首页 > 最新文献

Molecular Informatics最新文献

英文 中文
Ensemble docking based virtual screening of SARS-CoV-2 main protease inhibitors. 基于组合对接的 SARS-CoV-2 主要蛋白酶抑制剂虚拟筛选。
IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-08-01 Epub Date: 2024-07-08 DOI: 10.1002/minf.202300279
Anastasia D Fomina, Victoria I Uvarova, Liubov I Kozlovskaya, Vladimir A Palyulin, Dmitry I Osolodkin, Aydar A Ishmukhametov

During the first years of COVID-19 pandemic, X-ray structures of the coronavirus drug targets were acquired at an unprecedented rate, giving hundreds of PDB depositions in less than a year. The main protease (Mpro) of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is the primary validated target of direct-acting antivirals. The selection of the optimal ensemble of structures of Mpro for the docking-driven virtual screening campaign was thus non-trivial and required a systematic and automated approach. Here we report a semi-automated active site RMSD based procedure of ensemble selection from the SARS-CoV-2 Mpro crystallographic data and virtual screening of its inhibitors. The procedure was compared with other approaches to ensemble selection and validated with the help of hand-picked and peer-reviewed activity-annotated libraries. Prospective virtual screening of non-covalent Mpro inhibitors resulted in a new chemotype of thienopyrimidinone derivatives with experimentally confirmed enzyme inhibition.

在 COVID-19 大流行的最初几年,冠状病毒药物靶点的 X 射线结构以前所未有的速度获得,在不到一年的时间里就有数百个 PDB 文件沉积。严重急性呼吸系统综合征相关冠状病毒 2(SARS-CoV-2)的主要蛋白酶(Mpro)是直接作用抗病毒药物的主要验证靶点。因此,为对接驱动的虚拟筛选活动选择最佳的 Mpro 结构组合并非易事,需要一种系统的自动化方法。在此,我们报告了一种基于活性位点 RMSD 的半自动程序,该程序从 SARS-CoV-2 Mpro 晶体数据中选择组合结构,并对其抑制剂进行虚拟筛选。我们将该程序与其他组合筛选方法进行了比较,并在人工挑选和同行评议的活性注释库的帮助下进行了验证。对非共价 Mpro 抑制剂的前瞻性虚拟筛选产生了一种新的噻吩嘧啶酮衍生物化学类型,其酶抑制作用已得到实验证实。
{"title":"Ensemble docking based virtual screening of SARS-CoV-2 main protease inhibitors.","authors":"Anastasia D Fomina, Victoria I Uvarova, Liubov I Kozlovskaya, Vladimir A Palyulin, Dmitry I Osolodkin, Aydar A Ishmukhametov","doi":"10.1002/minf.202300279","DOIUrl":"10.1002/minf.202300279","url":null,"abstract":"<p><p>During the first years of COVID-19 pandemic, X-ray structures of the coronavirus drug targets were acquired at an unprecedented rate, giving hundreds of PDB depositions in less than a year. The main protease (Mpro) of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is the primary validated target of direct-acting antivirals. The selection of the optimal ensemble of structures of Mpro for the docking-driven virtual screening campaign was thus non-trivial and required a systematic and automated approach. Here we report a semi-automated active site RMSD based procedure of ensemble selection from the SARS-CoV-2 Mpro crystallographic data and virtual screening of its inhibitors. The procedure was compared with other approaches to ensemble selection and validated with the help of hand-picked and peer-reviewed activity-annotated libraries. Prospective virtual screening of non-covalent Mpro inhibitors resulted in a new chemotype of thienopyrimidinone derivatives with experimentally confirmed enzyme inhibition.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300279"},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical space exploration with Molpher: Generating and assessing a glucocorticoid receptor ligand library. 利用 Molpher 探索化学空间:生成并评估糖皮质激素受体配体库。
IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-08-01 Epub Date: 2024-07-09 DOI: 10.1002/minf.202300316
M Isabel Agea, Ivan Čmelo, Wim Dehaen, Ya Chen, Johannes Kirchmair, David Sedlák, Petr Bartůněk, Martin Šícho, Daniel Svozil

Computational exploration of chemical space is crucial in modern cheminformatics research for accelerating the discovery of new biologically active compounds. In this study, we present a detailed analysis of the chemical library of potential glucocorticoid receptor (GR) ligands generated by the molecular generator, Molpher. To generate the targeted GR library and construct the classification models, structures from the ChEMBL database as well as from the internal IMG library, which was experimentally screened for biological activity in the primary luciferase reporter cell assay, were utilized. The composition of the targeted GR ligand library was compared with a reference library that randomly samples chemical space. A random