首页 > 最新文献

Molecular Cancer Therapeutics最新文献

英文 中文
Targeting Tumor Antigen 5T4 Using CAR T Cells for the Treatment of Acute Myeloid Leukemia. 利用 CAR-T 细胞靶向肿瘤抗原 5T4 治疗急性髓性白血病。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2025-01-02 DOI: 10.1158/1535-7163.MCT-24-0052
Richard Harrop, Daniel G Blount, Naeem Khan, Mayowa Soyombo, Laura Moyce, Mark T Drayson, Jenny Down, Michelle A Lawson, Deirdre O'Connor, Rachael Nimmo, Yatish Lad, Bernard Souberbielle, Kyriacos Mitrophanous, Anna Ettorre

Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome deficits in the ability of the host immune system to detect and subsequently eradicate tumors. The identification of antigens expressed specifically on the surface of tumor cells is a critical first step for a targeted therapy that selectively targets cancer cells without affecting normal tissues. 5T4 is a tumor-associated antigen expressed on the cell surface of most solid tumors. However, very little is known about its expression in hematologic malignancies. In this study, we assess the expression of 5T4 in different types of leukemias, specifically acute myeloid leukemia (AML), and normal hematopoietic stem cells (HSC). We also provide an in vitro assessment of safety and efficacy of 5T4-targeting CAR T cells against HSCs and AML tumor cell lines. 5T4 expression was seen in about 50% of AML cases; AML with mutated nucleophosmin 1, AML-myelodysplasia-related, and AML not otherwise specified showed the highest percentage of 5T4+ cases. 5T4 CAR T cells efficiently and specifically killed AML tumor cell lines, including leukemic stem cells. Coculture of 5T4 CAR T cells with HSCs from healthy donors showed no impact on subsequent colony formation, thus confirming the safety profile of 5T4. A proof-of-concept study using a murine model for AML demonstrated that CAR T cells recognize 5T4 expressed on cells and can kill tumor cells both in vitro and in vivo. These results highlight 5T4 as a promising target for immune intervention in AML and that CAR T cells can be considered a powerful personalized therapeutic approach to treat AML.

嵌合抗原受体(CAR)T细胞是克服宿主免疫系统检测和根除肿瘤能力缺陷的一种新型靶向方法。5T4 是一种表达在大多数实体瘤细胞表面的肿瘤相关抗原。然而,人们对它在血液恶性肿瘤中的表达却知之甚少。在此,我们评估了 5T4 在不同类型白血病(尤其是急性髓性白血病(AML))和正常造血干细胞(HSCs)中的表达。我们还对针对造血干细胞和急性髓性白血病肿瘤细胞系的 5T4 靶向 CAR-T 细胞的安全性和有效性进行了体外评估。约50%的急性髓细胞性白血病病例都有5T4表达,特别是NPM1、AML-MR和NOS突变的急性髓细胞性白血病。5T4 CAR-T 细胞能高效、特异地杀死急性髓细胞性白血病肿瘤细胞系,包括白血病干细胞。将 5T4 CAR-T 细胞与健康供体的造血干细胞共培养,结果显示对随后的集落形成没有影响,从而证实了 5T4 的安全性。一个急性髓细胞性白血病小鼠模型显示,CAR-T 细胞能识别并杀死体内表达 5T4 的肿瘤细胞。这些结果突出表明,5T4是治疗急性髓细胞性白血病的一个有希望的免疫干预靶点,CAR-T细胞可被视为治疗急性髓细胞性白血病的一种强有力的个性化治疗方法。
{"title":"Targeting Tumor Antigen 5T4 Using CAR T Cells for the Treatment of Acute Myeloid Leukemia.","authors":"Richard Harrop, Daniel G Blount, Naeem Khan, Mayowa Soyombo, Laura Moyce, Mark T Drayson, Jenny Down, Michelle A Lawson, Deirdre O'Connor, Rachael Nimmo, Yatish Lad, Bernard Souberbielle, Kyriacos Mitrophanous, Anna Ettorre","doi":"10.1158/1535-7163.MCT-24-0052","DOIUrl":"10.1158/1535-7163.MCT-24-0052","url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome deficits in the ability of the host immune system to detect and subsequently eradicate tumors. The identification of antigens expressed specifically on the surface of tumor cells is a critical first step for a targeted therapy that selectively targets cancer cells without affecting normal tissues. 5T4 is a tumor-associated antigen expressed on the cell surface of most solid tumors. However, very little is known about its expression in hematologic malignancies. In this study, we assess the expression of 5T4 in different types of leukemias, specifically acute myeloid leukemia (AML), and normal hematopoietic stem cells (HSC). We also provide an in vitro assessment of safety and efficacy of 5T4-targeting CAR T cells against HSCs and AML tumor cell lines. 5T4 expression was seen in about 50% of AML cases; AML with mutated nucleophosmin 1, AML-myelodysplasia-related, and AML not otherwise specified showed the highest percentage of 5T4+ cases. 5T4 CAR T cells efficiently and specifically killed AML tumor cell lines, including leukemic stem cells. Coculture of 5T4 CAR T cells with HSCs from healthy donors showed no impact on subsequent colony formation, thus confirming the safety profile of 5T4. A proof-of-concept study using a murine model for AML demonstrated that CAR T cells recognize 5T4 expressed on cells and can kill tumor cells both in vitro and in vivo. These results highlight 5T4 as a promising target for immune intervention in AML and that CAR T cells can be considered a powerful personalized therapeutic approach to treat AML.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"93-104"},"PeriodicalIF":5.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Looking Beyond Checkpoint Inhibitor Monotherapy: Uncovering New Frontiers for Pancreatic Cancer Immunotherapy. 超越检查点抑制剂单药治疗:探索胰腺癌免疫疗法的新前沿。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2025-01-02 DOI: 10.1158/1535-7163.MCT-24-0311
Eileena F Giurini, Oliver Ralph, Sam G Pappas, Kajal H Gupta

Pancreatic ductal adenocarcinoma (PDAC) stands out as one of the most aggressive and challenging tumors, characterized by a bleak prognosis with a mere 11% survival rate over 5 years in the United States. Its formidable nature is primarily attributed to its highly aggressive behavior and poor response to existing therapies. PDAC, being notably resistant to immune interventions, presents a significant obstacle in treatment strategies. While immune checkpoint inhibitor therapies have revolutionized outcomes for various cancers, their efficacy in PDAC remains exceedingly low, benefiting less than 1% of patients. The consistent failure of these therapies in PDAC has prompted intensive investigation, particularly at the preclinical level, to unravel the intricate mechanisms of resistance inherent in this cancer type. This pursuit aims to pave the way for the development of novel immunotherapeutic strategies tailored to the distinct characteristics of PDAC. This review endeavors to provide a comprehensive exploration of these emerging immunotherapy approaches in PDAC, with a specific emphasis on elucidating their underlying immunological mechanisms. Additionally, it sheds light on the recently identified factors driving resistance to immunotherapy and evasion of the immune system in PDAC, offering insights beyond the conventional drivers that have been extensively studied.

