首页 > 最新文献

Nature structural & molecular biology最新文献

英文 中文
EMProt improves structure determination from cryo-EM maps. EMProt改进了低温电镜图的结构测定。
Pub Date : 2025-12-08 DOI: 10.1038/s41594-025-01723-1
Tao Li,Ji Chen,Hao Li,Hong Cao,Sheng-You Huang
Cryo-electron microscopy (cryo-EM) has become the mainstream technique for macromolecular structure determination. However, because of intrinsic resolution heterogeneity, accurate modeling of all-atom structure from cryo-EM maps remains challenging even for maps at near-atomic resolution. Addressing the challenge, we present EMProt, a fully automated method for accurate protein structure determination from cryo-EM maps by efficiently integrating map information and structure prediction with a three-track attention network. EMProt is extensively evaluated on a diverse test set of 177 experimental cryo-EM maps with up to 54 chains in a case at <4-Å resolution, and compared to state-of-the-art methods including DeepMainmast, ModelAngelo, phenix.dock_and_rebuild and AlphaFold3. It is shown that EMProt greatly outperforms the existing methods in recovering the protein structure and building the complete structure. In addition, the built models by EMrot exhibit a high accuracy in model-to-map fit and structure validations.
低温电子显微镜(cryo-EM)已成为测定大分子结构的主流技术。然而,由于固有的分辨率不均一性,即使对于近原子分辨率的图,从低温电镜图中精确建模全原子结构仍然具有挑战性。为了解决这一挑战,我们提出了EMProt,这是一种全自动的方法,通过有效地将地图信息和结构预测与三轨注意力网络相结合,从低温电镜图中准确确定蛋白质结构。EMProt在177个实验低温电镜图的不同测试集上进行了广泛的评估,在<4-Å分辨率的情况下,最多有54个链,并与最先进的方法(包括DeepMainmast, ModelAngelo, phenix)进行了比较。dock_and_rebuild和AlphaFold3。结果表明,EMProt在恢复蛋白质结构和构建完整结构方面大大优于现有的方法。此外,EMrot建立的模型在模型-地图拟合和结构验证方面具有较高的精度。
{"title":"EMProt improves structure determination from cryo-EM maps.","authors":"Tao Li,Ji Chen,Hao Li,Hong Cao,Sheng-You Huang","doi":"10.1038/s41594-025-01723-1","DOIUrl":"https://doi.org/10.1038/s41594-025-01723-1","url":null,"abstract":"Cryo-electron microscopy (cryo-EM) has become the mainstream technique for macromolecular structure determination. However, because of intrinsic resolution heterogeneity, accurate modeling of all-atom structure from cryo-EM maps remains challenging even for maps at near-atomic resolution. Addressing the challenge, we present EMProt, a fully automated method for accurate protein structure determination from cryo-EM maps by efficiently integrating map information and structure prediction with a three-track attention network. EMProt is extensively evaluated on a diverse test set of 177 experimental cryo-EM maps with up to 54 chains in a case at <4-Å resolution, and compared to state-of-the-art methods including DeepMainmast, ModelAngelo, phenix.dock_and_rebuild and AlphaFold3. It is shown that EMProt greatly outperforms the existing methods in recovering the protein structure and building the complete structure. In addition, the built models by EMrot exhibit a high accuracy in model-to-map fit and structure validations.","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145704660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UBA6 specificity for ubiquitin E2 conjugating enzymes reveals a priority mechanism of BIRC6 UBA6对泛素E2偶联酶的特异性揭示了BIRC6的优先机制
Pub Date : 2025-12-05 DOI: 10.1038/s41594-025-01717-z
Carlos Riechmann, Cara J. Ellison, Jake W. Anderson, Kay Hofmann, Peter Sarkies, Paul R. Elliott
In mammals, ubiquitylation is orchestrated by the canonical ubiquitin-activating E1 enzyme UBA1 and the orthogonal E1 UBA6. Growing evidence underscores the essentiality of both E1s, which differentiate between 29 active ubiquitin-conjugating enzymes (E2s). The mechanisms governing this distinction have remained unclear. Here we establish a framework for ubiquitin E1–E2 specificity. Focusing on UBA6-controlled ubiquitylation cascades, we reveal that BIRC6, a UBA6-exclusive E2, gains priority over all other UBA6-competent E2s, underpinning the functional importance of defined UBA6–BIRC6 ubiquitylation events in regulating cell death, embryogenesis and autophagy. By capturing BIRC6 receiving ubiquitin from UBA6 in different states, we observe BIRC6 engaging with the UBA6 ubiquitin fold domain, driving an exceptionally high-affinity interaction that is modulated by the UBA6 Cys-Cap loop. Using this interaction as a template, we demonstrate how to confer activity between E2s and their noncognate E1, providing a tool to delineate E1–E2-dependent pathways. Lastly, we explain how BIRC6 priority does not lead to inhibition of UBA6, through a bespoke thioester switch mechanism that disengages BIRC6 upon receiving ubiquitin. Our findings propose a concept of hierarchy of E2 activity with cognate E1s, which may explain how ubiquitin E1s can each function with over a dozen E2s and orchestrate E2-specific cellular functions.