forest model was used to determine the biological activity of ligands, incorporating its applicability domain using conformal prediction. It was demonstrated that the GR library is significantly enriched with GR ligands compared to the random library. Furthermore, a prospective analysis demonstrated that Molpher successfully designed compounds, which were subsequently experimentally confirmed to be active on the GR. A collection of 34 potential new GR ligands was also identified. Moreover, an important contribution of this study is the establishment of a comprehensive workflow for evaluating computationally generated ligands, particularly those with potential activity against targets that are challenging to dock.

在现代化学信息学研究中,化学空间的计算探索对于加速发现新的生物活性化合物至关重要。在本研究中,我们详细分析了分子生成器 Molpher 生成的潜在糖皮质激素受体(GR)配体化学库。为了生成靶向 GR 库并构建分类模型,我们利用了 ChEMBL 数据库以及内部 IMG 库中的结构。将目标 GR 配体库的组成与随机抽样化学空间的参考库进行了比较。采用随机森林模型确定配体的生物活性,并利用保形预测将其适用范围纳入其中。结果表明,与随机库相比,GR 库明显富含 GR 配体。此外,一项前瞻性分析表明,Molpher 成功地设计出了一些化合物,这些化合物随后被实验证实对 GR 具有活性。同时还发现了 34 种潜在的新 GR 配体。此外,这项研究的一个重要贡献是建立了一套全面的工作流程,用于评估通过计算生成的配体,特别是那些对具有潜在活性的靶标具有对接挑战性的配体。
{"title":"Chemical space exploration with Molpher: Generating and assessing a glucocorticoid receptor ligand library.","authors":"M Isabel Agea, Ivan Čmelo, Wim Dehaen, Ya Chen, Johannes Kirchmair, David Sedlák, Petr Bartůněk, Martin Šícho, Daniel Svozil","doi":"10.1002/minf.202300316","DOIUrl":"10.1002/minf.202300316","url":null,"abstract":"<p><p>Computational exploration of chemical space is crucial in modern cheminformatics research for accelerating the discovery of new biologically active compounds. In this study, we present a detailed analysis of the chemical library of potential glucocorticoid receptor (GR) ligands generated by the molecular generator, Molpher. To generate the targeted GR library and construct the classification models, structures from the ChEMBL database as well as from the internal IMG library, which was experimentally screened for biological activity in the primary luciferase reporter cell assay, were utilized. The composition of the targeted GR ligand library was compared with a reference library that randomly samples chemical space. A random forest model was used to determine the biological activity of ligands, incorporating its applicability domain using conformal prediction. It was demonstrated that the GR library is significantly enriched with GR ligands compared to the random library. Furthermore, a prospective analysis demonstrated that Molpher successfully designed compounds, which were subsequently experimentally confirmed to be active on the GR. A collection of 34 potential new GR ligands was also identified. Moreover, an important contribution of this study is the establishment of a comprehensive workflow for evaluating computationally generated ligands, particularly those with potential activity against targets that are challenging to dock.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300316"},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating pharmacophore space to identify activity discontinuities: A case study with BCR-ABL. 浏览药理空间以识别活性不连续性:BCR-ABL 案例研究。
IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-08-01 Epub Date: 2024-07-09 DOI: 10.1002/minf.202400050
Maroua Lejmi, Damien Geslin, Ronan Bureau, Bertrand Cuissart, Ilef Ben Slima, Nida Meddouri, Amel Borgi, Jean-Luc Lamotte, Alban Lepailleur

The exploration of chemical space is a fundamental aspect of chemoinformatics, particularly when one explores a large compound data set to relate chemical structures with molecular properties. In this study, we extend our previous work on chemical space visualization at the pharmacophoric level. Instead of using conventional binary classification of affinity (active vs inactive), we introduce a refined approach that categorizes compounds into four distinct classes based on their activity levels: super active, very active, active, and inactive. This classification enriches the color scheme applied to pharmacophore space, where the color representation of a pharmacophore hypothesis is driven by the associated compounds. Using the BCR-ABL tyrosine kinase as a case study, we identified intriguing regions corresponding to pharmacophore activity discontinuities, providing valuable insights for structure-activity relationships analysis.