胰腺导管腺癌(PDAC)是侵袭性最强、最具挑战性的肿瘤之一,其特点是预后凄惨,在美国五年以上的存活率仅为 11%。它的可怕之处主要在于其高度侵袭性和对现有疗法的不良反应。PDAC 对免疫干预具有明显的抗药性,给治疗策略带来了巨大障碍。虽然免疫检查点抑制剂疗法彻底改变了各种癌症的治疗效果,但其对 PDAC 的疗效仍然非常低,只有不到 1%的患者从中受益。这些疗法在 PDAC 中的持续失败促使人们进行深入研究,特别是在临床前水平,以揭示这种癌症类型固有的复杂耐药机制。这一研究旨在为开发针对 PDAC 独特特征的新型免疫治疗策略铺平道路。本综述旨在全面探讨这些针对 PDAC 的新兴免疫疗法,特别强调阐明其潜在的免疫机制。此外,它还揭示了新近发现的 PDAC 免疫疗法耐药和免疫系统逃避的因素,提供了超越已被广泛研究的传统驱动因素的见解。
{"title":"Looking Beyond Checkpoint Inhibitor Monotherapy: Uncovering New Frontiers for Pancreatic Cancer Immunotherapy.","authors":"Eileena F Giurini, Oliver Ralph, Sam G Pappas, Kajal H Gupta","doi":"10.1158/1535-7163.MCT-24-0311","DOIUrl":"10.1158/1535-7163.MCT-24-0311","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) stands out as one of the most aggressive and challenging tumors, characterized by a bleak prognosis with a mere 11% survival rate over 5 years in the United States. Its formidable nature is primarily attributed to its highly aggressive behavior and poor response to existing therapies. PDAC, being notably resistant to immune interventions, presents a significant obstacle in treatment strategies. While immune checkpoint inhibitor therapies have revolutionized outcomes for various cancers, their efficacy in PDAC remains exceedingly low, benefiting less than 1% of patients. The consistent failure of these therapies in PDAC has prompted intensive investigation, particularly at the preclinical level, to unravel the intricate mechanisms of resistance inherent in this cancer type. This pursuit aims to pave the way for the development of novel immunotherapeutic strategies tailored to the distinct characteristics of PDAC. This review endeavors to provide a comprehensive exploration of these emerging immunotherapy approaches in PDAC, with a specific emphasis on elucidating their underlying immunological mechanisms. Additionally, it sheds light on the recently identified factors driving resistance to immunotherapy and evasion of the immune system in PDAC, offering insights beyond the conventional drivers that have been extensively studied.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"18-32"},"PeriodicalIF":5.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Lipid Nanoparticle NBF-006 Encapsulating Glutathione S-Transferase P siRNA for the Treatment of KRAS-Driven Non-small Cell Lung Cancer. 包裹谷胱甘肽 S 转移酶 P siRNA 的新型脂质纳米粒子 NBF-006 用于治疗 KRAS 驱动的非小细胞肺癌。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2025-01-02 DOI: 10.1158/1535-7163.MCT-23-0915
Cima Cina, Bharat Majeti, Zhihong O'Brien, Li Wang, Jean Pierre Clamme, Roger Adami, Kwok Yin Tsang, Jens Harborth, Wenbin Ying, Sonya Zabludoff

Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancers, and KRAS mutations occur in 25% to 30% of NSCLC. Our approach to developing a therapeutic with the potential to target KRAS-mutant NSCLC was to identify a new target involved in modulating signaling proteins in the RAS pathway. Glutathione S-transferase P (GSTP), known as a phase II detoxification enzyme, has more recently been identified as a modulator of MAPK-related cell signaling pathways. Therefore, developing a GSTP siRNA may be an effective therapeutic approach to treat KRAS-mutant NSCLC. The lead drug product candidate (NBF-006) is a proprietary siRNA-based lipid nanoparticle comprising GSTP siRNA (NDT-05-1040). Here, studies using a panel of KRAS-mutant NSCLC cell lines demonstrated that NDT-05-1040 is a very potent and selective GSTP siRNA inhibitor. Our Western blot analysis showed that NDT-05-1040 effectively decreased the phosphorylation of MAPK and PI3K pathway components while upregulating apoptotic signaling cascade. Our in vivo studies revealed statistically significant higher distribution of NBF-006 to the lungs and tumor as compared with the liver. In the subcutaneous and orthotopic tumor models, NBF-006 led to a statistically significant and dose-dependent antitumor growth inhibition. Furthermore, quantitative image analysis of proliferating cell nuclear antigen and PARP staining showed that NBF-006 decreased proliferation and induced apoptosis, respectively, in tumors. Additionally, in a surgically implanted orthotopic lung tumor model, the survival rate of the NBF-006 treatment group was significantly prolonged (P < 0.005) as compared with the vehicle control group. Together, these preclinical studies supported advancement of NBF-006 into clinical studies.

