Pub Date : 2024-08-29DOI: 10.1038/s41559-024-02517-2
Yi Li, Andreas Schuldt, Anne Ebeling, Nico Eisenhauer, Yuanyuan Huang, Georg Albert, Cynthia Albracht, Angelos Amyntas, Michael Bonkowski, Helge Bruelheide, Maximilian Bröcher, Douglas Chesters, Jun Chen, Yannan Chen, Jing-Ting Chen, Marcel Ciobanu, Xianglu Deng, Felix Fornoff, Gerd Gleixner, Liangdong Guo, Peng-Fei Guo, Anna Heintz-Buschart, Alexandra-Maria Klein, Markus Lange, Shan Li, Qi Li, Yingbin Li, Arong Luo, Sebastian T. Meyer, Goddert von Oheimb, Gemma Rutten, Thomas Scholten, Marcel D. Solbach, Michael Staab, Ming-Qiang Wang, Naili Zhang, Chao-Dong Zhu, Bernhard Schmid, Keping Ma, Xiaojuan Liu
Ecosystem functioning depends on biodiversity at multiple trophic levels, yet relationships between multitrophic diversity and ecosystem multifunctionality have been poorly explored, with studies often focusing on individual trophic levels and functions and on specific ecosystem types. Here, we show that plant diversity can affect ecosystem functioning both directly and by affecting other trophic levels. Using data on 13 trophic groups and 13 ecosystem functions from two large biodiversity experiments—one representing temperate grasslands and the other subtropical forests—we found that plant diversity increases multifunctionality through elevated multitrophic diversity. Across both experiments, the association between multitrophic diversity and multifunctionality was stronger than the relationship between the diversity of individual trophic groups and multifunctionality. Our results also suggest that the role of multitrophic diversity is greater in forests than in grasslands. These findings imply that, to promote sustained ecosystem multifunctionality, conservation planning must consider the diversity of both plants and higher trophic levels. Research on biodiversity–ecosystem functioning relationships tends to focus on single trophic groups. This analysis of two biodiversity experiments, representing forests and grasslands, shows that plant diversity promotes ecosystem multifunctionality not only directly, but also by enhancing the diversity of other trophic levels.
{"title":"Plant diversity enhances ecosystem multifunctionality via multitrophic diversity","authors":"Yi Li, Andreas Schuldt, Anne Ebeling, Nico Eisenhauer, Yuanyuan Huang, Georg Albert, Cynthia Albracht, Angelos Amyntas, Michael Bonkowski, Helge Bruelheide, Maximilian Bröcher, Douglas Chesters, Jun Chen, Yannan Chen, Jing-Ting Chen, Marcel Ciobanu, Xianglu Deng, Felix Fornoff, Gerd Gleixner, Liangdong Guo, Peng-Fei Guo, Anna Heintz-Buschart, Alexandra-Maria Klein, Markus Lange, Shan Li, Qi Li, Yingbin Li, Arong Luo, Sebastian T. Meyer, Goddert von Oheimb, Gemma Rutten, Thomas Scholten, Marcel D. Solbach, Michael Staab, Ming-Qiang Wang, Naili Zhang, Chao-Dong Zhu, Bernhard Schmid, Keping Ma, Xiaojuan Liu","doi":"10.1038/s41559-024-02517-2","DOIUrl":"10.1038/s41559-024-02517-2","url":null,"abstract":"Ecosystem functioning depends on biodiversity at multiple trophic levels, yet relationships between multitrophic diversity and ecosystem multifunctionality have been poorly explored, with studies often focusing on individual trophic levels and functions and on specific ecosystem types. Here, we show that plant diversity can affect ecosystem functioning both directly and by affecting other trophic levels. Using data on 13 trophic groups and 13 ecosystem functions from two large biodiversity experiments—one representing temperate grasslands and the other subtropical forests—we found that plant diversity increases multifunctionality through elevated multitrophic diversity. Across both experiments, the association between multitrophic diversity and multifunctionality was stronger than the relationship between the diversity of individual trophic groups and multifunctionality. Our results also suggest that the role of multitrophic diversity is greater in forests than in grasslands. These findings imply that, to promote sustained ecosystem multifunctionality, conservation planning must consider the diversity of both plants and higher trophic levels. Research on biodiversity–ecosystem functioning relationships tends to focus on single trophic groups. This analysis of two biodiversity experiments, representing forests and grasslands, shows that plant diversity promotes ecosystem multifunctionality not only directly, but also by enhancing the diversity of other trophic levels.","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"8 11","pages":"2037-2047"},"PeriodicalIF":13.9,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1038/s41559-024-02485-7
Jasmin Camacho, Andrea Bernal-Rivera, Valentina Peña, Pedro Morales-Sosa, Sofia M. C. Robb, Jonathon Russell, Kexi Yi, Yongfu Wang, Dai Tsuchiya, Oscar E. Murillo-García, Nicolas Rohner