化学空间的探索是化学信息学的一个基本方面,尤其是在探索大型化合物数据集以将化学结构与分子性质联系起来时。在本研究中,我们扩展了之前在药效水平上的化学空间可视化工作。我们不再使用传统的亲和性二元分类法(活性与非活性),而是引入了一种细化方法,根据化合物的活性水平将其分为四个不同的类别:超级活性、非常活性、活性和非活性。这种分类方法丰富了应用于药效空间的颜色方案,药效假设的颜色表示由相关化合物驱动。以 BCR-ABL 酪氨酸激酶为例,我们发现了与药理活性不连续性相对应的有趣区域,为结构-活性关系分析提供了宝贵的见解。
{"title":"Navigating pharmacophore space to identify activity discontinuities: A case study with BCR-ABL.","authors":"Maroua Lejmi, Damien Geslin, Ronan Bureau, Bertrand Cuissart, Ilef Ben Slima, Nida Meddouri, Amel Borgi, Jean-Luc Lamotte, Alban Lepailleur","doi":"10.1002/minf.202400050","DOIUrl":"10.1002/minf.202400050","url":null,"abstract":"<p><p>The exploration of chemical space is a fundamental aspect of chemoinformatics, particularly when one explores a large compound data set to relate chemical structures with molecular properties. In this study, we extend our previous work on chemical space visualization at the pharmacophoric level. Instead of using conventional binary classification of affinity (active vs inactive), we introduce a refined approach that categorizes compounds into four distinct classes based on their activity levels: super active, very active, active, and inactive. This classification enriches the color scheme applied to pharmacophore space, where the color representation of a pharmacophore hypothesis is driven by the associated compounds. Using the BCR-ABL tyrosine kinase as a case study, we identified intriguing regions corresponding to pharmacophore activity discontinuities, providing valuable insights for structure-activity relationships analysis.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202400050"},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: (Mol. Inf. 7/2024) 封面图片:(Mol.Inf. 7/2024)
IF 3.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-07-12 DOI: 10.1002/minf.202480701
{"title":"Cover Picture: (Mol. Inf. 7/2024)","authors":"","doi":"10.1002/minf.202480701","DOIUrl":"https://doi.org/10.1002/minf.202480701","url":null,"abstract":"","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"243 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141609429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemoinformatic regression methods and their applicability domain. 化学信息回归方法及其适用领域。
IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-07-01 Epub Date: 2024-05-28 DOI: 10.1002/minf.202400018
Thomas-Martin Dutschmann, Valerie Schlenker, Knut Baumann

The growing interest in chemoinformatic model uncertainty calls for a summary of the most widely used regression techniques and how to estimate their reliability. Regression models learn a mapping from the space of explanatory variables to the space of continuous output values. Among other limitations, the predictive performance of the model is restricted by the training data used for model fitting. Identification of unusual objects by outlier detection methods can improve model performance. Additionally, proper model evaluation necessitates defining the limitations of the model, often called the applicability domain. Comparable to certain classifiers, some regression techniques come with built-in methods or augmentations to quantify their (un)certainty, while others rely on generic procedures. The theoretical background of their working principles and how to deduce specific and general definitions for their domain of applicability shall be explained.