非小细胞肺癌(NSCLC)约占肺癌的 85%,而 25-30% 的 NSCLC 会发生 KRAS 突变。我们开发一种有可能针对 KRAS 突变 NSCLC 的疗法的方法是,确定一个参与调节 RAS 通路中信号蛋白的新靶点。谷胱甘肽 S-转移酶 P(GSTP)是一种二期解毒酶,最近被确认为 MAP 激酶相关细胞信号通路的调节剂。因此,开发 GSTP siRNA 可能是治疗 KRAS 突变 NSCLC 的一种有效方法。主要候选药物(NBF-006)是一种基于 siRNA 的专有脂质纳米粒子(LNP),包含 GSTP siRNA(NDT-05-1040)。在这里,使用一组 KRAS 突变 NSCLC 细胞系进行的研究表明,NDT-05-1040 是一种非常有效且具有选择性的 GSTP siRNA 抑制剂。我们的 Western 印迹分析表明,NDT-05-1040 能有效降低 MAPK 和 PI3K 通路成分的磷酸化,同时上调细胞凋亡信号级联。我们的体内研究显示,与肝脏相比,NBF-006在肺部和肿瘤中的分布具有显著的统计学意义。在皮下和正位肿瘤模型中,NBF-006 对肿瘤生长的抑制具有统计学意义和剂量依赖性。此外,PCNA和PARP染色的定量图像分析表明,NBF-006可分别减少肿瘤的增殖和诱导凋亡。此外,在手术植入的正位肺肿瘤模型中,NBF-006 治疗组的存活率明显延长(P<0.05)。
{"title":"A Novel Lipid Nanoparticle NBF-006 Encapsulating Glutathione S-Transferase P siRNA for the Treatment of KRAS-Driven Non-small Cell Lung Cancer.","authors":"Cima Cina, Bharat Majeti, Zhihong O'Brien, Li Wang, Jean Pierre Clamme, Roger Adami, Kwok Yin Tsang, Jens Harborth, Wenbin Ying, Sonya Zabludoff","doi":"10.1158/1535-7163.MCT-23-0915","DOIUrl":"10.1158/1535-7163.MCT-23-0915","url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancers, and KRAS mutations occur in 25% to 30% of NSCLC. Our approach to developing a therapeutic with the potential to target KRAS-mutant NSCLC was to identify a new target involved in modulating signaling proteins in the RAS pathway. Glutathione S-transferase P (GSTP), known as a phase II detoxification enzyme, has more recently been identified as a modulator of MAPK-related cell signaling pathways. Therefore, developing a GSTP siRNA may be an effective therapeutic approach to treat KRAS-mutant NSCLC. The lead drug product candidate (NBF-006) is a proprietary siRNA-based lipid nanoparticle comprising GSTP siRNA (NDT-05-1040). Here, studies using a panel of KRAS-mutant NSCLC cell lines demonstrated that NDT-05-1040 is a very potent and selective GSTP siRNA inhibitor. Our Western blot analysis showed that NDT-05-1040 effectively decreased the phosphorylation of MAPK and PI3K pathway components while upregulating apoptotic signaling cascade. Our in vivo studies revealed statistically significant higher distribution of NBF-006 to the lungs and tumor as compared with the liver. In the subcutaneous and orthotopic tumor models, NBF-006 led to a statistically significant and dose-dependent antitumor growth inhibition. Furthermore, quantitative image analysis of proliferating cell nuclear antigen and PARP staining showed that NBF-006 decreased proliferation and induced apoptosis, respectively, in tumors. Additionally, in a surgically implanted orthotopic lung tumor model, the survival rate of the NBF-006 treatment group was significantly prolonged (P < 0.005) as compared with the vehicle control group. Together, these preclinical studies supported advancement of NBF-006 into clinical studies.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"7-17"},"PeriodicalIF":5.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Riluzole Enhancing Anti-PD-1 Efficacy by Activating cGAS/STING Signaling in Colorectal Cancer. 利鲁唑通过激活结直肠癌中的cGAS/STING信号增强抗PD-1疗效
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2025-01-02 DOI: 10.1158/1535-7163.MCT-24-0289
Beiyuan Liang, Misbah Khan, Hayden Storts, Evan H Zhang, Xinru Zheng, Xuanxuan Xing, Hazel Claybon, Jenna Wilson, Chunjie Li, Ning Jin, Richard Fishel, Wayne O Miles, Jing J Wang

Colorectal cancer is the second leading cause of cancer mortality in the United States. Although immune checkpoint blockade therapies including anti-PD-1/PD-L1 have been successful in treating a subset of patients with colorectal cancer, the response rates remain low. We have found that riluzole, a well-tolerated FDA-approved oral medicine for treating amyotrophic lateral sclerosis, increased intratumoral CD8+ T cells and suppressed tumor growth of colon cancer cells in syngeneic immune-competent mice. Riluzole-mediated tumor suppression was dependent on the presence of CD8+ T cells. Riluzole activates the cytosolic DNA sensing cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway in colon cancer cells, resulting in increased expression of IFNβ and IFNβ-regulated genes including CXCL10. Inhibition of ataxia telangiectasia mutated (ATM), but not ATM-related, resulted in a synergistic increase in IFNβ expression, suggesting that riluzole induces ATM-mediated damage response that contributes to cGAS/STING activation. Depletion of cGAS or STING significantly attenuated riluzole-induced expression of IFNβ and CXCL10 as well as increase of intratumoral CD8+ T cells and suppression of tumor growth. These results indicate that riluzole-mediated tumor infiltration of CD8+ T cells and attenuation of tumor growth is dependent on tumor cell-intrinsic STING activation. To determine whether riluzole treatment primes the tumor microenvironment for immune checkpoint modulation, riluzole was combined with anti-PD-1 treatment. This combination showed greater efficacy than either single agent and strongly suppressed tumor growth in vivo. Taken together, our studies indicate that riluzole activates cGAS/STING-mediated innate immune responses, which might be exploited to sensitize colorectal tumors to anti-PD-1/PD-L1 therapies.