在哺乳动物中,泛素化是由典型的泛素激活E1酶UBA1和正交E1 UBA6协调的。越来越多的证据强调了这两种E1s的重要性,它们区分了29种活性泛素偶联酶(E2s)。支配这种区别的机制仍然不清楚。在这里,我们建立了泛素E1-E2特异性的框架。关注于uba6控制的泛素化级联,我们揭示了BIRC6,一个不含uba6的E2,比所有其他的uba6表达的E2优先,支持了定义的UBA6-BIRC6泛素化事件在调节细胞死亡、胚胎发生和自噬中的功能重要性。通过捕获在不同状态下从UBA6接收泛素的BIRC6,我们观察到BIRC6与UBA6泛素折叠域结合,驱动由UBA6 Cys-Cap环调节的异常高亲和力相互作用。以这种相互作用为模板,我们展示了如何在e2和它们的非同源E1之间赋予活性,提供了描述E1 - e2依赖通路的工具。最后,我们解释了BIRC6的优先级如何不导致UBA6的抑制,通过一个定制的硫酯开关机制,在接受泛素时脱离BIRC6。我们的研究结果提出了E2活性与同源E2活性层次结构的概念,这可能解释了泛素E2如何能够与十几种E2一起发挥作用,并协调E2特异性的细胞功能。
{"title":"UBA6 specificity for ubiquitin E2 conjugating enzymes reveals a priority mechanism of BIRC6","authors":"Carlos Riechmann, Cara J. Ellison, Jake W. Anderson, Kay Hofmann, Peter Sarkies, Paul R. Elliott","doi":"10.1038/s41594-025-01717-z","DOIUrl":"https://doi.org/10.1038/s41594-025-01717-z","url":null,"abstract":"In mammals, ubiquitylation is orchestrated by the canonical ubiquitin-activating E1 enzyme UBA1 and the orthogonal E1 UBA6. Growing evidence underscores the essentiality of both E1s, which differentiate between 29 active ubiquitin-conjugating enzymes (E2s). The mechanisms governing this distinction have remained unclear. Here we establish a framework for ubiquitin E1–E2 specificity. Focusing on UBA6-controlled ubiquitylation cascades, we reveal that BIRC6, a UBA6-exclusive E2, gains priority over all other UBA6-competent E2s, underpinning the functional importance of defined UBA6–BIRC6 ubiquitylation events in regulating cell death, embryogenesis and autophagy. By capturing BIRC6 receiving ubiquitin from UBA6 in different states, we observe BIRC6 engaging with the UBA6 ubiquitin fold domain, driving an exceptionally high-affinity interaction that is modulated by the UBA6 Cys-Cap loop. Using this interaction as a template, we demonstrate how to confer activity between E2s and their noncognate E1, providing a tool to delineate E1–E2-dependent pathways. Lastly, we explain how BIRC6 priority does not lead to inhibition of UBA6, through a bespoke thioester switch mechanism that disengages BIRC6 upon receiving ubiquitin. Our findings propose a concept of hierarchy of E2 activity with cognate E1s, which may explain how ubiquitin E1s can each function with over a dozen E2s and orchestrate E2-specific cellular functions.","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"127 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Translational activators align mRNAs at the small mitoribosomal subunit for translation initiation 翻译激活因子将mrna排列在小的线粒体亚基上以进行翻译起始
Pub Date : 2025-12-03 DOI: 10.1038/s41594-025-01726-y
Joseph B. Bridgers, Andreas Carlström, Dawafuti Sherpa, Mary T. Couvillion, Urška Rovšnik, Jingjing Gao, Bowen Wan, Sichen Shao, Martin Ott, L. Stirling Churchman