随着人们对化学信息模型不确定性的兴趣与日俱增,需要对最广泛使用的回归技术以及如何估计其可靠性进行总结。回归模型学习从解释变量空间到连续输出值空间的映射。除其他局限性外,模型的预测性能还受到用于模型拟合的训练数据的限制。通过离群点检测方法识别异常对象可以提高模型的性能。此外,正确的模型评估还需要定义模型的局限性,也就是通常所说的适用范围。与某些分类器类似,一些回归技术带有量化其(不)确定性的内置方法或增强功能,而另一些则依赖于通用程序。本文将解释其工作原理的理论背景,以及如何推导出适用范围的具体和一般定义。
{"title":"Chemoinformatic regression methods and their applicability domain.","authors":"Thomas-Martin Dutschmann, Valerie Schlenker, Knut Baumann","doi":"10.1002/minf.202400018","DOIUrl":"10.1002/minf.202400018","url":null,"abstract":"<p><p>The growing interest in chemoinformatic model uncertainty calls for a summary of the most widely used regression techniques and how to estimate their reliability. Regression models learn a mapping from the space of explanatory variables to the space of continuous output values. Among other limitations, the predictive performance of the model is restricted by the training data used for model fitting. Identification of unusual objects by outlier detection methods can improve model performance. Additionally, proper model evaluation necessitates defining the limitations of the model, often called the applicability domain. Comparable to certain classifiers, some regression techniques come with built-in methods or augmentations to quantify their (un)certainty, while others rely on generic procedures. The theoretical background of their working principles and how to deduce specific and general definitions for their domain of applicability shall be explained.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202400018"},"PeriodicalIF":2.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural analysis of neomycin B and kanamycin A binding Aminoglycosides Modifying Enzymes (AME) and bacterial ribosomal RNA. 新霉素 B 和卡那霉素 A 与氨基糖苷类药物修饰酶 (AME) 和细菌核糖体 RNA 结合的结构分析。
IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-07-01 Epub Date: 2024-06-10 DOI: 10.1002/minf.202300339
Julia Revillo Imbernon, Jean-Marc Weibel, Eric Ennifar, Gilles Prévost, Esther Kellenberger

Aminoglycosides are crucial antibiotics facing challenges from bacterial resistance. This study addresses the importance of aminoglycoside modifying enzymes in the context of escalating resistance. Drawing upon over two decades of structural data in the Protein Data Bank, we focused on two key antibiotics, neomycin B and kanamycin A, to explore how the aminoglycoside structure is exploited by this family of enzymes. A systematic comparison across diverse enzymes and the RNA A-site target identified common characteristics in the recognition mode, while assessing the adaptability of neomycin B and kanamycin A in various environments.

