首页 > 最新文献

Nanotechnology, Science and Applications最新文献

英文 中文
Antihistamine and Wound Healing Potential of Gold Nanoparticles Synthesized Using Bulbine frutescens (L.) Willd. 使用 Bulbine frutescens (L.) Willd.合成的金纳米粒子的抗组胺和伤口愈合潜力
IF 4.9 Q1 Engineering Pub Date : 2024-03-13 eCollection Date: 2024-01-01 DOI: 10.2147/NSA.S445116
Marizé Cuyler, Danielle Twilley, Velaphi C Thipe, Vusani Mandiwana, Michel L Kalombo, Suprakas S Ray, Rirhandzu Shamaine Rikhotso-Mbungela, Arno Janse van Vuuren, Will Coetsee, Kattesh V Katti, Namrita Lall

Background: Atopic dermatitis (eczema) is an inflammatory skin condition with synthetic treatments that induce adverse effects and are ineffective. One of the proposed causes for the development of the condition is the outside-in hypothesis, which states that eczema is caused by a disruption in the skin barrier. These disruptions include developing dry cracked skin, which promotes the production of histamine. Bulbine frutescens (BF) is traditionally used to treat wounds and eczema; however, limited research has been conducted to scientifically validate this. Furthermore, gold nanoparticles (AuNPs) have been used to repair damaged skin; however, no research has been conducted on AuNPs synthesized using BF.

Purpose: The study aimed to determine whether BF alleviated skin damage through wound healing, reducing the production of histamine and investigate whether AuNPs synthesized using BF would enhance biological activity.

Methods: Four extracts and four synthesized AuNPs were prepared using BF and their antiproliferative and wound healing properties against human keratinocyte cells (HaCaT) were evaluated. Thereafter, the selected samples antiproliferative activity and antihistamine activity against phorbol 12-myristate 13-acetate (PMA) stimulated granulocytes were evaluated.

Results: Of the eight samples, the freeze-dried leaf juice (BFE; p < 0.01) extract and its AuNPs (BFEAuNPs; p < 0.05) displayed significant wound closure at 100 µg/mL and were further evaluated. The selected samples displayed a fifty percent inhibitory concentration (IC50) of >200 µg/mL against PMA stimulated granulocytes. Compared to the untreated (media with PMA) control (0.30 ± 0.02 ng/mL), BFEAuNPs significantly inhibited histamine production at a concentration of 100 (p < 0.01) and 50 µg/mL (p < 0.001).

Conclusion: BFE and BFEAuNPs stimulated wound closure, while BFEAuNPs significantly inhibited histamine production. Further investigation into BFEAuNPs in vivo wound healing activity and whether it can target histamine-associated receptors on mast cells as a potential mechanism of action should be considered.