Mitochondrial gene expression is essential for oxidative phosphorylation. Mitochondrial-encoded mRNAs are translated by dedicated mitochondrial ribosomes (mitoribosomes), whose regulation remains elusive. In Saccharomyces cerevisiae , nuclear-encoded mitochondrial translational activators (TAs) facilitate transcript-specific translation by a yet unknown mechanism. Here, we investigated the function of TAs containing RNA-binding pentatricopeptide repeats using selective mitoribosome profiling and cryo-electron microscopy (cryo-EM) structural analysis. These analyses show that TAs exhibit strong selectivity for mitoribosomes initiating on their target transcripts. Moreover, TA–mitoribosome footprints indicate that TAs recruit mitoribosomes proximal to the start codon. Two cryo-EM structures of mRNA–TA complexes bound to mitoribosomes stalled in the post-initiation, pre-elongation state revealed the general mechanism of TA action. Specifically, the TAs bind to structural elements in the 5′ untranslated region of the client mRNA and the mRNA channel exit to align the mRNA in the small subunit during initiation. Our findings provide a mechanistic basis for understanding how mitochondria achieve transcript-specific translation initiation without relying on general sequence elements to position mitoribosomes at start codons.
线粒体基因表达对氧化磷酸化至关重要。线粒体编码的mrna由专门的线粒体核糖体(mitoribosomes)翻译,其调控尚不明确。在酿酒酵母中,核编码线粒体翻译激活因子(TAs)通过一种未知的机制促进转录特异性翻译。在这里,我们使用选择性线粒体谱和冷冻电镜(cryo-EM)结构分析研究了含有rna结合五肽重复序列的TAs的功能。这些分析表明,TAs对线粒体核糖体在其靶转录物上起始表现出很强的选择性。此外,ta的线粒体足迹表明ta招募起始密码子近端的线粒体。与线粒体糖体结合的mRNA-TA复合物在起始后和延伸前停滞状态的两种低温电镜结构揭示了TA作用的一般机制。具体来说,在起始过程中,TAs结合到客户mRNA的5 '非翻译区域的结构元件上,mRNA通道退出,使mRNA在小亚基上对齐。我们的研究结果为理解线粒体如何实现转录特异性翻译起始而不依赖于一般序列元件将线粒体糖体定位在起始密码子上提供了机制基础。
{"title":"Translational activators align mRNAs at the small mitoribosomal subunit for translation initiation","authors":"Joseph B. Bridgers, Andreas Carlström, Dawafuti Sherpa, Mary T. Couvillion, Urška Rovšnik, Jingjing Gao, Bowen Wan, Sichen Shao, Martin Ott, L. Stirling Churchman","doi":"10.1038/s41594-025-01726-y","DOIUrl":"https://doi.org/10.1038/s41594-025-01726-y","url":null,"abstract":"Mitochondrial gene expression is essential for oxidative phosphorylation. Mitochondrial-encoded mRNAs are translated by dedicated mitochondrial ribosomes (mitoribosomes), whose regulation remains elusive. In <jats:italic>Saccharomyces</jats:italic> <jats:italic>cerevisiae</jats:italic> , nuclear-encoded mitochondrial translational activators (TAs) facilitate transcript-specific translation by a yet unknown mechanism. Here, we investigated the function of TAs containing RNA-binding pentatricopeptide repeats using selective mitoribosome profiling and cryo-electron microscopy (cryo-EM) structural analysis. These analyses show that TAs exhibit strong selectivity for mitoribosomes initiating on their target transcripts. Moreover, TA–mitoribosome footprints indicate that TAs recruit mitoribosomes proximal to the start codon. Two cryo-EM structures of mRNA–TA complexes bound to mitoribosomes stalled in the post-initiation, pre-elongation state revealed the general mechanism of TA action. Specifically, the TAs bind to structural elements in the 5′ untranslated region of the client mRNA and the mRNA channel exit to align the mRNA in the small subunit during initiation. Our findings provide a mechanistic basis for understanding how mitochondria achieve transcript-specific translation initiation without relying on general sequence elements to position mitoribosomes at start codons.","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetic control of mammalian transcription elongation 哺乳动物转录伸长的动力学控制