氨基糖苷类药物是面临细菌耐药性挑战的重要抗生素。本研究探讨了在耐药性不断升级的背景下氨基糖苷类药物修饰酶的重要性。利用蛋白质数据库中二十多年的结构数据,我们重点研究了两种关键抗生素--新霉素 B 和卡那霉素 A,以探索氨基糖苷类结构是如何被该酶家族利用的。我们对不同的酶和 RNA A 位点目标进行了系统比较,确定了识别模式的共同特征,同时评估了新霉素 B 和卡那霉素 A 在各种环境中的适应性。
{"title":"Structural analysis of neomycin B and kanamycin A binding Aminoglycosides Modifying Enzymes (AME) and bacterial ribosomal RNA.","authors":"Julia Revillo Imbernon, Jean-Marc Weibel, Eric Ennifar, Gilles Prévost, Esther Kellenberger","doi":"10.1002/minf.202300339","DOIUrl":"10.1002/minf.202300339","url":null,"abstract":"<p><p>Aminoglycosides are crucial antibiotics facing challenges from bacterial resistance. This study addresses the importance of aminoglycoside modifying enzymes in the context of escalating resistance. Drawing upon over two decades of structural data in the Protein Data Bank, we focused on two key antibiotics, neomycin B and kanamycin A, to explore how the aminoglycoside structure is exploited by this family of enzymes. A systematic comparison across diverse enzymes and the RNA A-site target identified common characteristics in the recognition mode, while assessing the adaptability of neomycin B and kanamycin A in various environments.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300339"},"PeriodicalIF":2.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing search algorithms on the retrosynthesis problem. 比较逆合成问题的搜索算法。
IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-07-01 Epub Date: 2024-06-12 DOI: 10.1002/minf.202300259
Milo Roucairol, Tristan Cazenave

In this article we try different algorithms, namely Nested Monte Carlo Search and Greedy Best First Search, on AstraZeneca's open source retrosynthetic tool : AiZynthFinder. We compare these algorithms to AiZynthFinder's base Monte Carlo Tree Search on a benchmark selected from the PubChem database and by Bayer's chemists. We show that both Nested Monte Carlo Search and Greedy Best First Search outperform AstraZeneca's Monte Carlo Tree Search, with a slight advantage for Nested Monte Carlo Search while experimenting on a playout heuristic. We also show how the search algorithms are bounded by the quality of the policy network, in order to improve our results the next step is to improve the policy network.

在本文中,我们在 AstraZeneca 的开源逆合成工具 AiZynthFinder 上尝试了不同的算法,即嵌套蒙特卡罗搜索和贪婪最佳优先搜索。我们将这些算法与 AiZynthFinder 的基本蒙特卡洛树搜索进行了比较,比较的基准是从 PubChem 数据库和拜耳的化学家那里挑选出来的。我们的结果表明,嵌套蒙特卡罗搜索和贪婪最佳优先搜索都优于 AstraZeneca 的蒙特卡罗树形搜索,而嵌套蒙特卡罗搜索在实验中采用了启发式,略胜一筹。我们还展示了搜索算法如何受到策略网络质量的限制,为了改进我们的结果,下一步就是改进策略网络。
{"title":"Comparing search algorithms on the retrosynthesis problem.","authors":"Milo Roucairol, Tristan Cazenave","doi":"10.1002/minf.202300259","DOIUrl":"10.1002/minf.202300259","url":null,"abstract":"<p><p>In this article we try different algorithms, namely Nested Monte Carlo Search and Greedy Best First Search, on AstraZeneca's open source retrosynthetic tool : AiZynthFinder. We compare these algorithms to AiZynthFinder's base Monte Carlo Tree Search on a benchmark selected from the PubChem database and by Bayer's chemists. We show that both Nested Monte Carlo Search and Greedy Best First Search outperform AstraZeneca's Monte Carlo Tree Search, with a slight advantage for Nested Monte Carlo Search while experimenting on a playout heuristic. We also show how the search algorithms are bounded by the quality of the policy network, in order to improve our results the next step is to improve the policy network.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300259"},"PeriodicalIF":2.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Best of both worlds: An expansion of the state of the art pKa model with data from three industrial partners 两全其美:利用三个工业合作伙伴提供的数据扩展最先进的 pKa 模型
IF 3.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-06-21 DOI: 10.1002/minf.202400088
Robert Fraczkiewicz, Huy Quoc Nguyen, Newton Wu, Nina Kausch‐Busies, Sergio Grimbs, Kai Sommer, Antonius ter Laak, Judith Günther, Björn Wagner, Michael Reutlinger
In a unique collaboration between Simulations Plus and several industrial partners, we were able to develop a new version 11.0 of the previously published in silico pKa model, S+pKa, with considerably improved prediction accuracy. The model's training set was vastly expanded by large amounts of experimental data obtained from F. Hoffmann‐La Roche AG, Genentech Inc., and the Crop Science division of Bayer AG. The previous v7.0 of S+pKa was trained on data from public sources and the Pharmaceutical division of Bayer AG. The model has shown dramatic improvements in predictive accuracy when externally validated on three new contributor compound sets. Less expected was v11.0’s improvement in prediction on new compounds developed at Bayer Pharma after v7.0 was released (2013–2023), even without contributing additional data to v11.0. We illustrate chemical space coverage by chemistries encountered in the five domains, public and industrial, outline model construction, and discuss factors contributing to model's success.