结直肠癌是美国癌症死亡的第二大原因。尽管包括抗PD-1/PD-L1在内的免疫检查点阻断疗法已成功治疗了一部分结直肠癌患者,但反应率仍然很低。我们发现,经 FDA 批准用于治疗肌萎缩侧索硬化症的利鲁唑是一种耐受性良好的口服药物,它能增加瘤内 CD8+ T 细胞,抑制合成免疫小鼠结肠癌细胞的肿瘤生长。利鲁唑介导的肿瘤抑制依赖于 CD8+ T 细胞的存在。利鲁唑可激活结肠癌细胞中的细胞DNA感应cGAS/STING通路,导致干扰素β(IFNβ)和IFNβ调控基因(包括CXCL10)的表达增加。抑制ATM(而非ATR)会导致IFNβ表达的协同增加,这表明利鲁唑诱导了ATM介导的损伤反应,从而促进了cGAS/STING的激活。cGAS 或 STING 的耗竭可显著降低利鲁唑诱导的 IFNβ 和 CXCL10 的表达以及瘤内 CD8+ T 细胞的增加和肿瘤生长的抑制。这些结果表明,利鲁唑介导的 CD8+ T 细胞肿瘤浸润和肿瘤生长抑制依赖于肿瘤细胞内在的 STING 激活。为了确定利鲁唑治疗是否为免疫检查点调控提供了肿瘤微环境,利鲁唑与抗PD-1治疗相结合。这种联合疗法的疗效优于任何一种单药,并能强烈抑制体内肿瘤的生长。总之,我们的研究表明,利鲁唑能激活 cGAS/STING 介导的先天性免疫反应,可以利用这种反应使结直肠肿瘤对抗 PD-1/PD-L1 疗法敏感。.
{"title":"Riluzole Enhancing Anti-PD-1 Efficacy by Activating cGAS/STING Signaling in Colorectal Cancer.","authors":"Beiyuan Liang, Misbah Khan, Hayden Storts, Evan H Zhang, Xinru Zheng, Xuanxuan Xing, Hazel Claybon, Jenna Wilson, Chunjie Li, Ning Jin, Richard Fishel, Wayne O Miles, Jing J Wang","doi":"10.1158/1535-7163.MCT-24-0289","DOIUrl":"10.1158/1535-7163.MCT-24-0289","url":null,"abstract":"<p><p>Colorectal cancer is the second leading cause of cancer mortality in the United States. Although immune checkpoint blockade therapies including anti-PD-1/PD-L1 have been successful in treating a subset of patients with colorectal cancer, the response rates remain low. We have found that riluzole, a well-tolerated FDA-approved oral medicine for treating amyotrophic lateral sclerosis, increased intratumoral CD8+ T cells and suppressed tumor growth of colon cancer cells in syngeneic immune-competent mice. Riluzole-mediated tumor suppression was dependent on the presence of CD8+ T cells. Riluzole activates the cytosolic DNA sensing cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway in colon cancer cells, resulting in increased expression of IFNβ and IFNβ-regulated genes including CXCL10. Inhibition of ataxia telangiectasia mutated (ATM), but not ATM-related, resulted in a synergistic increase in IFNβ expression, suggesting that riluzole induces ATM-mediated damage response that contributes to cGAS/STING activation. Depletion of cGAS or STING significantly attenuated riluzole-induced expression of IFNβ and CXCL10 as well as increase of intratumoral CD8+ T cells and suppression of tumor growth. These results indicate that riluzole-mediated tumor infiltration of CD8+ T cells and attenuation of tumor growth is dependent on tumor cell-intrinsic STING activation. To determine whether riluzole treatment primes the tumor microenvironment for immune checkpoint modulation, riluzole was combined with anti-PD-1 treatment. This combination showed greater efficacy than either single agent and strongly suppressed tumor growth in vivo. Taken together, our studies indicate that riluzole activates cGAS/STING-mediated innate immune responses, which might be exploited to sensitize colorectal tumors to anti-PD-1/PD-L1 therapies.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"131-140"},"PeriodicalIF":5.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695182/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances and Challenges in RAS Signaling Targeted Therapy in Leukemia. 白血病 RAS 信号靶向治疗的进展与挑战。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2025-01-02 DOI: 10.1158/1535-7163.MCT-24-0504
Yu Chen, Zhenghao Yin, Kenneth D Westover, Zhiwei Zhou, Liping Shu

RAS mutations are prevalent in leukemia, including mutations at G12, G13, T58, Q61, K117, and A146. These mutations are often crucial for tumor initiation, maintenance, and recurrence. Although much is known about RAS function in the last 40 years, a substantial knowledge gap remains in understanding the mutation-specific biological activities of RAS in cancer and the approaches needed to target specific RAS mutants effectively. The recent approval of KRASG12C inhibitors, adagrasib and sotorasib, has validated KRAS as a direct therapeutic target and demonstrated the feasibility of selectively targeting specific RAS mutants. Nevertheless, KRASG12C remains the only RAS mutant successfully targeted with FDA-approved inhibitors for cancer treatment in patients, limiting its applicability for other oncogenic RAS mutants, such as G12D, in leukemia. Despite these challenges, new approaches have generated optimism about targeting specific RAS mutations in an allele-dependent manner for cancer therapy, supported by compelling biochemical and structural evidence, which inspires further exploration of RAS allele-specific vulnerabilities. This review will discuss the recent advances and challenges in the development of therapies targeting RAS signaling, highlight emerging therapeutic strategies, and emphasize the importance of allele-specific approaches for leukemia treatment.

白血病中普遍存在 RAS 基因突变,包括 G12、G13、T58、Q61、K117 和 A146 基因突变。这些突变通常对肿瘤的发生、维持和复发至关重要。在过去的 40 年中,人们对 RAS 的功能有了很多了解,但对于 RAS 突变在癌症中的特异性生物活性,以及有效靶向特定 RAS 突变体所需的方法,还存在很大的知识差距。最近批准的 KRASG12C 抑制剂 adagrasib 和 sotorasib 证实了 KRAS 是一个直接治疗靶点,并证明了选择性靶向特定 RAS 突变体的可行性。尽管如此,KRASG12C 仍是唯一成功针对 RAS 突变体使用 FDA 批准的抑制剂治疗癌症的患者,这限制了其对其他致癌 RAS 突变体(如白血病中的 G12D)的适用性。尽管存在这些挑战,但新方法以等位基因依赖的方式靶向特定 RAS 突变进行癌症治疗的前景乐观,令人信服的生化和结构证据支持了这种乐观,激励着人们进一步探索 RAS 等位基因的特异性弱点。本综述将讨论针对 RAS 信号转导的疗法开发方面的最新进展和挑战,重点介绍新兴的治疗策略,并强调等位基因特异性方法对白血病治疗的重要性。
{"title":"Advances and Challenges in RAS Signaling Targeted Therapy in Leukemia.","authors":"Yu Chen, Zhenghao Yin, Kenneth D Westover, Zhiwei Zhou, Liping Shu","doi":"10.1158/1535-7163.MCT-24-0504","DOIUrl":"10.1158/1535-7163.MCT-24-0504","url":null,"abstract":"<p><p>RAS mutations are prevalent in leukemia, including mutations at G12, G13, T58, Q61, K117, and A146. These mutations are often crucial for tumor initiation, maintenance, and recurrence. Although much is known about RAS function in the last 40 years, a substantial knowledge gap remains in understanding the mutation-specific biological activities of RAS in cancer and the approaches needed to target specific RAS mutants effectively. The recent approval of KRASG12C inhibitors, adagrasib and sotorasib, has validated KRAS as a direct therapeutic target and demonstrated the feasibility of selectively targeting specific RAS mutants. Nevertheless, KRASG12C remains the only RAS mutant successfully targeted with FDA-approved inhibitors for cancer treatment in patients, limiting its applicability for other oncogenic RAS mutants, such as G12D, in leukemia. Despite these challenges, new approaches have generated optimism about targeting specific RAS mutations in an allele-dependent manner for cancer therapy, supported by compelling biochemical and structural evidence, which inspires further exploration of RAS allele-specific vulnerabilities. This review will discuss the recent advances and challenges in the development of therapies targeting RAS signaling, highlight emerging therapeutic strategies, and emphasize the importance of allele-specific approaches for leukemia treatment.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"33-46"},"PeriodicalIF":5.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694067/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PARP7 Inhibitors and AHR Agonists Act Synergistically across a Wide Range of Cancer Models. PARP7 抑制剂和 AHR 激动剂在多种癌症模型中发挥协同作用
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2025-01-02 DOI: 10.1158/1535-7163.MCT-24-0211
Huadong Chen, Xuxu Gou, Ying Mao, Patrick C O'Leary, Morgan E Diolaiti, Alan Ashworth

