Pub Date : 2024-08-01Epub Date: 2024-07-08DOI: 10.1002/minf.202300279
Anastasia D Fomina, Victoria I Uvarova, Liubov I Kozlovskaya, Vladimir A Palyulin, Dmitry I Osolodkin, Aydar A Ishmukhametov
During the first years of COVID-19 pandemic, X-ray structures of the coronavirus drug targets were acquired at an unprecedented rate, giving hundreds of PDB depositions in less than a year. The main protease (Mpro) of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is the primary validated target of direct-acting antivirals. The selection of the optimal ensemble of structures of Mpro for the docking-driven virtual screening campaign was thus non-trivial and required a systematic and automated approach. Here we report a semi-automated active site RMSD based procedure of ensemble selection from the SARS-CoV-2 Mpro crystallographic data and virtual screening of its inhibitors. The procedure was compared with other approaches to ensemble selection and validated with the help of hand-picked and peer-reviewed activity-annotated libraries. Prospective virtual screening of non-covalent Mpro inhibitors resulted in a new chemotype of thienopyrimidinone derivatives with experimentally confirmed enzyme inhibition.
{"title":"Ensemble docking based virtual screening of SARS-CoV-2 main protease inhibitors.","authors":"Anastasia D Fomina, Victoria I Uvarova, Liubov I Kozlovskaya, Vladimir A Palyulin, Dmitry I Osolodkin, Aydar A Ishmukhametov","doi":"10.1002/minf.202300279","DOIUrl":"10.1002/minf.202300279","url":null,"abstract":"<p><p>During the first years of COVID-19 pandemic, X-ray structures of the coronavirus drug targets were acquired at an unprecedented rate, giving hundreds of PDB depositions in less than a year. The main protease (Mpro) of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is the primary validated target of direct-acting antivirals. The selection of the optimal ensemble of structures of Mpro for the docking-driven virtual screening campaign was thus non-trivial and required a systematic and automated approach. Here we report a semi-automated active site RMSD based procedure of ensemble selection from the SARS-CoV-2 Mpro crystallographic data and virtual screening of its inhibitors. The procedure was compared with other approaches to ensemble selection and validated with the help of hand-picked and peer-reviewed activity-annotated libraries. Prospective virtual screening of non-covalent Mpro inhibitors resulted in a new chemotype of thienopyrimidinone derivatives with experimentally confirmed enzyme inhibition.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300279"},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-07-09DOI: 10.1002/minf.202300316
M Isabel Agea, Ivan Čmelo, Wim Dehaen, Ya Chen, Johannes Kirchmair, David Sedlák, Petr Bartůněk, Martin Šícho, Daniel Svozil
Computational exploration of chemical space is crucial in modern cheminformatics research for accelerating the discovery of new biologically active compounds. In this study, we present a detailed analysis of the chemical library of potential glucocorticoid receptor (GR) ligands generated by the molecular generator, Molpher. To generate the targeted GR library and construct the classification models, structures from the ChEMBL database as well as from the internal IMG library, which was experimentally screened for biological activity in the primary luciferase reporter cell assay, were utilized. The composition of the targeted GR ligand library was compared with a reference library that randomly samples chemical space. A random forest model was used to determine the biological activity of ligands, incorporating its applicability domain using conformal prediction. It was demonstrated that the GR library is significantly enriched with GR ligands compared to the random library. Furthermore, a prospective analysis demonstrated that Molpher successfully designed compounds, which were subsequently experimentally confirmed to be active on the GR. A collection of 34 potential new GR ligands was also identified. Moreover, an important contribution of this study is the establishment of a comprehensive workflow for evaluating computationally generated ligands, particularly those with potential activity against targets that are challenging to dock.