背景:特应性皮炎(湿疹)是一种炎症性皮肤病,人工合成的治疗方法会引起不良反应且效果不佳。该假说认为,湿疹是由皮肤屏障破坏引起的。这些破坏包括皮肤干裂,从而促进组胺的产生。Bulbine frutescens(BF)传统上被用于治疗伤口和湿疹;然而,对其进行科学验证的研究还很有限。此外,金纳米粒子(AuNPs)已被用于修复受损皮肤;然而,目前还没有关于使用 BF 合成的 AuNPs 的研究。研究目的:本研究旨在确定 BF 是否能通过伤口愈合减轻皮肤损伤,减少组胺的产生,并调查使用 BF 合成的 AuNPs 是否会增强生物活性:方法: 使用 BF 制备了四种提取物和四种合成的 AuNPs,并评估了它们对人角质细胞(HaCaT)的抗增殖性和伤口愈合性。随后,对所选样品的抗增殖活性和抗组胺活性进行了评估:结果:在八种样品中,冻干叶汁(BFE;p < 0.01)提取物及其 AuNPs(BFEAuNPs;p < 0.05)在 100 µg/mL 的浓度下显示出明显的伤口闭合效果,并被进一步评估。所选样品对 PMA 刺激的粒细胞的抑制浓度(IC50)大于 200 µg/mL。与未经处理(含有 PMA 的培养基)的对照组(0.30 ± 0.02 ng/mL)相比,BFEAuNPs 在浓度为 100 微克/毫升(p < 0.01)和 50 微克/毫升(p < 0.001)时可显著抑制组胺的产生:结论:BFE 和 BFEAuNPs 能刺激伤口闭合,而 BFEAuNPs 能明显抑制组胺的产生。应考虑进一步研究 BFEAuNPs 在体内的伤口愈合活性,以及它是否能将肥大细胞上的组胺相关受体作为潜在的作用机制。
{"title":"Antihistamine and Wound Healing Potential of Gold Nanoparticles Synthesized Using <i>Bulbine frutescens</i> (L.) Willd.","authors":"Marizé Cuyler, Danielle Twilley, Velaphi C Thipe, Vusani Mandiwana, Michel L Kalombo, Suprakas S Ray, Rirhandzu Shamaine Rikhotso-Mbungela, Arno Janse van Vuuren, Will Coetsee, Kattesh V Katti, Namrita Lall","doi":"10.2147/NSA.S445116","DOIUrl":"https://doi.org/10.2147/NSA.S445116","url":null,"abstract":"<p><strong>Background: </strong>Atopic dermatitis (eczema) is an inflammatory skin condition with synthetic treatments that induce adverse effects and are ineffective. One of the proposed causes for the development of the condition is the outside-in hypothesis, which states that eczema is caused by a disruption in the skin barrier. These disruptions include developing dry cracked skin, which promotes the production of histamine. <i>Bulbine frutescens</i> (BF) is traditionally used to treat wounds and eczema; however, limited research has been conducted to scientifically validate this. Furthermore, gold nanoparticles (AuNPs) have been used to repair damaged skin; however, no research has been conducted on AuNPs synthesized using BF.</p><p><strong>Purpose: </strong>The study aimed to determine whether BF alleviated skin damage through wound healing, reducing the production of histamine and investigate whether AuNPs synthesized using BF would enhance biological activity.</p><p><strong>Methods: </strong>Four extracts and four synthesized AuNPs were prepared using BF and their antiproliferative and wound healing properties against human keratinocyte cells (HaCaT) were evaluated. Thereafter, the selected samples antiproliferative activity and antihistamine activity against phorbol 12-myristate 13-acetate (PMA) stimulated granulocytes were evaluated.</p><p><strong>Results: </strong>Of the eight samples, the freeze-dried leaf juice (BFE; <i>p</i> < 0.01) extract and its AuNPs (BFEAuNPs; <i>p</i> < 0.05) displayed significant wound closure at 100 µg/mL and were further evaluated. The selected samples displayed a fifty percent inhibitory concentration (IC<sub>50</sub>) of >200 µg/mL against PMA stimulated granulocytes. Compared to the untreated (media with PMA) control (0.30 ± 0.02 ng/mL), BFEAuNPs significantly inhibited histamine production at a concentration of 100 (<i>p</i> < 0.01) and 50 µg/mL (<i>p</i> < 0.001).</p><p><strong>Conclusion: </strong>BFE and BFEAuNPs stimulated wound closure, while BFEAuNPs significantly inhibited histamine production. Further investigation into BFEAuNPs in vivo wound healing activity and whether it can target histamine-associated receptors on mast cells as a potential mechanism of action should be considered.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"17 ","pages":"59-76"},"PeriodicalIF":4.9,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10949377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Chemical Modification to Improve Solubility of Chitosan and Its Derivatives Application, Preparation Method, Toxicity as a Nanoparticles. 提高壳聚糖及其衍生物溶解度的化学修饰 作为纳米粒子的应用、制备方法和毒性。
IF 4.9 Q1 Engineering Pub Date : 2024-03-07 eCollection Date: 2024-01-01 DOI: 10.2147/NSA.S450026
Suryani Suryani, Anis Yohana Chaerunisaa, I Made Joni, Ruslin Ruslin, Vica Aspadiah, Anton Anton, Ari Sartinah, La Ode Ahmad Nur Ramadhan