Small-molecule inhibitors of the mono (ADP) ribosyl transferase PARP7 are being evaluated asmonotherapy for tumors overexpressing PARP7 and in combination with immune checkpoint blockade. We previously showed that sensitivity to the PARP7 inhibitor (PARP7i) RBN-2397 could be enhanced by cotreatment with agonists of the aryl hydrocarbon receptor (AHRa) in cell lines that show strong intrinsic sensitivity to RBN-2397. In this study, we demonstrated that a range of tumor cell lines that are relatively insensitive to PARP7i or AHRa as individual agents are unexpectedly profoundly sensitive to their combination. Our data show that this synergistic response is dependent on the AHR/AHR nuclear translocator and is associated with increased levels of nuclear AHR and increased transcription of AHR target genes. In some hormone receptor-positive cell lines, we find that combination treatment is associated with proteasomal turnover of the steroid hormone receptors, androgen receptor and estrogen receptor. Both wild-type and hormone-resistant mutant forms of these receptors are degraded upon treatment with AHRa and PARP7i in breast and prostate cancer models. These results suggest that combining PARP7i with AHRa may extend the utility of these drugs to a wider range of tumors, including those that are refractory to hormone therapy.

目前正在评估单(ADP)核糖转移酶PARP7的小分子抑制剂,将其作为治疗过表达PARP7肿瘤的单一疗法,或与免疫检查点阻断疗法联合使用。我们以前的研究表明,在对 RBN-2397 表现出强烈内在敏感性的细胞系中,通过与芳基烃受体(AHRa)激动剂联合处理,可以提高 PARP7 抑制剂(PARP7i)RBN-2397 的敏感性。在这里,我们证明了一系列对 PARP7i 或 AHRa 单药相对不敏感的肿瘤细胞系意外地对联合用药非常敏感。我们的数据显示,这种协同反应依赖于 AHR/ARNT,并与核 AHR 水平的增加和 AHR 靶基因转录的增加有关。在一些激素受体阳性细胞系中,我们发现联合治疗与类固醇激素受体、雄激素受体和雌激素受体的蛋白酶体转换有关。在乳腺癌和前列腺癌模型中,使用 AHRa 和 PARP7i 治疗后,这些受体的野生型和激素抗性突变型都会降解。这些结果表明,将 PARP7i 与 AHRa 结合使用可将这些药物的用途扩大到更广泛的肿瘤,包括那些对激素疗法难治的肿瘤。
{"title":"PARP7 Inhibitors and AHR Agonists Act Synergistically across a Wide Range of Cancer Models.","authors":"Huadong Chen, Xuxu Gou, Ying Mao, Patrick C O'Leary, Morgan E Diolaiti, Alan Ashworth","doi":"10.1158/1535-7163.MCT-24-0211","DOIUrl":"10.1158/1535-7163.MCT-24-0211","url":null,"abstract":"<p><p>Small-molecule inhibitors of the mono (ADP) ribosyl transferase PARP7 are being evaluated asmonotherapy for tumors overexpressing PARP7 and in combination with immune checkpoint blockade. We previously showed that sensitivity to the PARP7 inhibitor (PARP7i) RBN-2397 could be enhanced by cotreatment with agonists of the aryl hydrocarbon receptor (AHRa) in cell lines that show strong intrinsic sensitivity to RBN-2397. In this study, we demonstrated that a range of tumor cell lines that are relatively insensitive to PARP7i or AHRa as individual agents are unexpectedly profoundly sensitive to their combination. Our data show that this synergistic response is dependent on the AHR/AHR nuclear translocator and is associated with increased levels of nuclear AHR and increased transcription of AHR target genes. In some hormone receptor-positive cell lines, we find that combination treatment is associated with proteasomal turnover of the steroid hormone receptors, androgen receptor and estrogen receptor. Both wild-type and hormone-resistant mutant forms of these receptors are degraded upon treatment with AHRa and PARP7i in breast and prostate cancer models. These results suggest that combining PARP7i with AHRa may extend the utility of these drugs to a wider range of tumors, including those that are refractory to hormone therapy.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"56-68"},"PeriodicalIF":5.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Small-Molecule BCL6 Inhibitor as an Anti-Proliferative Agent for Diffuse Large B-Cell Lymphoma. 一种小分子 BCL6 抑制剂能有效抑制弥漫大 B 细胞淋巴瘤细胞的生长。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2025-01-02 DOI: 10.1158/1535-7163.MCT-23-0830
Yajing Xing, Weikai Guo, Min Wu, Jiuqing Xie, Dongxia Huang, Pan Hu, Miaoran Zhou, Lin Zhang, Yadong Zhong, Mingyao Liu, Yihua Chen, Zhengfang Yi

The B-cell lymphoma 6 (BCL6) transcription factor plays a key role in the establishment of germinal center (GC) formation. Diffuse large B-cell lymphoma (DLBCL) originates from the GC reaction due to dysregulation of BCL6. Disrupting BCL6 and its corepressors' interaction has become the foundation for rationally designing lymphoma therapies. However, BCL6 inhibitors with good activities in vitro and in vivo are rare, and there are no clinically approved BCL6 inhibitors. In this study, we discovered and developed a novel range of [1,2,4] triazolo[1,5-a] pyrimidine derivatives targeting BCL6/SMRT interaction. The lead compound WK692 directly bound BCL6BTB, disrupted BCL6BTB/SMRT interaction and activated the expression of BCL6 downstream genes inside cells, inhibited DLBCL growth and induced apoptosis in vitro, inhibited GC formation, decreased the proportion of follicular helper T cells, and impaired Ig affinity maturation. Further studies showed that WK692 inhibits DLBCL growth without toxic effects in vivo and synergizes with the EZH2 and PRMT5 inhibitors. Our results demonstrated that WK692 as a BCL6 inhibitor may be developed as a novel potential anticancer agent against DLBCL.