在现代化学信息学研究中,化学空间的计算探索对于加速发现新的生物活性化合物至关重要。在本研究中,我们详细分析了分子生成器 Molpher 生成的潜在糖皮质激素受体(GR)配体化学库。为了生成靶向 GR 库并构建分类模型,我们利用了 ChEMBL 数据库以及内部 IMG 库中的结构。将目标 GR 配体库的组成与随机抽样化学空间的参考库进行了比较。采用随机森林模型确定配体的生物活性,并利用保形预测将其适用范围纳入其中。结果表明,与随机库相比,GR 库明显富含 GR 配体。此外,一项前瞻性分析表明,Molpher 成功地设计出了一些化合物,这些化合物随后被实验证实对 GR 具有活性。同时还发现了 34 种潜在的新 GR 配体。此外,这项研究的一个重要贡献是建立了一套全面的工作流程,用于评估通过计算生成的配体,特别是那些对具有潜在活性的靶标具有对接挑战性的配体。
{"title":"Chemical space exploration with Molpher: Generating and assessing a glucocorticoid receptor ligand library.","authors":"M Isabel Agea, Ivan Čmelo, Wim Dehaen, Ya Chen, Johannes Kirchmair, David Sedlák, Petr Bartůněk, Martin Šícho, Daniel Svozil","doi":"10.1002/minf.202300316","DOIUrl":"10.1002/minf.202300316","url":null,"abstract":"<p><p>Computational exploration of chemical space is crucial in modern cheminformatics research for accelerating the discovery of new biologically active compounds. In this study, we present a detailed analysis of the chemical library of potential glucocorticoid receptor (GR) ligands generated by the molecular generator, Molpher. To generate the targeted GR library and construct the classification models, structures from the ChEMBL database as well as from the internal IMG library, which was experimentally screened for biological activity in the primary luciferase reporter cell assay, were utilized. The composition of the targeted GR ligand library was compared with a reference library that randomly samples chemical space. A random forest model was used to determine the biological activity of ligands, incorporating its applicability domain using conformal prediction. It was demonstrated that the GR library is significantly enriched with GR ligands compared to the random library. Furthermore, a prospective analysis demonstrated that Molpher successfully designed compounds, which were subsequently experimentally confirmed to be active on the GR. A collection of 34 potential new GR ligands was also identified. Moreover, an important contribution of this study is the establishment of a comprehensive workflow for evaluating computationally generated ligands, particularly those with potential activity against targets that are challenging to dock.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300316"},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-07-09DOI: 10.1002/minf.202400050
Maroua Lejmi, Damien Geslin, Ronan Bureau, Bertrand Cuissart, Ilef Ben Slima, Nida Meddouri, Amel Borgi, Jean-Luc Lamotte, Alban Lepailleur
The exploration of chemical space is a fundamental aspect of chemoinformatics, particularly when one explores a large compound data set to relate chemical structures with molecular properties. In this study, we extend our previous work on chemical space visualization at the pharmacophoric level. Instead of using conventional binary classification of affinity (active vs inactive), we introduce a refined approach that categorizes compounds into four distinct classes based on their activity levels: super active, very active, active, and inactive. This classification enriches the color scheme applied to pharmacophore space, where the color representation of a pharmacophore hypothesis is driven by the associated compounds. Using the BCR-ABL tyrosine kinase as a case study, we identified intriguing regions corresponding to pharmacophore activity discontinuities, providing valuable insights for structure-activity relationships analysis.