Chitosan is a functional polymer in the pharmaceutical field, including for nanoparticle drug delivery systems. Chitosan-based nanoparticles are a promising carrier for a wide range of therapeutic agents and can be administered in various routes. Solubility is the main problem for its production and utilization in large-scale industries. Chitosan modifications have been employed to enhance its solubility, including chemical modification. Many reviews have reported the chemical modification but have not focused on the specific characteristics obtained. This review focused on the modification to improve chitosan solubility. Additionally, this review also focused on the application of chitosan derivatives in nanoparticle drug delivery systems since very few similar reviews have been reported. The specific method for chitosan derivative-based nanoparticles was also reported and the latest report of chitosan, chitosan derivative, and chitosan toxicity were also described.

壳聚糖是制药领域的一种功能性聚合物,可用于纳米颗粒给药系统。以壳聚糖为基础的纳米粒子是一种前景广阔的载体,可用于多种治疗药物的给药途径。溶解性是其大规模生产和使用的主要问题。为了提高壳聚糖的可溶性,人们对其进行了化学改性等改良。许多综述都报道了化学改性的情况,但并未关注所获得的具体特性。这篇综述主要介绍了提高壳聚糖溶解度的改性方法。此外,本综述还关注壳聚糖衍生物在纳米颗粒给药系统中的应用,因为很少有类似的综述报道。此外,还介绍了基于壳聚糖衍生物的纳米粒子的具体制备方法,以及壳聚糖、壳聚糖衍生物和壳聚糖毒性的最新报道。
{"title":"The Chemical Modification to Improve Solubility of Chitosan and Its Derivatives Application, Preparation Method, Toxicity as a Nanoparticles.","authors":"Suryani Suryani, Anis Yohana Chaerunisaa, I Made Joni, Ruslin Ruslin, Vica Aspadiah, Anton Anton, Ari Sartinah, La Ode Ahmad Nur Ramadhan","doi":"10.2147/NSA.S450026","DOIUrl":"10.2147/NSA.S450026","url":null,"abstract":"<p><p>Chitosan is a functional polymer in the pharmaceutical field, including for nanoparticle drug delivery systems. Chitosan-based nanoparticles are a promising carrier for a wide range of therapeutic agents and can be administered in various routes. Solubility is the main problem for its production and utilization in large-scale industries. Chitosan modifications have been employed to enhance its solubility, including chemical modification. Many reviews have reported the chemical modification but have not focused on the specific characteristics obtained. This review focused on the modification to improve chitosan solubility. Additionally, this review also focused on the application of chitosan derivatives in nanoparticle drug delivery systems since very few similar reviews have been reported. The specific method for chitosan derivative-based nanoparticles was also reported and the latest report of chitosan, chitosan derivative, and chitosan toxicity were also described.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"17 ","pages":"41-57"},"PeriodicalIF":4.9,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10926861/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140102047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Factors Affecting the Synthesis of Bovine Serum Albumin Nanoparticles Using the Desolvation Method. 用脱溶法合成牛血清白蛋白纳米颗粒的影响因素。
IF 4.9 Q1 Engineering Pub Date : 2024-01-31 eCollection Date: 2024-01-01 DOI: 10.2147/NSA.S441324
Yenni Puspita Tanjung, Mayang Kusuma Dewi, Vesara Ardhe Gatera, Melisa Intan Barliana, I Made Joni, Anis Yohana Chaerunisaa