Dietary specializations in animals lead to adaptations in morphology, anatomy and physiology. Neotropical bats, with their high taxonomic and trophic diversity, offer a unique perspective on diet-driven evolutionary adaptations. Here we assess the metabolic response to different dietary sugars among wild-caught bats. We found that insectivorous bats had a pronounced metabolic response to trehalose, whereas bats with nectar and fruit-based diets showed significantly higher blood glucose levels in response to glucose and sucrose, reaching levels over 750 mg dl−1. The genomic analysis of 22 focal species and two outgroup species identified positive selection for the digestive enzyme trehalase in insect eaters, while sucrase–isomaltase showed selection in lineages with omnivorous and nectar diets. By examining anatomical and cellular features of the small intestine, we discovered that dietary sugar proportion strongly impacted numerous digestive traits, providing valuable insight into the physiological implications of molecular adaptations. Using hybridization chain reaction (HCR) RNA fluorescence in situ hybridization, we observed unusually high expression in the glucose transporter gene Slc2a2 in nectar bats, while fruit bats increased levels of Slc5a1 and Slc2a5. Overall, this study highlights the intricate interplay between molecular, morphological and physiological aspects of diet evolution, offering new insights into the mechanisms of dietary diversification and sugar assimilation in mammals. An analysis of Neotropical bats with different diets reveals molecular and physiological mechanisms of dietary diversification and sugar assimilation.
{"title":"Sugar assimilation underlying dietary evolution of Neotropical bats","authors":"Jasmin Camacho, Andrea Bernal-Rivera, Valentina Peña, Pedro Morales-Sosa, Sofia M. C. Robb, Jonathon Russell, Kexi Yi, Yongfu Wang, Dai Tsuchiya, Oscar E. Murillo-García, Nicolas Rohner","doi":"10.1038/s41559-024-02485-7","DOIUrl":"10.1038/s41559-024-02485-7","url":null,"abstract":"Dietary specializations in animals lead to adaptations in morphology, anatomy and physiology. Neotropical bats, with their high taxonomic and trophic diversity, offer a unique perspective on diet-driven evolutionary adaptations. Here we assess the metabolic response to different dietary sugars among wild-caught bats. We found that insectivorous bats had a pronounced metabolic response to trehalose, whereas bats with nectar and fruit-based diets showed significantly higher blood glucose levels in response to glucose and sucrose, reaching levels over 750 mg dl−1. The genomic analysis of 22 focal species and two outgroup species identified positive selection for the digestive enzyme trehalase in insect eaters, while sucrase–isomaltase showed selection in lineages with omnivorous and nectar diets. By examining anatomical and cellular features of the small intestine, we discovered that dietary sugar proportion strongly impacted numerous digestive traits, providing valuable insight into the physiological implications of molecular adaptations. Using hybridization chain reaction (HCR) RNA fluorescence in situ hybridization, we observed unusually high expression in the glucose transporter gene Slc2a2 in nectar bats, while fruit bats increased levels of Slc5a1 and Slc2a5. Overall, this study highlights the intricate interplay between molecular, morphological and physiological aspects of diet evolution, offering new insights into the mechanisms of dietary diversification and sugar assimilation in mammals. An analysis of Neotropical bats with different diets reveals molecular and physiological mechanisms of dietary diversification and sugar assimilation.","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"8 9","pages":"1735-1750"},"PeriodicalIF":13.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41559-024-02485-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1038/s41559-024-02494-6
Hui Xiao, Amanda Driver, Andres Etter, David A. Keith, Carl Obst, Michael J. Traurig, Emily Nicholson
Safeguarding biodiversity and human well-being depends on sustaining ecosystems. Two global standards for quantifying ecosystem change, the International Union for Conservation of Nature Red List of Ecosystems (RLE) and the United Nations System of Environmental-Economic Accounting Ecosystem Accounting (EA), underpin headline indicators for the Kunming–Montreal Global Biodiversity Framework. We analyse similarities and differences between the standards to understand their complementary roles in environmental policy and decision-making. The standards share key concepts, definitions of ecosystems and spatial data needs, meaning that similar data can be used in both. Their complementarities stem from their differing purposes and thus how data are