{"title":"Navigating pharmacophore space to identify activity discontinuities: A case study with BCR-ABL.","authors":"Maroua Lejmi, Damien Geslin, Ronan Bureau, Bertrand Cuissart, Ilef Ben Slima, Nida Meddouri, Amel Borgi, Jean-Luc Lamotte, Alban Lepailleur","doi":"10.1002/minf.202400050","DOIUrl":"10.1002/minf.202400050","url":null,"abstract":"<p><p>The exploration of chemical space is a fundamental aspect of chemoinformatics, particularly when one explores a large compound data set to relate chemical structures with molecular properties. In this study, we extend our previous work on chemical space visualization at the pharmacophoric level. Instead of using conventional binary classification of affinity (active vs inactive), we introduce a refined approach that categorizes compounds into four distinct classes based on their activity levels: super active, very active, active, and inactive. This classification enriches the color scheme applied to pharmacophore space, where the color representation of a pharmacophore hypothesis is driven by the associated compounds. Using the BCR-ABL tyrosine kinase as a case study, we identified intriguing regions corresponding to pharmacophore activity discontinuities, providing valuable insights for structure-activity relationships analysis.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202400050"},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The growing interest in chemoinformatic model uncertainty calls for a summary of the most widely used regression techniques and how to estimate their reliability. Regression models learn a mapping from the space of explanatory variables to the space of continuous output values. Among other limitations, the predictive performance of the model is restricted by the training data used for model fitting. Identification of unusual objects by outlier detection methods can improve model performance. Additionally, proper model evaluation necessitates defining the limitations of the model, often called the applicability domain. Comparable to certain classifiers, some regression techniques come with built-in methods or augmentations to quantify their (un)certainty, while others rely on generic procedures. The theoretical background of their working principles and how to deduce specific and general definitions for their domain of applicability shall be explained.
{"title":"Chemoinformatic regression methods and their applicability domain.","authors":"Thomas-Martin Dutschmann, Valerie Schlenker, Knut Baumann","doi":"10.1002/minf.202400018","DOIUrl":"10.1002/minf.202400018","url":null,"abstract":"<p><p>The growing interest in chemoinformatic model uncertainty calls for a summary of the most widely used regression techniques and how to estimate their reliability. Regression models learn a mapping from the space of explanatory variables to the space of continuous output values. Among other limitations, the predictive performance of the model is restricted by the training data used for model fitting. Identification of unusual objects by outlier detection methods can improve model performance. Additionally, proper model evaluation necessitates defining the limitations of the model, often called the applicability domain. Comparable to certain classifiers, some regression techniques come with built-in methods or augmentations to quantify their (un)certainty, while others rely on generic procedures. The theoretical background of their working principles and how to deduce specific and general definitions for their domain of applicability shall be explained.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202400018"},"PeriodicalIF":2.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-10DOI: 10.1002/minf.202300339
Julia Revillo Imbernon, Jean-Marc Weibel, Eric Ennifar, Gilles Prévost, Esther Kellenberger
Aminoglycosides are crucial antibiotics facing challenges from bacterial resistance. This study addresses the importance of aminoglycoside modifying enzymes in the context of escalating resistance. Drawing upon over two decades of structural data in the Protein Data Bank, we focused on two key antibiotics, neomycin B and kanamycin A, to explore how the aminoglycoside structure is exploited by this family of enzymes. A systematic comparison across diverse enzymes and the RNA A-site target identified common characteristics in the recognition mode, while assessing the adaptability of neomycin B and kanamycin A in various environments.
氨基糖苷类药物是面临细菌耐药性挑战的重要抗生素。本研究探讨了在耐药性不断升级的背景下氨基糖苷类药物修饰酶的重要性。利用蛋白质数据库中二十多年的结构数据,我们重点研究了两种关键抗生素--新霉素 B 和卡那霉素 A,以探索氨基糖苷类结构是如何被该酶家族利用的。我们对不同的酶和 RNA A 位点目标进行了系统比较,确定了识别模式的共同特征,同时评估了新霉素 B 和卡那霉素 A 在各种环境中的适应性。
{"title":"Structural analysis of neomycin B and kanamycin A binding Aminoglycosides Modifying Enzymes (AME) and bacterial ribosomal RNA.","authors":"Julia Revillo Imbernon, Jean-Marc Weibel, Eric Ennifar, Gilles Prévost, Esther Kellenberger","doi":"10.1002/minf.202300339","DOIUrl":"10.1002/minf.202300339","url":null,"abstract":"<p><p>Aminoglycosides are crucial antibiotics facing challenges from bacterial resistance. This study addresses the importance of aminoglycoside modifying enzymes in the context of escalating resistance. Drawing upon over two decades of structural data in the Protein Data Bank, we focused on two key antibiotics, neomycin B and kanamycin A, to explore how the aminoglycoside structure is exploited by this family of enzymes. A systematic comparison across diverse enzymes and the RNA A-site target identified common characteristics in the recognition mode, while assessing the adaptability of neomycin B and kanamycin A in various environments.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300339"},"PeriodicalIF":2.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-12DOI: 10.1002/minf.202300259
Milo Roucairol, Tristan Cazenave
In this article we try different algorithms, namely Nested Monte Carlo Search and Greedy Best First Search, on AstraZeneca's open source retrosynthetic tool : AiZynthFinder. We compare these algorithms to AiZynthFinder's base Monte Carlo Tree Search on a benchmark selected from the PubChem database and by Bayer's chemists. We show that both Nested Monte Carlo Search and Greedy Best First Search outperform AstraZeneca's Monte Carlo Tree Search, with a slight advantage for Nested Monte Carlo Search while experimenting on a playout heuristic. We also show how the search algorithms are bounded by the quality of the policy network, in order to improve our results the next step is to improve the policy network.