B 细胞淋巴瘤 6(BCL6)转录因子在生殖中心(GC)的形成过程中起着关键作用。弥漫大B细胞淋巴瘤(DLBCL)起源于BCL6失调导致的生殖中心反应。破坏 BCL6 及其核心抑制因子的相互作用已成为合理设计淋巴瘤疗法的基础。然而,具有良好体外和体内活性的BCL6抑制剂并不多见,目前也没有临床批准的BCL6抑制剂。在此,我们发现并开发了一系列新型[1,2,4]三唑并[1,5-a]嘧啶衍生物,靶向BCL6/SMRT相互作用。类似物 WK692 可直接与 BCL6BTB 结合,破坏 BCL6BTB/SMRT 相互作用,激活细胞内 BCL6 下游基因的表达,在体外抑制 DLBCL 的生长并诱导其凋亡,抑制 GC 的形成,降低滤泡辅助 T(Tfh)细胞的比例,损害免疫球蛋白的亲和性成熟。进一步的研究表明,WK692能抑制DLBCL在体内的生长,且无毒性作用,并能与EZH2和PRMT5抑制剂协同作用。我们的研究结果表明,作为一种 BCL6 抑制剂,WK692 可被开发为一种潜在的新型 DLBCL 抗癌药物。
{"title":"A Small-Molecule BCL6 Inhibitor as an Anti-Proliferative Agent for Diffuse Large B-Cell Lymphoma.","authors":"Yajing Xing, Weikai Guo, Min Wu, Jiuqing Xie, Dongxia Huang, Pan Hu, Miaoran Zhou, Lin Zhang, Yadong Zhong, Mingyao Liu, Yihua Chen, Zhengfang Yi","doi":"10.1158/1535-7163.MCT-23-0830","DOIUrl":"10.1158/1535-7163.MCT-23-0830","url":null,"abstract":"<p><p>The B-cell lymphoma 6 (BCL6) transcription factor plays a key role in the establishment of germinal center (GC) formation. Diffuse large B-cell lymphoma (DLBCL) originates from the GC reaction due to dysregulation of BCL6. Disrupting BCL6 and its corepressors' interaction has become the foundation for rationally designing lymphoma therapies. However, BCL6 inhibitors with good activities in vitro and in vivo are rare, and there are no clinically approved BCL6 inhibitors. In this study, we discovered and developed a novel range of [1,2,4] triazolo[1,5-a] pyrimidine derivatives targeting BCL6/SMRT interaction. The lead compound WK692 directly bound BCL6BTB, disrupted BCL6BTB/SMRT interaction and activated the expression of BCL6 downstream genes inside cells, inhibited DLBCL growth and induced apoptosis in vitro, inhibited GC formation, decreased the proportion of follicular helper T cells, and impaired Ig affinity maturation. Further studies showed that WK692 inhibits DLBCL growth without toxic effects in vivo and synergizes with the EZH2 and PRMT5 inhibitors. Our results demonstrated that WK692 as a BCL6 inhibitor may be developed as a novel potential anticancer agent against DLBCL.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"81-92"},"PeriodicalIF":5.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-High Dose Rate Helium Ion Beams: Minimizing Brain Tissue Damage while Preserving Tumor Control. 超高剂量率氦离子束:最大限度减少脑组织损伤,同时保持肿瘤控制。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-12-31 DOI: 10.1158/1535-7163.MCT-24-0536
Ivana Dokic, Mahmoud Moustafa, Thomas Tessonnier, Sarah Meister, Federica Ciamarone, Mahdi Akbarpour, Damir Krunic, Thomas Haberer, Jürgen Debus, Andrea Mairani, Amir Abdollahi

Ultra-high dose rate radiotherapy with electrons and protons has shown potential for cancer treatment by effectively targeting tumors while sparing healthy tissues (FLASH effect). This study aimed to investigate the potential FLASH sparing effect of ultra-high-dose rate helium ion irradiation, focusing on acute brain injury and subcutaneous tumor response in a preclinical in vivo setting. Raster-scanned helium ion beams were used to compare the effects of standard dose rate (SDR at 0.2 Gy/s) and FLASH (at 141 Gy/s) radiotherapy on healthy brain tissue. Irradiation-induced brain injury was studied in C57BL/6 mice via DNA damage response, using nuclear γH2AX as a marker for double-strand breaks (DSB). The integrity of neurovascular and immune compartments was assessed through CD31+ microvascular density and activation of microglia/macrophages. Iba1+ ramified and CD68+ phagocytic microglia/macrophages were quantified, along with the expression of inducible nitric oxide synthetase (iNOS). Tumor response to SDR (0.2 Gy/s) and FLASH (250 Gy/s) radiotherapy was evaluated in A549 carcinoma model, using tumor volume and Kaplan-Meier survival as endpoints. The results showed that helium FLASH radiotherapy significantly reduced acute brain tissue injury compared to SDR, evidenced by lower levels of DSB and preserved neurovascular endothelium. Additionally, FLASH radiotherapy reduced neuroinflammatory signals compared to SDR, as indicated by fewer CD68+ iNOS+ microglia/macrophages. FLASH radiotherapy achieved tumor control comparable to that of SDR radiotherapy. This study is the first to report the FLASH sparing effect of raster scanning helium ion radiotherapy in vivo, highlighting its potential for neuroprotection and effective tumor control.