通过 Simulations Plus 与几家工业合作伙伴之间的独特合作,我们开发出了之前发布的硅 pKa 模型 S+pKa 的 11.0 新版本,大大提高了预测准确性。通过从 F. Hoffmann-La Roche AG、Genentech Inc.之前的 S+pKa v7.0 版本是根据来自公共资源和拜耳股份公司制药部门的数据进行训练的。在对三个新的贡献化合物集进行外部验证时,该模型的预测准确性有了显著提高。较少预期的是,即使没有为 v11.0 提供额外数据,v11.0 在 v7.0 发布后(2013-2023 年)对拜耳医药公司开发的新化合物的预测能力也有所提高。我们通过五个领域(公共领域和工业领域)中遇到的化学物质说明了化学空间的覆盖范围,概述了模型的构建,并讨论了模型成功的因素。
{"title":"Best of both worlds: An expansion of the state of the art pKa model with data from three industrial partners","authors":"Robert Fraczkiewicz, Huy Quoc Nguyen, Newton Wu, Nina Kausch‐Busies, Sergio Grimbs, Kai Sommer, Antonius ter Laak, Judith Günther, Björn Wagner, Michael Reutlinger","doi":"10.1002/minf.202400088","DOIUrl":"https://doi.org/10.1002/minf.202400088","url":null,"abstract":"In a unique collaboration between Simulations Plus and several industrial partners, we were able to develop a new version 11.0 of the previously published <jats:italic>in silico</jats:italic> pK<jats:sub>a</jats:sub> model, S+pKa, with considerably improved prediction accuracy. The model's training set was vastly expanded by large amounts of experimental data obtained from F. Hoffmann‐La Roche AG, Genentech Inc., and the Crop Science division of Bayer AG. The previous v7.0 of S+pKa was trained on data from public sources and the Pharmaceutical division of Bayer AG. The model has shown dramatic improvements in predictive accuracy when externally validated on three new contributor compound sets. Less expected was v11.0’s improvement in prediction on new compounds developed at Bayer Pharma after v7.0 was released (2013–2023), even without contributing additional data to v11.0. We illustrate chemical space coverage by chemistries encountered in the five domains, public and industrial, outline model construction, and discuss factors contributing to model's success.","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"86 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring drug repositioning possibilities of kinase inhibitors via molecular simulation** 通过分子模拟探索激酶抑制剂药物重新定位的可能性**
IF 3.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-06-21 DOI: 10.1002/minf.202300336
Qing‐Xin Wang, Jiao Cai, Zi‐Jun Chen, Jia‐Chuan Liu, Jing‐Jing Wang, Hai Zhou, Qing‐Qing Li, Zi‐Xuan Wang, Yi‐Bo Wang, Zhen‐Jiang Tong, Jin Yang, Tian‐Hua Wei, Meng‐Yuan Zhang, Yun Zhou, Wei‐Chen Dai, Ning Ding, Xue‐Jiao Leng, Xiao‐Ying Yin, Shan‐Liang Sun, Yan‐Cheng Yu, Nian‐Guang Li, Zhi‐Hao Shi
Kinases, a class of enzymes controlling various substrates phosphorylation, are pivotal in both physiological and pathological processes. Although their conserved ATP binding pockets pose challenges for achieving selectivity, this feature offers opportunities for drug repositioning of kinase inhibitors (KIs). This study presents a cost‐effective in silico prediction of KIs drug repositioning via analyzing cross‐docking results. We established the KIs database (278 unique KIs, 1834 bioactivity data points) and kinases database (357 kinase structures categorized by the DFG motif) for carrying out cross‐docking. Comparative analysis of the docking scores and reported experimental bioactivity revealed that the Atypical, TK, and TKL superfamilies are suitable for drug repositioning. Among these kinase superfamilies, Olverematinib, Lapatinib, and Abemaciclib displayed enzymatic activity in our focused AKT‐PI3K‐mTOR pathway with IC50 values of 3.3, 3.2 and 5.8 μM. Further cell assays showed IC50 values of 0.2, 1.2 and 0.6 μM in tumor cells. The consistent result between prediction and validation demonstrated that repositioning KIs via in silico method is feasible.