{"title":"Comparing search algorithms on the retrosynthesis problem.","authors":"Milo Roucairol, Tristan Cazenave","doi":"10.1002/minf.202300259","DOIUrl":"10.1002/minf.202300259","url":null,"abstract":"<p><p>In this article we try different algorithms, namely Nested Monte Carlo Search and Greedy Best First Search, on AstraZeneca's open source retrosynthetic tool : AiZynthFinder. We compare these algorithms to AiZynthFinder's base Monte Carlo Tree Search on a benchmark selected from the PubChem database and by Bayer's chemists. We show that both Nested Monte Carlo Search and Greedy Best First Search outperform AstraZeneca's Monte Carlo Tree Search, with a slight advantage for Nested Monte Carlo Search while experimenting on a playout heuristic. We also show how the search algorithms are bounded by the quality of the policy network, in order to improve our results the next step is to improve the policy network.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300259"},"PeriodicalIF":2.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robert Fraczkiewicz, Huy Quoc Nguyen, Newton Wu, Nina Kausch‐Busies, Sergio Grimbs, Kai Sommer, Antonius ter Laak, Judith Günther, Björn Wagner, Michael Reutlinger
In a unique collaboration between Simulations Plus and several industrial partners, we were able to develop a new version 11.0 of the previously published in silico pKa model, S+pKa, with considerably improved prediction accuracy. The model's training set was vastly expanded by large amounts of experimental data obtained from F. Hoffmann‐La Roche AG, Genentech Inc., and the Crop Science division of Bayer AG. The previous v7.0 of S+pKa was trained on data from public sources and the Pharmaceutical division of Bayer AG. The model has shown dramatic improvements in predictive accuracy when externally validated on three new contributor compound sets. Less expected was v11.0’s improvement in prediction on new compounds developed at Bayer Pharma after v7.0 was released (2013–2023), even without contributing additional data to v11.0. We illustrate chemical space coverage by chemistries encountered in the five domains, public and industrial, outline model construction, and discuss factors contributing to model's success.