analysed and interpreted. Although both record changes in ecosystem extent and condition, the RLE analyses the magnitude of change in terms of risk of ecosystem collapse and biodiversity loss, whereas EA links ecosystem change with the ecosystem’s contributions to people and the economy. We recommend that the RLE and EA should not be treated as unrelated nor undertaken in isolation. Developing them in concert can exploit their complementarities while ensuring consistency in foundational data, in particular ecosystem classifications, maps and condition variables. Finding pathways for co-investment in foundational data, and for knowledge-sharing between people and organizations who undertake RLE assessments and accounting, will improve both processes and outcomes for biodiversity, ecosystems and people. This Perspective discusses how two global standards for quantifying ecosystem change—the IUCN Red List of Ecosystems and UN System of Environmental-Economic Accounting Ecosystem Accounting—should be used in tandem to optimize their complementarities in assessing ecosystems and to further develop both processes.
保护生物多样性和人类福祉取决于维持生态系统。量化生态系统变化的两个全球标准,即《国际自然保护联盟生态系统红色名录》(RLE)和《联合国环境经济核算体系生态系统核算》(EA),是昆明-蒙特利尔全球生物多样性框架主要指标的基础。我们分析了这些标准之间的异同,以了解它们在环境政策和决策中的互补作用。这些标准共享关键概念、生态系统定义和空间数据需求,这意味着类似的数据可用于这两种标准。它们之间的互补性源于各自不同的目的,以及分析和解释数据的方式。虽然两者都记录生态系统范围和状况的变化,但 RLE 从生态系统崩溃和生物多样性丧失的风险角度分析变化的程度,而 EA 则将生态系统变化与生态系统对人类和经济的贡献联系起来。我们建议,不应将 RLE 和 EA 割裂开来对待。协同开发可利用它们的互补性,同时确保基础数据的一致性,特别是生态系统分类、地图和状况变量。找到对基础数据进行共同投资的途径,以及在进行 RLE 评估和核算的人员和组织之间进行知识共享的途径,将改善生物多样性、生态系统和人类的进程和结果。
{"title":"Synergies and complementarities between ecosystem accounting and the Red List of Ecosystems","authors":"Hui Xiao, Amanda Driver, Andres Etter, David A. Keith, Carl Obst, Michael J. Traurig, Emily Nicholson","doi":"10.1038/s41559-024-02494-6","DOIUrl":"10.1038/s41559-024-02494-6","url":null,"abstract":"Safeguarding biodiversity and human well-being depends on sustaining ecosystems. Two global standards for quantifying ecosystem change, the International Union for Conservation of Nature Red List of Ecosystems (RLE) and the United Nations System of Environmental-Economic Accounting Ecosystem Accounting (EA), underpin headline indicators for the Kunming–Montreal Global Biodiversity Framework. We analyse similarities and differences between the standards to understand their complementary roles in environmental policy and decision-making. The standards share key concepts, definitions of ecosystems and spatial data needs, meaning that similar data can be used in both. Their complementarities stem from their differing purposes and thus how data are analysed and interpreted. Although both record changes in ecosystem extent and condition, the RLE analyses the magnitude of change in terms of risk of ecosystem collapse and biodiversity loss, whereas EA links ecosystem change with the ecosystem’s contributions to people and the economy. We recommend that the RLE and EA should not be treated as unrelated nor undertaken in isolation. Developing them in concert can exploit their complementarities while ensuring consistency in foundational data, in particular ecosystem classifications, maps and condition variables. Finding pathways for co-investment in foundational data, and for knowledge-sharing between people and organizations who undertake RLE assessments and accounting, will improve both processes and outcomes for biodiversity, ecosystems and people. This Perspective discusses how two global standards for quantifying ecosystem change—the IUCN Red List of Ecosystems and UN System of Environmental-Economic Accounting Ecosystem Accounting—should be used in tandem to optimize their complementarities in assessing ecosystems and to further develop both processes.","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"8 10","pages":"1794-1803"},"PeriodicalIF":13.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1038/s41559-024-02523-4
Jorge Sastre-Dominguez, Javier DelaFuente, Laura Toribio-Celestino, Cristina Herencias, Pedro Herrador-Gómez, Coloma Costas, Marta Hernández-García, Rafael Cantón, Jerónimo Rodríguez-Beltrán, Alfonso Santos-Lopez, Alvaro San Millan