Currently, protein-based nanoparticles are in high demand as drug delivery systems due to their exceptional qualities, including nontoxicity, nonantigenicity, and biodegradability. Other qualities include high nutritional value, abundance of renewable resources, excellent drug binding capacity, greater stability during storage and in vivo, as well as ease of upgrading during manufacture. Examples of protein suitable for this purpose include ovalbumin (OVA) derived from egg white, human serum albumin (HSA), and bovine serum albumin (BSA). To create albumin nanoparticles, six different processes have been investigated in depth and are frequently used in drug delivery systems. These included desolvation, thermal gelation, emulsification, NAB technology, self-assembly, and nanospray drying. Several experimental conditions in the synthesis of albumin nanoparticles can affect the physicochemical characterization. Therefore, this study aimed to provide an overview of various experimental conditions capable of affecting the physicochemical characteristics of BSA nanoparticles formed using the desolvation method. By considering the variation in optimal experimental conditions, a delivery system of BSA nanoparticles with the best physicochemical characterization results could be developed.

目前,以蛋白质为基础的纳米粒子因其无毒性、无抗原性和生物降解性等优异品质而成为需求量很大的药物输送系统。其他特性还包括营养价值高、可再生资源丰富、药物结合能力强、在储存和体内更稳定,以及在制造过程中易于升级。适用于这一目的的蛋白质包括从蛋清中提取的卵清蛋白(OVA)、人血清白蛋白(HSA)和牛血清白蛋白(BSA)。为了制造白蛋白纳米粒子,已经对六种不同的工艺进行了深入研究,这些工艺经常用于药物输送系统。这些工艺包括脱溶、热凝胶化、乳化、NAB 技术、自组装和纳米喷雾干燥。白蛋白纳米颗粒合成过程中的一些实验条件会影响其理化特性。因此,本研究旨在概述能够影响使用去溶胶法形成的白蛋白纳米粒子理化特性的各种实验条件。通过考虑最佳实验条件的变化,可以开发出一种具有最佳理化表征结果的 BSA 纳米粒子输送系统。
{"title":"Factors Affecting the Synthesis of Bovine Serum Albumin Nanoparticles Using the Desolvation Method.","authors":"Yenni Puspita Tanjung, Mayang Kusuma Dewi, Vesara Ardhe Gatera, Melisa Intan Barliana, I Made Joni, Anis Yohana Chaerunisaa","doi":"10.2147/NSA.S441324","DOIUrl":"10.2147/NSA.S441324","url":null,"abstract":"<p><p>Currently, protein-based nanoparticles are in high demand as drug delivery systems due to their exceptional qualities, including nontoxicity, nonantigenicity, and biodegradability. Other qualities include high nutritional value, abundance of renewable resources, excellent drug binding capacity, greater stability during storage and in vivo, as well as ease of upgrading during manufacture. Examples of protein suitable for this purpose include ovalbumin (OVA) derived from egg white, human serum albumin (HSA), and bovine serum albumin (BSA). To create albumin nanoparticles, six different processes have been investigated in depth and are frequently used in drug delivery systems. These included desolvation, thermal gelation, emulsification, NAB technology, self-assembly, and nanospray drying. Several experimental conditions in the synthesis of albumin nanoparticles can affect the physicochemical characterization. Therefore, this study aimed to provide an overview of various experimental conditions capable of affecting the physicochemical characteristics of BSA nanoparticles formed using the desolvation method. By considering the variation in optimal experimental conditions, a delivery system of BSA nanoparticles with the best physicochemical characterization results could be developed.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"17 ","pages":"21-40"},"PeriodicalIF":4.9,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139681310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation and Characterization of Intranasal Drug Delivery of Frovatriptan-Loaded Binary Ethosomes Gel for Brain Targeting. 用于脑靶向的弗罗阿曲普坦二元乙素体凝胶的鼻内给药配方与表征
IF 4.9 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2024-01-16 eCollection Date: 2024-01-01 DOI: 10.2147/NSA.S442951
Mohammed Layth Hamzah, Hanan Jalal Kassab

Background: Frovatriptan succinate (FVT) is an effective medication used to treat migraines; however, available oral formulations suffer from low permeability; accordingly, several formulations of FVT were prepared.