{"title":"Best of both worlds: An expansion of the state of the art pKa model with data from three industrial partners","authors":"Robert Fraczkiewicz, Huy Quoc Nguyen, Newton Wu, Nina Kausch‐Busies, Sergio Grimbs, Kai Sommer, Antonius ter Laak, Judith Günther, Björn Wagner, Michael Reutlinger","doi":"10.1002/minf.202400088","DOIUrl":"https://doi.org/10.1002/minf.202400088","url":null,"abstract":"In a unique collaboration between Simulations Plus and several industrial partners, we were able to develop a new version 11.0 of the previously published <jats:italic>in silico</jats:italic> pK<jats:sub>a</jats:sub> model, S+pKa, with considerably improved prediction accuracy. The model's training set was vastly expanded by large amounts of experimental data obtained from F. Hoffmann‐La Roche AG, Genentech Inc., and the Crop Science division of Bayer AG. The previous v7.0 of S+pKa was trained on data from public sources and the Pharmaceutical division of Bayer AG. The model has shown dramatic improvements in predictive accuracy when externally validated on three new contributor compound sets. Less expected was v11.0’s improvement in prediction on new compounds developed at Bayer Pharma after v7.0 was released (2013–2023), even without contributing additional data to v11.0. We illustrate chemical space coverage by chemistries encountered in the five domains, public and industrial, outline model construction, and discuss factors contributing to model's success.","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"86 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kinases, a class of enzymes controlling various substrates phosphorylation, are pivotal in both physiological and pathological processes. Although their conserved ATP binding pockets pose challenges for achieving selectivity, this feature offers opportunities for drug repositioning of kinase inhibitors (KIs). This study presents a cost‐effective in silico prediction of KIs drug repositioning via analyzing cross‐docking results. We established the KIs database (278 unique KIs, 1834 bioactivity data points) and kinases database (357 kinase structures categorized by the DFG motif) for carrying out cross‐docking. Comparative analysis of the docking scores and reported experimental bioactivity revealed that the Atypical, TK, and TKL superfamilies are suitable for drug repositioning. Among these kinase superfamilies, Olverematinib, Lapatinib, and Abemaciclib displayed enzymatic activity in our focused AKT‐PI3K‐mTOR pathway with IC50 values of 3.3, 3.2 and 5.8 μM. Further cell assays showed IC50 values of 0.2, 1.2 and 0.6 μM in tumor cells. The consistent result between prediction and validation demonstrated that repositioning KIs via in silico method is feasible.
激酶是一类控制各种底物磷酸化的酶,在生理和病理过程中都起着关键作用。尽管激酶保守的 ATP 结合口袋给实现选择性带来了挑战,但这一特点为激酶抑制剂(KIs)的药物重新定位提供了机会。本研究通过分析交叉对接结果,提出了一种经济有效的 KIs 药物重新定位的硅学预测方法。我们建立了 KIs 数据库(278 种独特的 KIs,1834 个生物活性数据点)和激酶数据库(按 DFG 主题分类的 357 种激酶结构),用于进行交叉对接。对对接得分和实验生物活性的比较分析表明,非典型激酶超家族、TK 激酶超家族和 TKL 激酶超家族适合药物重新定位。在这些激酶超家族中,Olverematinib、Lapatinib 和 Abemaciclib 在我们重点研究的 AKT-PI3K-mTOR 通路中显示出酶活性,IC50 值分别为 3.3、3.2 和 5.8 μM。进一步的细胞检测显示,肿瘤细胞的 IC50 值分别为 0.2、1.2 和 0.6 μM。预测和验证结果的一致性表明,通过硅学方法重新定位 KIs 是可行的。
{"title":"Exploring drug repositioning possibilities of kinase inhibitors via molecular simulation**","authors":"Qing‐Xin Wang, Jiao Cai, Zi‐Jun Chen, Jia‐Chuan Liu, Jing‐Jing Wang, Hai Zhou, Qing‐Qing Li, Zi‐Xuan Wang, Yi‐Bo Wang, Zhen‐Jiang Tong, Jin Yang, Tian‐Hua Wei, Meng‐Yuan Zhang, Yun Zhou, Wei‐Chen Dai, Ning Ding, Xue‐Jiao Leng, Xiao‐Ying Yin, Shan‐Liang Sun, Yan‐Cheng Yu, Nian‐Guang Li, Zhi‐Hao Shi","doi":"10.1002/minf.202300336","DOIUrl":"https://doi.org/10.1002/minf.202300336","url":null,"abstract":"Kinases, a class of enzymes controlling various substrates phosphorylation, are pivotal in both physiological and pathological processes. Although their conserved ATP binding pockets pose challenges for achieving selectivity, this feature offers opportunities for drug repositioning of kinase inhibitors (KIs). This study presents a cost‐effective in silico prediction of KIs drug repositioning via analyzing cross‐docking results. We established the KIs database (278 unique KIs, 1834 bioactivity data points) and kinases database (357 kinase structures categorized by the