激酶是一类控制各种底物磷酸化的酶,在生理和病理过程中都起着关键作用。尽管激酶保守的 ATP 结合口袋给实现选择性带来了挑战,但这一特点为激酶抑制剂(KIs)的药物重新定位提供了机会。本研究通过分析交叉对接结果,提出了一种经济有效的 KIs 药物重新定位的硅学预测方法。我们建立了 KIs 数据库(278 种独特的 KIs,1834 个生物活性数据点)和激酶数据库(按 DFG 主题分类的 357 种激酶结构),用于进行交叉对接。对对接得分和实验生物活性的比较分析表明,非典型激酶超家族、TK 激酶超家族和 TKL 激酶超家族适合药物重新定位。在这些激酶超家族中,Olverematinib、Lapatinib 和 Abemaciclib 在我们重点研究的 AKT-PI3K-mTOR 通路中显示出酶活性,IC50 值分别为 3.3、3.2 和 5.8 μM。进一步的细胞检测显示,肿瘤细胞的 IC50 值分别为 0.2、1.2 和 0.6 μM。预测和验证结果的一致性表明,通过硅学方法重新定位 KIs 是可行的。
{"title":"Exploring drug repositioning possibilities of kinase inhibitors via molecular simulation**","authors":"Qing‐Xin Wang, Jiao Cai, Zi‐Jun Chen, Jia‐Chuan Liu, Jing‐Jing Wang, Hai Zhou, Qing‐Qing Li, Zi‐Xuan Wang, Yi‐Bo Wang, Zhen‐Jiang Tong, Jin Yang, Tian‐Hua Wei, Meng‐Yuan Zhang, Yun Zhou, Wei‐Chen Dai, Ning Ding, Xue‐Jiao Leng, Xiao‐Ying Yin, Shan‐Liang Sun, Yan‐Cheng Yu, Nian‐Guang Li, Zhi‐Hao Shi","doi":"10.1002/minf.202300336","DOIUrl":"https://doi.org/10.1002/minf.202300336","url":null,"abstract":"Kinases, a class of enzymes controlling various substrates phosphorylation, are pivotal in both physiological and pathological processes. Although their conserved ATP binding pockets pose challenges for achieving selectivity, this feature offers opportunities for drug repositioning of kinase inhibitors (KIs). This study presents a cost‐effective in silico prediction of KIs drug repositioning via analyzing cross‐docking results. We established the KIs database (278 unique KIs, 1834 bioactivity data points) and kinases database (357 kinase structures categorized by the DFG motif) for carrying out cross‐docking. Comparative analysis of the docking scores and reported experimental bioactivity revealed that the Atypical, TK, and TKL superfamilies are suitable for drug repositioning. Among these kinase superfamilies, Olverematinib, Lapatinib, and Abemaciclib displayed enzymatic activity in our focused AKT‐PI3K‐mTOR pathway with IC<jats:sub>50</jats:sub> values of 3.3, 3.2 and 5.8 μM. Further cell assays showed IC<jats:sub>50</jats:sub> values of 0.2, 1.2 and 0.6 μM in tumor cells. The consistent result between prediction and validation demonstrated that repositioning KIs via <jats:italic>in silico</jats:italic> method is feasible.","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"27 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Updating and profiling the natural product‐likeness of Latin American compound libraries 更新和剖析拉丁美洲化合物库的天然产品相似性
IF 3.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-06-21 DOI: 10.1002/minf.202400052
Alejandro Gómez‐García, Ann‐Kathrin Prinz, Daniel A. Acuña Jiménez, William J. Zamora, Haruna L. Barazorda‐Ccahuana, Miguel Á. Chávez‐Fumagalli, Marilia Valli, Adriano D. Andricopulo, Vanderlan da S. Bolzani, Dionisio A. Olmedo, Pablo N. Solís, Marvin J. Núñez, Johny R. Rodríguez Pérez, Hoover A. Valencia Sánchez, Héctor F. Cortés Hernández, Oscar M. Mosquera Martinez, Oliver Koch, José L. Medina‐Franco