Plasmids are extrachromosomal genetic elements commonly found in bacteria. They are known to fuel bacterial evolution through horizontal gene transfer, and recent analyses indicate that they can also promote intragenomic adaptations. However, the role of plasmids as catalysts of bacterial evolution beyond horizontal gene transfer is poorly explored. In this study, we investigated the impact of a widespread conjugative plasmid, pOXA-48, on the evolution of several multidrug-resistant clinical enterobacteria. Combining experimental and within-patient evolution analyses, we unveiled that plasmid pOXA-48 promotes bacterial evolution through the transposition of plasmid-encoded insertion sequence 1 (IS1) elements. Specifically, IS1-mediated gene inactivation expedites the adaptation rate of clinical strains in vitro and fosters within-patient adaptation in the gut microbiota. We deciphered the mechanism underlying the plasmid-mediated surge in IS1 transposition, revealing a negative feedback loop regulated by the genomic copy number of IS1. Given the overrepresentation of IS elements in bacterial plasmids, our findings suggest that plasmid-mediated IS1 transposition represents a crucial mechanism for swift bacterial adaptation. Combining experimental and within-patient evolution analyses, the authors show that the widespread conjugative plasmid pOXA-48 promotes bacterial evolution through the transposition of plasmid-encoded insertion sequence IS1 elements.
{"title":"Plasmid-encoded insertion sequences promote rapid adaptation in clinical enterobacteria","authors":"Jorge Sastre-Dominguez, Javier DelaFuente, Laura Toribio-Celestino, Cristina Herencias, Pedro Herrador-Gómez, Coloma Costas, Marta Hernández-García, Rafael Cantón, Jerónimo Rodríguez-Beltrán, Alfonso Santos-Lopez, Alvaro San Millan","doi":"10.1038/s41559-024-02523-4","DOIUrl":"10.1038/s41559-024-02523-4","url":null,"abstract":"Plasmids are extrachromosomal genetic elements commonly found in bacteria. They are known to fuel bacterial evolution through horizontal gene transfer, and recent analyses indicate that they can also promote intragenomic adaptations. However, the role of plasmids as catalysts of bacterial evolution beyond horizontal gene transfer is poorly explored. In this study, we investigated the impact of a widespread conjugative plasmid, pOXA-48, on the evolution of several multidrug-resistant clinical enterobacteria. Combining experimental and within-patient evolution analyses, we unveiled that plasmid pOXA-48 promotes bacterial evolution through the transposition of plasmid-encoded insertion sequence 1 (IS1) elements. Specifically, IS1-mediated gene inactivation expedites the adaptation rate of clinical strains in vitro and fosters within-patient adaptation in the gut microbiota. We deciphered the mechanism underlying the plasmid-mediated surge in IS1 transposition, revealing a negative feedback loop regulated by the genomic copy number of IS1. Given the overrepresentation of IS elements in bacterial plasmids, our findings suggest that plasmid-mediated IS1 transposition represents a crucial mechanism for swift bacterial adaptation. Combining experimental and within-patient evolution analyses, the authors show that the widespread conjugative plasmid pOXA-48 promotes bacterial evolution through the transposition of plasmid-encoded insertion sequence IS1 elements.","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"8 11","pages":"2097-2112"},"PeriodicalIF":13.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1038/s41559-024-02511-8
Ferran Romero, Maëva Labouyrie, Alberto Orgiazzi, Cristiano Ballabio, Panos Panagos, Arwyn Jones, Leho Tedersoo, Mohammad Bahram, Carlos A. Guerra, Nico Eisenhauer, Dongxue Tao, Manuel Delgado-Baquerizo, Pablo García-Palacios, Marcel G. A. van der Heijden
Soil health is expected to be of key importance for plant growth and ecosystem functioning. However, whether soil health is linked to primary productivity across environmental gradients and land-use types remains poorly understood. To address this gap, we conducted a pan-European field study including 588 sites from 27 countries to investigate the link between soil health and primary productivity across three major land-use types: woodlands, grasslands and croplands. We found that mean soil health (a composite index based on soil properties, biodiversity and plant disease control) in woodlands was 31.4% higher than in grasslands and 76.1% higher than in croplands. Soil health was positively linked to cropland and grassland productivity at the continental scale, whereas climate best explained woodland productivity. Among microbial diversity indicators, we observed a positive association between the richness of Acidobacteria, Firmicutes and Proteobacteria and primary productivity. Among microbial functional groups, we found that primary productivity in croplands and grasslands was positively related to nitrogen-fixing bacteria and mycorrhizal fungi and negatively related to plant pathogens. Together, our results point to the importance of soil biodiversity and soil health for maintaining primary productivity across contrasting land-use types. Geographic patterns in plant growth are probably influenced by soil abiotic and biotic conditions. Here, the authors assess the relationship of a composite soil health index to primary productivity and the underlying environmental predictors across major land-use types in Europe.