Objective: Prepare, optimize, and evaluate FVT-BE formulation to develop enhanced intranasal binary nano-ethosome gel.‎.

Methods: Binary ethosomes were prepared using different concentrations of phospholipid PLH90, ethanol, propylene glycol, and cholesterol by thin film hydration and characterized by particle size, zeta potential, and entrapment efficiency. Furthermore, in-vitro, in-vivo, ex-vivo, pharmacokinetics, and histopathological studies were done.

Results: Regarding FVT-loaded BE, formula (F9) demonstrated the best parameters from the other formulas; with the lowest particle size (154.1±4.38‎ nm), lowest PDI (‎0.213±0.05), highest zeta potential (‎-46.94±1.05), and highest entrapment efficiency (89.34±2.37%). Regarding gel formulation, G2 showed the best gel formula with drug content (‎99.82±0.02‎%) and spreadability (12.88 g/cm2). In-vitro study results showed that, in the first 30 minutes, around 22.3% of the medication is released, whereas, after 24 hours, about 98.56% is released in G2.

Conclusion: Based on enhancing the bioavailability and sustaining the drug release, it can be concluded that the Frovatriptan-Loaded Binary ethosome Gel as nano-delivery was developed as a promising non-invasive drug delivery system for treating migraine.

背景:琥珀酸氟伐曲普坦(FVT)是一种治疗偏头痛的有效药物;然而,现有的口服制剂存在渗透性低的问题;因此,制备了几种FVT制剂:制备、优化和评估 FVT-BE 配方,以开发增强型鼻内二元纳米乙素体凝胶:方法:使用不同浓度的磷脂 PLH90、乙醇、丙二醇和胆固醇,通过薄膜水合法制备二元乙硫体,并通过粒度、ZETA电位和夹持效率对其进行表征。此外,还进行了体外、体内、体外、药代动力学和组织病理学研究:在负载 FVT 的 BE 方面,配方(F9)的参数是其他配方中最好的;粒度最小(154.1±4.38 nm),PDI 最低(0.213±0.05),zeta 电位最高(-46.94±1.05),包埋效率最高(89.34±2.37%)。在凝胶配方方面,G2 的药物含量(99.82±0.02%)和铺展性(12.88 g/cm2)均为最佳。体外研究结果表明,在最初的 30 分钟内,约有 22.3% 的药物被释放出来,而在 24 小时后,G2 中约有 98.56% 的药物被释放出来:基于提高生物利用度和维持药物释放的原理,可以得出结论:弗罗阿曲普坦负载二元乙素体凝胶作为纳米给药,是一种治疗偏头痛的前景广阔的非侵入性给药系统。
{"title":"Formulation and Characterization of Intranasal Drug Delivery of Frovatriptan-Loaded Binary Ethosomes Gel for Brain Targeting.","authors":"Mohammed Layth Hamzah, Hanan Jalal Kassab","doi":"10.2147/NSA.S442951","DOIUrl":"10.2147/NSA.S442951","url":null,"abstract":"<p><strong>Background: </strong>Frovatriptan succinate (FVT) is an effective medication used to treat migraines; however, available oral formulations suffer from low permeability; accordingly, several formulations of FVT were prepared.</p><p><strong>Objective: </strong>Prepare, optimize, and evaluate FVT-BE formulation to develop enhanced intranasal binary nano-ethosome gel.‎.</p><p><strong>Methods: </strong>Binary ethosomes were prepared using different concentrations of phospholipid PLH90, ethanol, propylene glycol, and cholesterol by thin film hydration and characterized by particle size, zeta potential, and entrapment efficiency. Furthermore, in-vitro, in-vivo, ex-vivo, pharmacokinetics, and histopathological studies were done.</p><p><strong>Results: </strong>Regarding FVT-loaded BE, formula (F9) demonstrated the best parameters from the other formulas; with the lowest particle size (154.1±4.38‎ nm), lowest PDI (‎0.213±0.05), highest zeta potential (‎-46.94±1.05), and highest entrapment efficiency (89.34±2.37%). Regarding gel formulation, G2 showed the best gel formula with drug content (‎99.82±0.02‎%) and spreadability (12.88 g/cm<sup>2</sup>). In-vitro study results showed that, in the first 30 minutes, around 22.3% of the medication is released, whereas, after 24 hours, about 98.56% is released in G2.</p><p><strong>Conclusion: </strong>Based on enhancing the bioavailability and sustaining the drug release, it can be concluded that the Frovatriptan-Loaded Binary ethosome Gel as nano-delivery was developed as a promising non-invasive drug delivery system for treating migraine.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"17 ","pages":"1-19"},"PeriodicalIF":4.9,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10799622/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139513252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silver Shell Thickness-Dependent Conductivity of Coatings Based on Ni@Ag Core@shell Nanoparticles. 基于 Ni@Ag Core@shell 纳米粒子的涂层的导电性取决于银壳厚度。
IF 4.9 Q1 Engineering Pub Date : 2023-12-27 eCollection Date: 2023-01-01 DOI: 10.2147/NSA.S435432
Anna Pajor-Świerzy, Katarzyna Kozak, Dorota Duraczyńska, Agata Wiertel-Pochopień, Jan Zawała, Krzysztof Szczepanowicz