利用电子和质子进行的超高剂量率放射治疗在有效靶向肿瘤的同时保留健康组织(FLASH效应),显示出癌症治疗的潜力。本研究旨在研究超高剂量率氦离子照射对急性脑损伤和皮下肿瘤反应的潜在FLASH保护作用,重点研究临床前体内环境。采用栅格扫描氦离子束比较标准剂量率(SDR为0.2 Gy/s)和FLASH (141 Gy/s)放疗对健康脑组织的影响。以核γ - h2ax作为双链断裂(DSB)标记物,通过DNA损伤反应研究辐照致C57BL/6小鼠脑损伤。通过CD31+微血管密度和小胶质细胞/巨噬细胞的激活来评估神经血管和免疫室的完整性。定量Iba1+分支化和CD68+吞噬小胶质细胞/巨噬细胞,以及诱导型一氧化氮合成酶(iNOS)的表达。在A549癌模型中,以肿瘤体积和Kaplan-Meier生存期为终点,评估肿瘤对SDR (0.2 Gy/s)和FLASH (250 Gy/s)放疗的反应。结果显示,与SDR相比,氦FLASH放疗可显著减轻急性脑组织损伤,表现为DSB水平降低,神经血管内皮得以保存。此外,与SDR相比,FLASH放疗减少了神经炎症信号,这表明CD68+ iNOS+小胶质细胞/巨噬细胞较少。FLASH放疗对肿瘤的控制与SDR放疗相当。本研究首次报道了光栅扫描氦离子放疗在体内的FLASH节约效应,突出了其在神经保护和有效肿瘤控制方面的潜力。
{"title":"Ultra-High Dose Rate Helium Ion Beams: Minimizing Brain Tissue Damage while Preserving Tumor Control.","authors":"Ivana Dokic, Mahmoud Moustafa, Thomas Tessonnier, Sarah Meister, Federica Ciamarone, Mahdi Akbarpour, Damir Krunic, Thomas Haberer, Jürgen Debus, Andrea Mairani, Amir Abdollahi","doi":"10.1158/1535-7163.MCT-24-0536","DOIUrl":"10.1158/1535-7163.MCT-24-0536","url":null,"abstract":"<p><p>Ultra-high dose rate radiotherapy with electrons and protons has shown potential for cancer treatment by effectively targeting tumors while sparing healthy tissues (FLASH effect). This study aimed to investigate the potential FLASH sparing effect of ultra-high-dose rate helium ion irradiation, focusing on acute brain injury and subcutaneous tumor response in a preclinical in vivo setting. Raster-scanned helium ion beams were used to compare the effects of standard dose rate (SDR at 0.2 Gy/s) and FLASH (at 141 Gy/s) radiotherapy on healthy brain tissue. Irradiation-induced brain injury was studied in C57BL/6 mice via DNA damage response, using nuclear γH2AX as a marker for double-strand breaks (DSB). The integrity of neurovascular and immune compartments was assessed through CD31+ microvascular density and activation of microglia/macrophages. Iba1+ ramified and CD68+ phagocytic microglia/macrophages were quantified, along with the expression of inducible nitric oxide synthetase (iNOS). Tumor response to SDR (0.2 Gy/s) and FLASH (250 Gy/s) radiotherapy was evaluated in A549 carcinoma model, using tumor volume and Kaplan-Meier survival as endpoints. The results showed that helium FLASH radiotherapy significantly reduced acute brain tissue injury compared to SDR, evidenced by lower levels of DSB and preserved neurovascular endothelium. Additionally, FLASH radiotherapy reduced neuroinflammatory signals compared to SDR, as indicated by fewer CD68+ iNOS+ microglia/macrophages. FLASH radiotherapy achieved tumor control comparable to that of SDR radiotherapy. This study is the first to report the FLASH sparing effect of raster scanning helium ion radiotherapy in vivo, highlighting its potential for neuroprotection and effective tumor control.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142909990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pan-KRAS inhibitors BI-2493 and BI-2865 display potent anti-tumor activity in tumors with KRAS wild-type allele amplification. Pan-KRAS抑制剂BI-2493和BI-2865在KRAS野生型等位基因扩增的肿瘤中显示出有效的抗肿瘤活性。
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-12-23 DOI: 10.1158/1535-7163.MCT-24-0386
Antonio Tedeschi, Fiorella Schischlik, Francesca Rocchetti, Johannes Popow, Florian Ebner, Daniel Gerlach, Antonia Geyer, Valeria Santoro, Andrew S Boghossian, Matthew G Rees, Melissa M Ronan, Jennifer A Roth, Jesse Lipp, Matthias Samwer, Michael Gmachl, Norbert Kraut, Mark Pearson, Dorothea Rudolph

KRASG12C selective inhibitors, such as sotorasib and adagrasib, have raised hopes of targeting other KRAS mutant alleles in cancer patients. We report that KRAS wild-type amplified tumor models are sensitive to treatment with the small molecule KRAS inhibitors BI-2493 and BI-2865. These pan-KRAS inhibitors directly target the "OFF" state of KRAS and result in potent anti-tumor activity in pre-clinical models of cancers driven by KRAS mutant proteins. Here, we used the high-throughput cellular viability PRISM assay to assess the anti-proliferative activity of BI-2493 in a 900+ cancer cell line panel, expanding on our previous work. KRAS wild-type amplified cancer cell lines, with a copy number >7, were identified as the most sensitive, across cell lines with any KRAS alterations, to our pan-KRAS inhibitors. Importantly, our data suggest that a KRAS "OFF" inhibitor is better suited to treat KRAS wild-type amplified tumors than a KRAS "ON" inhibitor. KRAS wild-type amplification is common in patients with gastroesophageal cancers where it has been shown to act as a unique cancer driver with little overlap to other actionable mutations. The pan-KRAS inhibitors BI-2493 and BI-2865 show potent anti-tumor activity in vitro and in vivo in KRAS wild-type amplified cell lines from this and other tumor types. In conclusion, this is the first study to demonstrate that direct pharmacological inhibition of KRAS shows anti-tumor activity in preclinical models of cancer with KRAS wild-type amplification, suggesting a novel therapeutic concept for patients with cancers bearing this KRAS alteration.