{"title":"Soil health is associated with higher primary productivity across Europe","authors":"Ferran Romero, Maëva Labouyrie, Alberto Orgiazzi, Cristiano Ballabio, Panos Panagos, Arwyn Jones, Leho Tedersoo, Mohammad Bahram, Carlos A. Guerra, Nico Eisenhauer, Dongxue Tao, Manuel Delgado-Baquerizo, Pablo García-Palacios, Marcel G. A. van der Heijden","doi":"10.1038/s41559-024-02511-8","DOIUrl":"10.1038/s41559-024-02511-8","url":null,"abstract":"Soil health is expected to be of key importance for plant growth and ecosystem functioning. However, whether soil health is linked to primary productivity across environmental gradients and land-use types remains poorly understood. To address this gap, we conducted a pan-European field study including 588 sites from 27 countries to investigate the link between soil health and primary productivity across three major land-use types: woodlands, grasslands and croplands. We found that mean soil health (a composite index based on soil properties, biodiversity and plant disease control) in woodlands was 31.4% higher than in grasslands and 76.1% higher than in croplands. Soil health was positively linked to cropland and grassland productivity at the continental scale, whereas climate best explained woodland productivity. Among microbial diversity indicators, we observed a positive association between the richness of Acidobacteria, Firmicutes and Proteobacteria and primary productivity. Among microbial functional groups, we found that primary productivity in croplands and grasslands was positively related to nitrogen-fixing bacteria and mycorrhizal fungi and negatively related to plant pathogens. Together, our results point to the importance of soil biodiversity and soil health for maintaining primary productivity across contrasting land-use types. Geographic patterns in plant growth are probably influenced by soil abiotic and biotic conditions. Here, the authors assess the relationship of a composite soil health index to primary productivity and the underlying environmental predictors across major land-use types in Europe.","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"8 10","pages":"1847-1855"},"PeriodicalIF":13.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1038/s41559-024-02512-7
Louis Bell-Roberts, Juliet F. R. Turner, Gijsbert D. A. Werner, Philip A. Downing, Laura Ross, Stuart A. West
The size–complexity hypothesis is a leading explanation for the evolution of complex life on earth. It predicts that in lineages that have undergone a major transition in organismality, larger numbers of lower-level subunits select for increased division of labour. Current data from multicellular organisms and social insects support a positive correlation between the number of cells and number of cell types and between colony size and the number of castes. However, the implication of these results is unclear, because colony size and number of cells are correlated with other variables which may also influence selection for division of labour, and causality could be in either direction. Here, to resolve this problem, we tested multiple causal hypotheses using data from 794 ant species. We found that larger colony sizes favoured the evolution of increased division of labour, resulting in more worker castes and greater variation in worker size. By contrast, our results did not provide consistent support for alternative hypotheses regarding either queen mating frequency or number of queens per colony explaining variation in division of labour. Overall, our results provide strong support for the size–complexity hypothesis. Using data from 794 ant species, the authors test alternative causal models to explain the evolution of complexity in ant colonies. They find evidence that larger colony sizes favoured the evolution of greater division of labour, providing support for the size–complexity hypothesis.