Introductions: Ink based on metallic nanoparticles has been widely used so far for the fabrication of electronic circuits and devices using printing technology. This study aimed at the analysis of the effect of the silver shell thickness of nickel@silver core@shell (Ni@Ag) nanoparticles (NPs) on the fabrication and conductive properties of deposited coatings.

Methods: The process of the synthesis of Ni@Ag NPs with various silver shell thicknesses was developed. The physicochemical properties (size, stability against aggregation process) of synthesized Ni@Ag nanoparticles were analyzed. The films based on ink containing Ni@Ag NPs with different silver shell thicknesses were fabricated and sintered in a temperature range of 120-300 °C and at times from 15 to 90 min. The dependence of their conductive properties on the applied temperature and time as well as silver shell thickness was evaluated.

Results: Ni NPs were coated with 10, 20, 30, 35, 45, and 55 nm silver shell thickness. The resistivity of coatings based on obtained NPs depends on the thickness of the Ag shell and the sintering temperature. After sintering at 300 °C, the highest decrease in its value (at an optimal sintering time of 60 min) from about 100 µΩ·cm to 9 µΩ·cm was observed when the thickness of the shell increased from 10 to 55 nm. At the lowest sintering temperature (120 °C) the highest conductivity (about 50% of that for bulk nickel) was obtained for films based on Ni@Ag NPs with 45 and 55 nm of the silver shell thickness.

Discussions: The analysis of the resistivity of the sintered films showed that higher conductivity was obtained for the coatings formed from Ni@Ag NPs with the thicker Ag shell; moreover, thicker shells allowed a lowering of sintering temperature due to higher conductivity and a lower melting point of silver in comparison to nickel NPs.

