of HCC are summarized. Also, we reviewed the major advances in treatments for HCC, offering insights into future prospects for next-generation managements.
{"title":"Pathogenesis and Systemic treatment of Hepatocellular Carcinoma: Current Status and Prospects.","authors":"Wanting Lei, Kexun Zhou, Ye Lei, Qiu Li, Hong Zhu","doi":"10.1158/1535-7163.MCT-24-0403","DOIUrl":"10.1158/1535-7163.MCT-24-0403","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) remains one of the major threats to human health worldwide. The emergence of systemic therapeutic options have greatly improved the prognosis of patients with HCC, particularly those with advanced stages of the disease. In this review, we discussed the pathogenesis of HCC, genetic alterations associated with the development of HCC, and alterations in the tumor immune microenvironment. Then, important indicators and emerging technologies related to the diagnosis of HCC are summarized. Also, we reviewed the major advances in treatments for HCC, offering insights into future prospects for next-generation managements.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1158/1535-7163.MCT-24-0504
Yu Chen, Zhenghao Yin, Kenneth D Westover, Zhiwei Zhou, Liping Shu
RAS mutations are prevalent in leukemia, including mutations at G12, G13, T58, Q61, K117, and A146. These mutations are often crucial for tumor initiation, maintenance, and recurrence. While much is known about RAS function in the last 40 years, there is a substantial knowledge gap concerning the mutation-specific biological activities of RAS in cancer and the approaches needed to target specific RAS mutants effectively. The recent approval of KRASG12C inhibitors, adagrasib and sotorasib, has validated KRAS as a direct therapeutic target and demonstrated the feasibility of selectively targeting specific RAS mutants. Nevertheless, KRASG12C remains the only RAS mutant successfully targeted with FDA approved inhibitors for cancer treatment in patients, limiting its applicability for other oncogenic RAS mutants, such as G12D in leukemia. Despite these challenges, new approaches have generated optimism about targeting specific RAS mutations in an allele-dependent manner for cancer therapy, supporting by compelling biochemical and structural evidence, which inspires further exploration of RAS allele-specific vulnerabilities. This review will discuss recent advances and challenges in the development of therapies targeting RAS signaling, highlight emerging therapeutic strategies, and emphasize the importance of allele-specific approaches for leukemia treatment.
{"title":"Advances and challenges in RAS signaling targeted therapy in leukemia.","authors":"Yu Chen, Zhenghao Yin, Kenneth D Westover, Zhiwei Zhou, Liping Shu","doi":"10.1158/1535-7163.MCT-24-0504","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0504","url":null,"abstract":"<p><p>RAS mutations are prevalent in leukemia, including mutations at G12, G13, T58, Q61, K117, and A146. These mutations are often crucial for tumor initiation, maintenance, and recurrence. While much is known about RAS function in the last 40 years, there is a substantial knowledge gap concerning the mutation-specific biological activities of RAS in cancer and the approaches needed to target specific RAS mutants effectively. The recent approval of KRASG12C inhibitors, adagrasib and sotorasib, has validated KRAS as a direct therapeutic target and demonstrated the feasibility of selectively targeting specific RAS mutants. Nevertheless, KRASG12C remains the only RAS mutant successfully targeted with FDA approved inhibitors for cancer treatment in patients, limiting its applicability for other oncogenic RAS mutants, such as G12D in leukemia. Despite these challenges, new approaches have generated optimism about targeting specific RAS mutations in an allele-dependent manner for cancer therapy, supporting by compelling biochemical and structural evidence, which inspires further exploration of RAS allele-specific vulnerabilities. This review will discuss recent advances and challenges in the development of therapies targeting RAS signaling, highlight emerging therapeutic strategies, and emphasize the importance of allele-specific approaches for leukemia treatment.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1158/1535-7163.MCT-24-0225
Susana S Najera, Christopher J Ricketts, Laura S Schmidt, Julia I Medina, Keita Saito, Lilia Ileva, Jeffrey R Brender, Amy M James, Cody J Peer, Brad Gouker, Baktiar O Karim, Olga Chernova, Catherine Wells, Ming-Hui Wei, Youfeng Yang, Xiaohu Zhang, Carleen Klumpp-Thomas, Jameson Travers, Lu Chen, Kelli M Wilson, Sameer H Issaq, William D Figg, Simone Difilippantonio, Joseph D Kalen, Murali C Krishna, Craig J Thomas, Michele Ceribelli, Christine M Heske, Daniel R Crooks, Jordan L Meier
Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is an inherited cancer syndrome caused by germline pathogenic variants in the fumarate hydratase (FH) gene. Affected individuals are at risk for developing cutaneous and uterine leiomyomas and aggressive FH-deficient renal cell carcinoma (RCC) with a papillary histology. Due to a disrupted TCA cycle, FH-deficient kidney cancers rely on aerobic glycolysis for energy production, potentially creating compensatory metabolic vulnerabilities. This study conducted a high-throughput drug screen in HLRCC cell lines, which identified a critical dependency on nicotinamide adenine dinucleotide (NAD), a redox cofactor produced by the biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT). Human HLRCC tumors and HLRCC-derived cell lines exhibited elevated NAMPT expression compared to controls. FH-deficient HLRCC cells, but not FH-restored HLRCC or normal kidney cells, were sensitive to NAMPT inhibition. HLRCC cell line viability was significantly decreased in both 2D and 3D in vitro cultures in response to the clinically relevant NAMPT inhibitor OT-82. NAMPT inhibition in vitro significantly decreased the total amount of NAD+, NADH, NADP, NADPH, and PAR levels and the effects of NAMPT inhibition could be rescued by the downstream NAD precursor nicotinamide mononucleotide, confirming the on-target activity of OT-82. Moreover, NAMPT inhibition by OT-82 in two HLRCC xenograft models resulted in severely reduced tumor growth. OT-82 treatment of HLRCC xenograft tumors in vivo inhibited glycolytic flux as demonstrated by reduced lactate/pyruvate ratio in hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging experiments. Overall, our data define NAMPT inhibition as a potential therapeutic approach for FH-deficient HLRCC-associated renal cell carcinoma.
{"title":"Targeting NAD+ Metabolism Vulnerability in FH-Deficient Hereditary Leiomyomatosis and Renal Cell Carcinoma with the novel NAMPT Inhibitor OT-82.","authors":"Susana S Najera, Christopher J Ricketts, Laura S Schmidt, Julia I Medina, Keita Saito, Lilia Ileva, Jeffrey R Brender, Amy M James, Cody J Peer, Brad Gouker, Baktiar O Karim, Olga Chernova, Catherine Wells, Ming-Hui Wei, Youfeng Yang, Xiaohu Zhang, Carleen Klumpp-Thomas, Jameson Travers, Lu Chen, Kelli M Wilson, Sameer H Issaq, William D Figg, Simone Difilippantonio, Joseph D Kalen, Murali C Krishna, Craig J Thomas, Michele Ceribelli, Christine M Heske, Daniel R Crooks, Jordan L Meier","doi":"10.1158/1535-7163.MCT-24-0225","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0225","url":null,"abstract":"<p><p>Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is an inherited cancer syndrome caused by germline pathogenic variants in the fumarate hydratase (FH) gene. Affected individuals are at risk for developing cutaneous and uterine leiomyomas and aggressive FH-deficient renal cell carcinoma (RCC) with a papillary histology. Due to a disrupted TCA cycle, FH-deficient kidney cancers rely on aerobic glycolysis for energy production, potentially creating compensatory metabolic vulnerabilities. This study conducted a high-throughput drug screen in HLRCC cell lines, which identified a critical dependency on nicotinamide adenine dinucleotide (NAD), a redox cofactor produced by the biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT). Human HLRCC tumors and HLRCC-derived cell lines exhibited elevated NAMPT expression compared to controls. FH-deficient HLRCC cells, but not FH-restored HLRCC or normal kidney cells, were sensitive to NAMPT inhibition. HLRCC cell line viability was significantly decreased in both 2D and 3D in vitro cultures in response to the clinically relevant NAMPT inhibitor OT-82. NAMPT inhibition in vitro significantly decreased the total amount of NAD+, NADH, NADP, NADPH, and PAR levels and the effects of NAMPT inhibition could be rescued by the downstream NAD precursor nicotinamide mononucleotide, confirming the on-target activity of OT-82. Moreover, NAMPT inhibition by OT-82 in two HLRCC xenograft models resulted in severely reduced tumor growth. OT-82 treatment of HLRCC xenograft tumors in vivo inhibited glycolytic flux as demonstrated by reduced lactate/pyruvate ratio in hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging experiments. Overall, our data define NAMPT inhibition as a potential therapeutic approach for FH-deficient HLRCC-associated renal cell carcinoma.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}