{"title":"Larger colony sizes favoured the evolution of more worker castes in ants","authors":"Louis Bell-Roberts, Juliet F. R. Turner, Gijsbert D. A. Werner, Philip A. Downing, Laura Ross, Stuart A. West","doi":"10.1038/s41559-024-02512-7","DOIUrl":"10.1038/s41559-024-02512-7","url":null,"abstract":"The size–complexity hypothesis is a leading explanation for the evolution of complex life on earth. It predicts that in lineages that have undergone a major transition in organismality, larger numbers of lower-level subunits select for increased division of labour. Current data from multicellular organisms and social insects support a positive correlation between the number of cells and number of cell types and between colony size and the number of castes. However, the implication of these results is unclear, because colony size and number of cells are correlated with other variables which may also influence selection for division of labour, and causality could be in either direction. Here, to resolve this problem, we tested multiple causal hypotheses using data from 794 ant species. We found that larger colony sizes favoured the evolution of increased division of labour, resulting in more worker castes and greater variation in worker size. By contrast, our results did not provide consistent support for alternative hypotheses regarding either queen mating frequency or number of queens per colony explaining variation in division of labour. Overall, our results provide strong support for the size–complexity hypothesis. Using data from 794 ant species, the authors test alternative causal models to explain the evolution of complexity in ant colonies. They find evidence that larger colony sizes favoured the evolution of greater division of labour, providing support for the size–complexity hypothesis.","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"8 10","pages":"1959-1971"},"PeriodicalIF":13.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1038/s41559-024-02513-6
Evgeny Leushkin, Henrik Kaessmann
{"title":"Identification of old coding regions disproves the hominoid de novo status of genes","authors":"Evgeny Leushkin, Henrik Kaessmann","doi":"10.1038/s41559-024-02513-6","DOIUrl":"10.1038/s41559-024-02513-6","url":null,"abstract":"","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"8 10","pages":"1826-1830"},"PeriodicalIF":13.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1038/s41559-024-02514-5
James R. Whiting, Tom R. Booker, Clément Rougeux, Brandon M. Lind, Pooja Singh, Mengmeng Lu, Kaichi Huang, Michael C. Whitlock, Sally N. Aitken, Rose L. Andrew, Justin O. Borevitz, Jeremy J. Bruhl, Timothy L. Collins, Martin C. Fischer, Kathryn A. Hodgins, Jason A. Holliday, Pär K. Ingvarsson, Jasmine K. Janes, Momena Khandaker, Daniel Koenig, Julia M. Kreiner, Antoine Kremer, Martin Lascoux, Thibault Leroy, Pascal Milesi, Kevin D. Murray, Tanja Pyhäjärvi, Christian Rellstab, Loren H. Rieseberg, Fabrice Roux, John R. Stinchcombe, Ian R. H. Telford, Marco Todesco, Jaakko S. Tyrmi, Baosheng Wang, Detlef Weigel, Yvonne Willi, Stephen I. Wright, Lecong Zhou, Sam Yeaman
Closely related species often use the same genes to adapt to similar environments. However, we know little about why such genes possess increased adaptive potential and whether this is conserved across deeper evolutionary lineages. Adaptation to climate presents a natural laboratory to test these ideas, as even distantly related species must contend with similar stresses. Here, we re-analyse genomic data from thousands of individuals from 25 plant species as diverged as lodgepole pine and Arabidopsis (~300 Myr). We test for genetic repeatability based on within-species associations between allele frequencies in genes and variation in 21 climate variables. Our results demonstrate significant statistical evidence for genetic repeatability across deep time that is not expected under randomness, identifying a suite of 108 gene families (orthogroups) and gene functions that repeatedly drive local adaptation to climate. This set includes many orthogroups with well-known functions in abiotic stress response. Using gene co-expression networks to quantify pleiotropy, we find that orthogroups with stronger evidence for repeatability exhibit greater network centrality and broader expression across tissues (higher pleiotropy), contrary to the ‘cost of complexity’ theory. These gene families may be important in helping wild and crop species cope with future climate change, representing important candidates for future study. Analysis of genomic data from 25 distantly related plant species shows signatures of selection on the same gene families and functions that repeatedly contributed to local adaptation to climate.