Pub Date : 2025-11-27 DOI: 10.1038/s41594-025-01707-1
Yukun Wang, Xizi Chen, Maximilian Kümmecke, John W. Watters, Joel E. Cohen, Yanhui Xu, Shixin Liu
{"title":"Kinetic control of mammalian transcription elongation","authors":"Yukun Wang, Xizi Chen, Maximilian Kümmecke, John W. Watters, Joel E. Cohen, Yanhui Xu, Shixin Liu","doi":"10.1038/s41594-025-01707-1","DOIUrl":"https://doi.org/10.1038/s41594-025-01707-1","url":null,"abstract":"","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TMEM170 proteins are lipid scramblases associated with bridge-type lipid transporters BLTP1/Csf1 TMEM170蛋白是与桥型脂质转运蛋白BLTP1/Csf1相关的脂质超燃酶
Pub Date : 2025-11-26 DOI: 10.1038/s41594-025-01716-0
Cristian Rocha-Roa, Paige Chandran Blair, Gurpreet Sidhu, Daniel Álvarez, Michael Davey, Elizabeth Conibear, Stefano Vanni
{"title":"TMEM170 proteins are lipid scramblases associated with bridge-type lipid transporters BLTP1/Csf1","authors":"Cristian Rocha-Roa, Paige Chandran Blair, Gurpreet Sidhu, Daniel Álvarez, Michael Davey, Elizabeth Conibear, Stefano Vanni","doi":"10.1038/s41594-025-01716-0","DOIUrl":"https://doi.org/10.1038/s41594-025-01716-0","url":null,"abstract":"","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"149 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145599435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterochromatin boundaries maintain centromere position, size and number 异染色质边界维持着着丝粒的位置、大小和数量
Pub Date : 2025-11-25 DOI: 10.1038/s41594-025-01706-2
Ben L. Carty, Danilo Dubocanin, Marina Murillo-Pineda, Marie Dumont, Emilia Volpe, Pawel Mikulski, Julia Humes, Oliver Whittingham, Daniele Fachinetti, Simona Giunta, Nicolas Altemose, Lars E. T. Jansen
Centromeres are defined by a unique single chromatin domain featuring the histone H3 variant, centromere protein A (CENP-A), and ensure proper chromosome segregation. Centromeric chromatin typically occupies a small subregion of low DNA methylation within multimegabase arrays of hypermethylated alpha-satellite repeats and constitutive pericentric heterochromatin. Here, we define the molecular basis of how heterochromatin serves as a primary driver of centromere and neocentromere position, size and number. Using single-molecule epigenomics, we uncover roles for H3K9me3 methyltransferases SUV39H1/H2 and SETDB1, in addition to noncanonical roles for SUZ12, in maintaining H3K9me3 boundaries at centromeres. Loss of these heterochromatin boundaries leads to the progressive expansion and/or repositioning of the primary CENP-A domain, erosion of surrounding DNA methylation and nucleation of additional functional CENP-A domains across the same alpha-satellite sequences. Our study identifies the functional importance and specialization of different H3K9 methyltransferases across centromeric and pericentric domains, crucial for maintaining centromere domain size and suppressing ectopic centromere nucleation events.