DFG motif) for carrying out cross‐docking. Comparative analysis of the docking scores and reported experimental bioactivity revealed that the Atypical, TK, and TKL superfamilies are suitable for drug repositioning. Among these kinase superfamilies, Olverematinib, Lapatinib, and Abemaciclib displayed enzymatic activity in our focused AKT‐PI3K‐mTOR pathway with IC<jats:sub>50</jats:sub> values of 3.3, 3.2 and 5.8 μM. Further cell assays showed IC<jats:sub>50</jats:sub> values of 0.2, 1.2 and 0.6 μM in tumor cells. The consistent result between prediction and validation demonstrated that repositioning KIs via <jats:italic>in silico</jats:italic> method is feasible.","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"27 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alejandro Gómez‐García, Ann‐Kathrin Prinz, Daniel A. Acuña Jiménez, William J. Zamora, Haruna L. Barazorda‐Ccahuana, Miguel Á. Chávez‐Fumagalli, Marilia Valli, Adriano D. Andricopulo, Vanderlan da S. Bolzani, Dionisio A. Olmedo, Pablo N. Solís, Marvin J. Núñez, Johny R. Rodríguez Pérez, Hoover A. Valencia Sánchez, Héctor F. Cortés Hernández, Oscar M. Mosquera Martinez, Oliver Koch, José L. Medina‐Franco
Compound databases of natural products play a crucial role in drug discovery and development projects and have implications in other areas, such as food chemical research, ecology and metabolomics. Recently, we put together the first version of the Latin American Natural Product database (LANaPDB) as a collective effort of researchers from six countries to ensemble a public and representative library of natural products in a geographical region with a large biodiversity. The present work aims to conduct a comparative and extensive profiling of the natural product‐likeness of an updated version of LANaPDB and the individual ten compound databases that form part of LANaPDB. The natural product‐likeness profile of the Latin American compound databases is contrasted with the profile of other major natural product databases in the public domain and a set of small‐molecule drugs approved for clinical use. As part of the extensive characterization, we employed several chemoinformatics metrics of natural product likeness. The results of this study will capture the attention of the global community engaged in natural product databases, not only in Latin America but across the world.
{"title":"Updating and profiling the natural product‐likeness of Latin American compound libraries","authors":"Alejandro Gómez‐García, Ann‐Kathrin Prinz, Daniel A. Acuña Jiménez, William J. Zamora, Haruna L. Barazorda‐Ccahuana, Miguel Á. Chávez‐Fumagalli, Marilia Valli, Adriano D. Andricopulo, Vanderlan da S. Bolzani, Dionisio A. Olmedo, Pablo N. Solís, Marvin J. Núñez, Johny R. Rodríguez Pérez, Hoover A. Valencia Sánchez, Héctor F. Cortés Hernández, Oscar M. Mosquera Martinez, Oliver Koch, José L. Medina‐Franco","doi":"10.1002/minf.202400052","DOIUrl":"https://doi.org/10.1002/minf.202400052","url":null,"abstract":"Compound databases of natural products play a crucial role in drug discovery and development projects and have implications in other areas, such as food chemical research, ecology and metabolomics. Recently, we put together the first version of the Latin American Natural Product database (LANaPDB) as a collective effort of researchers from six countries to ensemble a public and representative library of natural products in a geographical region with a large biodiversity. The present work aims to conduct a comparative and extensive profiling of the natural product‐likeness of an updated version of LANaPDB and the individual ten compound databases that form part of LANaPDB. The natural product‐likeness profile of the Latin American compound databases is contrasted with the profile of other major natural product databases in the public domain and a set of small‐molecule drugs approved for clinical use. As part of the extensive characterization, we employed several chemoinformatics metrics of natural product likeness. The results of this study will capture the attention of the global community engaged in natural product databases, not only in Latin America but across the world.","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"12 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}