{"title":"The genetic architecture of repeated local adaptation to climate in distantly related plants","authors":"James R. Whiting, Tom R. Booker, Clément Rougeux, Brandon M. Lind, Pooja Singh, Mengmeng Lu, Kaichi Huang, Michael C. Whitlock, Sally N. Aitken, Rose L. Andrew, Justin O. Borevitz, Jeremy J. Bruhl, Timothy L. Collins, Martin C. Fischer, Kathryn A. Hodgins, Jason A. Holliday, Pär K. Ingvarsson, Jasmine K. Janes, Momena Khandaker, Daniel Koenig, Julia M. Kreiner, Antoine Kremer, Martin Lascoux, Thibault Leroy, Pascal Milesi, Kevin D. Murray, Tanja Pyhäjärvi, Christian Rellstab, Loren H. Rieseberg, Fabrice Roux, John R. Stinchcombe, Ian R. H. Telford, Marco Todesco, Jaakko S. Tyrmi, Baosheng Wang, Detlef Weigel, Yvonne Willi, Stephen I. Wright, Lecong Zhou, Sam Yeaman","doi":"10.1038/s41559-024-02514-5","DOIUrl":"10.1038/s41559-024-02514-5","url":null,"abstract":"Closely related species often use the same genes to adapt to similar environments. However, we know little about why such genes possess increased adaptive potential and whether this is conserved across deeper evolutionary lineages. Adaptation to climate presents a natural laboratory to test these ideas, as even distantly related species must contend with similar stresses. Here, we re-analyse genomic data from thousands of individuals from 25 plant species as diverged as lodgepole pine and Arabidopsis (~300 Myr). We test for genetic repeatability based on within-species associations between allele frequencies in genes and variation in 21 climate variables. Our results demonstrate significant statistical evidence for genetic repeatability across deep time that is not expected under randomness, identifying a suite of 108 gene families (orthogroups) and gene functions that repeatedly drive local adaptation to climate. This set includes many orthogroups with well-known functions in abiotic stress response. Using gene co-expression networks to quantify pleiotropy, we find that orthogroups with stronger evidence for repeatability exhibit greater network centrality and broader expression across tissues (higher pleiotropy), contrary to the ‘cost of complexity’ theory. These gene families may be important in helping wild and crop species cope with future climate change, representing important candidates for future study. Analysis of genomic data from 25 distantly related plant species shows signatures of selection on the same gene families and functions that repeatedly contributed to local adaptation to climate.","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"8 10","pages":"1933-1947"},"PeriodicalIF":13.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41559-024-02514-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1038/s41559-024-02515-4
Chunfu Xiao, Fan Mo, Yingfei Lu, Qi Xiao, Chao Yao, Ting Li, Jianhuan Qi, Xiaoge Liu, Jia-Yu Chen, Li Zhang, Tiannan Guo, Baoyang Hu, Ni A. An, Chuan-Yun Li
{"title":"Reply to: Identification of old coding regions disproves the hominoid de novo status of genes","authors":"Chunfu Xiao, Fan Mo, Yingfei Lu, Qi Xiao, Chao Yao, Ting Li, Jianhuan Qi, Xiaoge Liu, Jia-Yu Chen, Li Zhang, Tiannan Guo, Baoyang Hu, Ni A. An, Chuan-Yun Li","doi":"10.1038/s41559-024-02515-4","DOIUrl":"10.1038/s41559-024-02515-4","url":null,"abstract":"","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"8 10","pages":"1831-1834"},"PeriodicalIF":13.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1038/s41559-024-02524-3
Using modern mammals as analogues, we investigate how spatial bias in the early human fossil record probably influences understanding of human evolution. Our results suggest that the environmental and fossil records from palaeoanthropological hotspots are probably missing aspects of environmental and anatomical variation.
{"title":"Spatial bias in the fossil record affects understanding of human evolution","authors":"","doi":"10.1038/s41559-024-02524-3","DOIUrl":"10.1038/s41559-024-02524-3","url":null,"abstract":"Using modern mammals as analogues, we investigate how spatial bias in the early human fossil record probably influences understanding of human evolution. Our results suggest that the environmental and fossil records from palaeoanthropological hotspots are probably missing aspects of environmental and anatomical variation.","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"8 11","pages":"2016-2017"},"PeriodicalIF":13.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142021981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}