着丝粒由一个独特的单一染色质结构域定义,具有组蛋白H3变体,着丝粒蛋白a (CENP-A),并确保适当的染色体分离。着丝粒染色质通常在高甲基化的α -卫星重复序列和组成的周中心异染色质的多碱基阵列中占据一个低DNA甲基化的小亚区。在这里,我们定义了异染色质如何作为着丝粒和新着丝粒位置、大小和数量的主要驱动因素的分子基础。利用单分子表观基因组学,我们揭示了H3K9me3甲基转移酶SUV39H1/H2和SETDB1的作用,以及SUZ12的非规范作用,在维持着丝粒上H3K9me3边界方面的作用。这些异染色质边界的丧失导致初级CENP-A结构域的逐渐扩展和/或重新定位,周围DNA甲基化的侵蚀以及跨相同α -卫星序列的额外功能性CENP-A结构域的成核。我们的研究确定了不同的H3K9甲基转移酶在着丝粒和周着丝粒结构域的功能重要性和专门化,这对于维持着丝粒结构域大小和抑制异位着丝粒成核事件至关重要。
{"title":"Heterochromatin boundaries maintain centromere position, size and number","authors":"Ben L. Carty, Danilo Dubocanin, Marina Murillo-Pineda, Marie Dumont, Emilia Volpe, Pawel Mikulski, Julia Humes, Oliver Whittingham, Daniele Fachinetti, Simona Giunta, Nicolas Altemose, Lars E. T. Jansen","doi":"10.1038/s41594-025-01706-2","DOIUrl":"https://doi.org/10.1038/s41594-025-01706-2","url":null,"abstract":"Centromeres are defined by a unique single chromatin domain featuring the histone H3 variant, centromere protein A (CENP-A), and ensure proper chromosome segregation. Centromeric chromatin typically occupies a small subregion of low DNA methylation within multimegabase arrays of hypermethylated alpha-satellite repeats and constitutive pericentric heterochromatin. Here, we define the molecular basis of how heterochromatin serves as a primary driver of centromere and neocentromere position, size and number. Using single-molecule epigenomics, we uncover roles for H3K9me3 methyltransferases SUV39H1/H2 and SETDB1, in addition to noncanonical roles for SUZ12, in maintaining H3K9me3 boundaries at centromeres. Loss of these heterochromatin boundaries leads to the progressive expansion and/or repositioning of the primary CENP-A domain, erosion of surrounding DNA methylation and nucleation of additional functional CENP-A domains across the same alpha-satellite sequences. Our study identifies the functional importance and specialization of different H3K9 methyltransferases across centromeric and pericentric domains, crucial for maintaining centromere domain size and suppressing ectopic centromere nucleation events.","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145594094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CryoAtom improves model building for cryo-EM CryoAtom改进了cryo-EM的模型构建
Pub Date : 2025-11-14 DOI: 10.1038/s41594-025-01713-3
Baoquan Su, Kun Huang, Zhenling Peng, Alexey Amunts, Jianyi Yang
{"title":"CryoAtom improves model building for cryo-EM","authors":"Baoquan Su, Kun Huang, Zhenling Peng, Alexey Amunts, Jianyi Yang","doi":"10.1038/s41594-025-01713-3","DOIUrl":"https://doi.org/10.1038/s41594-025-01713-3","url":null,"abstract":"","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145509112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Japan autophagy consortium 日本自噬协会
Pub Date : 2025-11-03 DOI: 10.1038/s41594-025-01683-6
Miwako Ishido, Yoshiari Shimmyo, Etsuko Tsutsumi, Masaaki Komatsu
{"title":"The Japan autophagy consortium","authors":"Miwako Ishido, Yoshiari Shimmyo, Etsuko Tsutsumi, Masaaki Komatsu","doi":"10.1038/s41594-025-01683-6","DOIUrl":"https://doi.org/10.1038/s41594-025-01683-6","url":null,"abstract":"","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145427705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Structural basis of the histone ubiquitination read-write mechanism of RYBP-PRC1. 作者更正:RYBP-PRC1组蛋白泛素化读写机制的结构基础。
Pub Date : 2025-08-27 DOI: 10.1038/s41594-025-01674-7
Maria Ciapponi,Elena Karlukova,Sven Schkölziger,Christian Benda,Jürg Müller
{"title":"Author Correction: Structural basis of the histone ubiquitination read-write mechanism of RYBP-PRC1.","authors":"Maria Ciapponi,Elena Karlukova,Sven Schkölziger,Christian Benda,Jürg Müller","doi":"10.1038/s41594-025-01674-7","DOIUrl":"https://doi.org/10.1038/s41594-025-01674-7","url":null,"abstract":"","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144959924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epitranscriptome regulation. 上皮转录组调控。
Pub Date : 2018-09-28 DOI: 10.1038/s41594-018-0140-7
Dan Dominissini, Gideon Rechavi
{"title":"Epitranscriptome regulation.","authors":"Dan Dominissini, Gideon Rechavi","doi":"10.1038/s41594-018-0140-7","DOIUrl":"10.1038/s41594-018-0140-7","url":null,"abstract":"","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36535441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature structural & molecular biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1