介绍:迄今为止,基于金属纳米颗粒的油墨已被广泛用于利用印刷技术制造电子电路和器件。本研究旨在分析镍@银核@壳(Ni@Ag)纳米粒子(NPs)银壳厚度对沉积涂层的制造和导电性能的影响:方法:建立了不同银壳厚度的 Ni@Ag NPs 的合成工艺。分析了合成的 Ni@Ag 纳米粒子的理化性质(尺寸、对聚集过程的稳定性)。以含有不同银壳厚度的 Ni@Ag NPs 墨水为基础制作了薄膜,并在 120-300 °C 的温度范围和 15 至 90 分钟的时间内进行了烧结。评估了其导电性能与应用温度、时间以及银壳厚度的关系:结果:Ni NPs 的银壳厚度分别为 10、20、30、35、45 和 55 nm。所获得的 NPs 涂层的电阻率取决于银壳厚度和烧结温度。在 300 °C 下烧结后,当银壳厚度从 10 纳米增加到 55 纳米时,电阻率值从约 100 µΩ-cm 降至 9 µΩ-cm,降幅最大(最佳烧结时间为 60 分钟)。在最低烧结温度(120 °C)下,银壳厚度为 45 和 55 nm 的 Ni@Ag NPs 薄膜的导电率最高(约为块状镍导电率的 50%):烧结薄膜的电阻率分析表明,银壳较厚的 Ni@Ag NPs 所形成的镀层具有更高的导电率;此外,与镍 NPs 相比,银壳较厚的镀层具有更高的导电率和更低的熔点,因此可以降低烧结温度。
{"title":"Silver Shell Thickness-Dependent Conductivity of Coatings Based on Ni@Ag Core@shell Nanoparticles.","authors":"Anna Pajor-Świerzy, Katarzyna Kozak, Dorota Duraczyńska, Agata Wiertel-Pochopień, Jan Zawała, Krzysztof Szczepanowicz","doi":"10.2147/NSA.S435432","DOIUrl":"10.2147/NSA.S435432","url":null,"abstract":"<p><strong>Introductions: </strong>Ink based on metallic nanoparticles has been widely used so far for the fabrication of electronic circuits and devices using printing technology. This study aimed at the analysis of the effect of the silver shell thickness of nickel@silver core@shell (Ni@Ag) nanoparticles (NPs) on the fabrication and conductive properties of deposited coatings.</p><p><strong>Methods: </strong>The process of the synthesis of Ni@Ag NPs with various silver shell thicknesses was developed. The physicochemical properties (size, stability against aggregation process) of synthesized Ni@Ag nanoparticles were analyzed. The films based on ink containing Ni@Ag NPs with different silver shell thicknesses were fabricated and sintered in a temperature range of 120-300 °C and at times from 15 to 90 min. The dependence of their conductive properties on the applied temperature and time as well as silver shell thickness was evaluated.</p><p><strong>Results: </strong>Ni NPs were coated with 10, 20, 30, 35, 45, and 55 nm silver shell thickness. The resistivity of coatings based on obtained NPs depends on the thickness of the Ag shell and the sintering temperature. After sintering at 300 °C, the highest decrease in its value (at an optimal sintering time of 60 min) from about 100 µΩ·cm to 9 µΩ·cm was observed when the thickness of the shell increased from 10 to 55 nm. At the lowest sintering temperature (120 °C) the highest conductivity (about 50% of that for bulk nickel) was obtained for films based on Ni@Ag NPs with 45 and 55 nm of the silver shell thickness.</p><p><strong>Discussions: </strong>The analysis of the resistivity of the sintered films showed that higher conductivity was obtained for the coatings formed from Ni@Ag NPs with the thicker Ag shell; moreover, thicker shells allowed a lowering of sintering temperature due to higher conductivity and a lower melting point of silver in comparison to nickel NPs.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"16 ","pages":"73-84"},"PeriodicalIF":4.9,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10757789/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139074613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell Line-Dependent Adhesion and Inhibition of Proliferation on Carbon-Based Nanofilms. 碳基纳米薄膜上的细胞线依赖性粘附和增殖抑制。
IF 4.9 Q1 Engineering Pub Date : 2023-12-14 eCollection Date: 2023-01-01 DOI: 10.2147/NSA.S439185
Barbara Wójcik, Katarzyna Zawadzka, Ewa Sawosz, Malwina Sosnowska, Agnieszka Ostrowska, Mateusz Wierzbicki

Introduction: Disorganisation of the extracellular matrix (ECM) is strongly connected to tumor progression. Even small-scale changes can significantly influence the adhesion and proliferation of cancer cells. Therefore, the use of biocompatible nanomaterials capable of supporting and partially replenishing degraded ECM might be essential to recover the niche after tumor resection. The objective of this study was to evaluate the influence of graphene, graphene oxide, fullerene, and diamond nanofilms on breast cancer and glioblastoma grade IV cell lines.