KRASG12C选择性抑制剂,如sotorasib和adagrasib,已经为癌症患者靶向其他KRAS突变等位基因带来了希望。我们报道KRAS野生型扩增肿瘤模型对KRAS小分子抑制剂BI-2493和BI-2865治疗敏感。这些泛KRAS抑制剂直接靶向KRAS的“关闭”状态,并在由KRAS突变蛋白驱动的癌症临床前模型中产生有效的抗肿瘤活性。在这里,我们使用高通量细胞活力PRISM实验来评估BI-2493在900多个癌细胞系面板中的抗增殖活性,扩展了我们之前的工作。KRAS野生型扩增的癌细胞系,拷贝数为>7,被鉴定为对我们的泛KRAS抑制剂最敏感,跨越任何KRAS改变的细胞系。重要的是,我们的数据表明,KRAS“OFF”抑制剂比KRAS“ON”抑制剂更适合治疗KRAS野生型扩增肿瘤。KRAS野生型扩增在胃食管癌患者中很常见,它已被证明是一种独特的癌症驱动因素,与其他可操作的突变几乎没有重叠。泛KRAS抑制剂BI-2493和BI-2865在体外和体内对KRAS野生型扩增细胞系和其他肿瘤类型显示出有效的抗肿瘤活性。总之,这是第一个证明直接药理抑制KRAS在KRAS野生型扩增的癌症临床前模型中具有抗肿瘤活性的研究,为携带这种KRAS突变的癌症患者提供了一种新的治疗理念。
{"title":"Pan-KRAS inhibitors BI-2493 and BI-2865 display potent anti-tumor activity in tumors with KRAS wild-type allele amplification.","authors":"Antonio Tedeschi, Fiorella Schischlik, Francesca Rocchetti, Johannes Popow, Florian Ebner, Daniel Gerlach, Antonia Geyer, Valeria Santoro, Andrew S Boghossian, Matthew G Rees, Melissa M Ronan, Jennifer A Roth, Jesse Lipp, Matthias Samwer, Michael Gmachl, Norbert Kraut, Mark Pearson, Dorothea Rudolph","doi":"10.1158/1535-7163.MCT-24-0386","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0386","url":null,"abstract":"<p><p>KRASG12C selective inhibitors, such as sotorasib and adagrasib, have raised hopes of targeting other KRAS mutant alleles in cancer patients. We report that KRAS wild-type amplified tumor models are sensitive to treatment with the small molecule KRAS inhibitors BI-2493 and BI-2865. These pan-KRAS inhibitors directly target the \"OFF\" state of KRAS and result in potent anti-tumor activity in pre-clinical models of cancers driven by KRAS mutant proteins. Here, we used the high-throughput cellular viability PRISM assay to assess the anti-proliferative activity of BI-2493 in a 900+ cancer cell line panel, expanding on our previous work. KRAS wild-type amplified cancer cell lines, with a copy number >7, were identified as the most sensitive, across cell lines with any KRAS alterations, to our pan-KRAS inhibitors. Importantly, our data suggest that a KRAS \"OFF\" inhibitor is better suited to treat KRAS wild-type amplified tumors than a KRAS \"ON\" inhibitor. KRAS wild-type amplification is common in patients with gastroesophageal cancers where it has been shown to act as a unique cancer driver with little overlap to other actionable mutations. The pan-KRAS inhibitors BI-2493 and BI-2865 show potent anti-tumor activity in vitro and in vivo in KRAS wild-type amplified cell lines from this and other tumor types. In conclusion, this is the first study to demonstrate that direct pharmacological inhibition of KRAS shows anti-tumor activity in preclinical models of cancer with KRAS wild-type amplification, suggesting a novel therapeutic concept for patients with cancers bearing this KRAS alteration.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142877408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blocking feedback immunosuppression of antigen presentation in brain tumor during oncolytic virotherapy with oHSV-mshPKR. oHSV-mshPKR溶瘤病毒治疗中对脑肿瘤抗原呈递的阻断反馈免疫抑制
IF 5.3 2区 医学 Q1 ONCOLOGY Pub Date : 2024-12-23 DOI: 10.1158/1535-7163.MCT-24-0629
Nobushige Tsuboi, Kimberly A Rivera-Caraballo, Upasana Sahu, Rafal Pacholczyk, Eugene Douglass, Theodore S Johnson, Qin Wang, Ravindra Kolhe, Catherine C Hedrick, David H Munn, Bangxing Hong

Glioblastoma (GBM) is the most frequent malignant brain tumor. We recently discovered that oncolytic herpes simplex virus engineered to disable tumor-intrinsic protein kinase R (PKR) signaling (oHSV-shPKR) could increase oHSV oncolysis and anti-tumor immune response. However, here we show that disabling tumor-intrinsic PKR signaling can also induce the activation of the indoleamine 2,3-dioxygenase (IDO) signaling pathway. Both GBM tumor progression and oHSV intratumoral therapy increased infiltration of IDO+CD11c+ dendritic cells into the tumor. The coculture of oHSV-infected human GBM neurospheres with monocytes-derived dendritic cells (MoDCs) dramatically increased IDO signaling activation in MoDCs through type-I interferon signaling. Addition of IDO inhibitor (indoximod) in the coculture significantly increased MoDCs activation and reduced the consumption of tryptophan. Combining indoximod and oHSV significantly inhibited tumor growth, and induced antigen specific CD8+ T cell activation. These results suggest that inhibition of the IDO pathway could significantly block feedback immunosuppression during oncolytic virotherapy of glioblastoma.

胶质母细胞瘤是最常见的恶性脑肿瘤。我们最近发现,溶瘤性单纯疱疹病毒(oHSV- shpkr)被设计成使肿瘤内在蛋白激酶R (PKR)信号失活,可以增加oHSV的溶瘤和抗肿瘤免疫反应。然而,我们在这里表明,禁用肿瘤内在的PKR信号也可以诱导吲哚胺2,3-双加氧酶(IDO)信号通路的激活。GBM肿瘤进展和oHSV肿瘤内治疗均增加IDO+CD11c+树突状细胞向肿瘤的浸润。ohsv感染的人GBM神经球与单核细胞来源的树突状细胞(MoDCs)共培养,通过i型干扰素信号传导显著增加MoDCs中IDO信号的激活。在共培养中添加IDO抑制剂(indoximod)显著增加了modc的激活并减少了色氨酸的消耗。indoximod与oHSV联合使用可显著抑制肿瘤生长,诱导抗原特异性CD8+ T细胞活化。这些结果表明,在胶质母细胞瘤溶瘤病毒治疗过程中,IDO通路的抑制可以显著阻断反馈免疫抑制。
{"title":"Blocking feedback immunosuppression of antigen presentation in brain tumor during oncolytic virotherapy with oHSV-mshPKR.","authors":"Nobushige Tsuboi, Kimberly A Rivera-Caraballo, Upasana Sahu, Rafal Pacholczyk, Eugene Douglass, Theodore S Johnson, Qin Wang, Ravindra Kolhe, Catherine C Hedrick, David H Munn, Bangxing Hong","doi":"10.1158/1535-7163.MCT-24-0629","DOIUrl":"10.1158/1535-7163.MCT-24-0629","url":null,"abstract":"<p><p>Glioblastoma (GBM) is the most frequent malignant brain tumor. We recently discovered that oncolytic herpes simplex virus engineered to disable tumor-intrinsic protein kinase R (PKR) signaling (oHSV-shPKR) could increase oHSV oncolysis and anti-tumor immune response. However, here we show that disabling tumor-intrinsic PKR signaling can also induce the activation of the indoleamine 2,3-dioxygenase (IDO) signaling pathway. Both GBM tumor progression and oHSV intratumoral therapy increased infiltration of IDO+CD11c+ dendritic cells into the tumor. The coculture of oHSV-infected human GBM neurospheres with monocytes-derived dendritic cells (MoDCs) dramatically increased IDO signaling activation in MoDCs through type-I interferon signaling. Addition of IDO inhibitor (indoximod) in the coculture significantly increased MoDCs activation and reduced the consumption of tryptophan. Combining indoximod and oHSV significantly inhibited tumor growth, and induced antigen specific CD8+ T cell activation. These results suggest that inhibition of the IDO pathway could significantly block feedback immunosuppression during oncolytic virotherapy of glioblastoma.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142877405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Cancer Therapeutics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1