Compound databases of natural products play a crucial role in drug discovery and development projects and have implications in other areas, such as food chemical research, ecology and metabolomics. Recently, we put together the first version of the Latin American Natural Product database (LANaPDB) as a collective effort of researchers from six countries to ensemble a public and representative library of natural products in a geographical region with a large biodiversity. The present work aims to conduct a comparative and extensive profiling of the natural product‐likeness of an updated version of LANaPDB and the individual ten compound databases that form part of LANaPDB. The natural product‐likeness profile of the Latin American compound databases is contrasted with the profile of other major natural product databases in the public domain and a set of small‐molecule drugs approved for clinical use. As part of the extensive characterization, we employed several chemoinformatics metrics of natural product likeness. The results of this study will capture the attention of the global community engaged in natural product databases, not only in Latin America but across the world.
天然产品化合物数据库在药物发现和开发项目中发挥着至关重要的作用,对食品化学研究、生态学和代谢组学等其他领域也有影响。最近,我们建立了拉丁美洲天然产物数据库(LANaPDB)的第一个版本,这是来自六个国家的研究人员共同努力的成果,目的是在生物多样性丰富的地理区域建立一个具有代表性的公共天然产物库。本工作旨在对更新版 LANaPDB 和构成 LANaPDB 一部分的十个化合物数据库的天然产品相似性进行广泛的比较分析。拉美化合物数据库的天然产品相似性特征与公共领域的其他主要天然产品数据库和一组已批准用于临床的小分子药物的特征进行了对比。作为广泛特征描述的一部分,我们采用了几种天然产物相似性的化学信息学指标。这项研究的结果将引起全球从事天然产品数据库研究的各界人士的关注,不仅在拉丁美洲,而且在全世界。
{"title":"Updating and profiling the natural product‐likeness of Latin American compound libraries","authors":"Alejandro Gómez‐García, Ann‐Kathrin Prinz, Daniel A. Acuña Jiménez, William J. Zamora, Haruna L. Barazorda‐Ccahuana, Miguel Á. Chávez‐Fumagalli, Marilia Valli, Adriano D. Andricopulo, Vanderlan da S. Bolzani, Dionisio A. Olmedo, Pablo N. Solís, Marvin J. Núñez, Johny R. Rodríguez Pérez, Hoover A. Valencia Sánchez, Héctor F. Cortés Hernández, Oscar M. Mosquera Martinez, Oliver Koch, José L. Medina‐Franco","doi":"10.1002/minf.202400052","DOIUrl":"https://doi.org/10.1002/minf.202400052","url":null,"abstract":"Compound databases of natural products play a crucial role in drug discovery and development projects and have implications in other areas, such as food chemical research, ecology and metabolomics. Recently, we put together the first version of the Latin American Natural Product database (LANaPDB) as a collective effort of researchers from six countries to ensemble a public and representative library of natural products in a geographical region with a large biodiversity. The present work aims to conduct a comparative and extensive profiling of the natural product‐likeness of an updated version of LANaPDB and the individual ten compound databases that form part of LANaPDB. The natural product‐likeness profile of the Latin American compound databases is contrasted with the profile of other major natural product databases in the public domain and a set of small‐molecule drugs approved for clinical use. As part of the extensive characterization, we employed several chemoinformatics metrics of natural product likeness. The results of this study will capture the attention of the global community engaged in natural product databases, not only in Latin America but across the world.","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"12 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Informatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1