Methods: Nanomaterials were characterized using SEM and TEM techniques; zeta potential analysis was also performed. Nanofilms of graphene, fullerene, and diamond nanoparticles were also characterized using AFM. The toxicity was tested on breast cancer MDA.MB.231 and glioblastoma grade IV U-87 MG cell lines, using LDH assay and by counting stained dead cells in bioprinted 3D models. The following parameters were analyzed: proliferation, adhesion to the nanofilm, and adhesion to particular ECM components covered with diamond nanoparticles.

Results and discussion: Our studies demonstrated that nanofilms of graphene and diamond nanoparticles are characterized by cell-specific toxicity. Those nanomaterials were non-toxic to MDA.MB.231 cells. After applying bioprinted 3D models, diamond nanoparticles were not toxic for both cell lines. Nanofilms made of diamond nanoparticles and graphene inhibit the proliferation of MDA.MB.231 cells after 48 and 72 hours. Increased adhesion on nanofilm made of diamond nanoparticles was only observed for MDA.MB.231 cells after 30 and 60 minutes from seeding the cells. However, analysis of adhesion to certain ECM components coated with diamond nanoparticles revealed enhanced adhesion to tenascin and vitronectin for both tested cell lines.

Conclusion: Our studies show that nanofilm made of diamond nanoparticles is a non-toxic and pro-adhesive nanomaterial that might stabilize and partially replenish the niche after breast tumor resection as it enhances the adhesion of breast cancer cells and inhibits their proliferation.

简介细胞外基质(ECM)的紊乱与肿瘤的发展密切相关。即使是小范围的变化也会对癌细胞的粘附和增殖产生重大影响。因此,使用能够支持和部分补充降解的 ECM 的生物相容性纳米材料可能对肿瘤切除后的生态位恢复至关重要。本研究旨在评估石墨烯、氧化石墨烯、富勒烯和金刚石纳米薄膜对乳腺癌和胶质母细胞瘤 IV 级细胞系的影响:采用 SEM 和 TEM 技术对纳米材料进行了表征,并进行了 zeta 电位分析。还使用原子力显微镜对石墨烯、富勒烯和金刚石纳米颗粒的纳米薄膜进行了表征。在乳腺癌 MDA.MB.231 和胶质母细胞瘤 IV 级 U-87 MG 细胞系上,使用 LDH 分析法和在生物打印三维模型中计数染色死细胞的方法测试了其毒性。对以下参数进行了分析:增殖、与纳米薄膜的粘附以及与金刚石纳米颗粒覆盖的特定 ECM 成分的粘附:我们的研究表明,石墨烯纳米薄膜和金刚石纳米颗粒具有细胞特异性毒性。这些纳米材料对 MDA.MB.231 细胞无毒。在应用生物打印三维模型后,金刚石纳米粒子对两种细胞株都没有毒性。由金刚石纳米颗粒和石墨烯制成的纳米薄膜可在 48 小时和 72 小时后抑制 MDA.MB.231 细胞的增殖。只有在 MDA.MB.231 细胞播种 30 分钟和 60 分钟后,才观察到其在金刚石纳米颗粒制成的纳米薄膜上的附着力增强。然而,对涂覆了金刚石纳米颗粒的某些 ECM 成分的粘附性分析表明,两种受测细胞株对 tenascin 和 vitronectin 的粘附性都有所增强:我们的研究表明,由金刚石纳米颗粒制成的纳米薄膜是一种无毒且具有亲黏性的纳米材料,它可以增强乳腺癌细胞的黏附力并抑制其增殖,从而稳定并部分补充乳腺肿瘤切除后的龛位。
{"title":"Cell Line-Dependent Adhesion and Inhibition of Proliferation on Carbon-Based Nanofilms.","authors":"Barbara Wójcik, Katarzyna Zawadzka, Ewa Sawosz, Malwina Sosnowska, Agnieszka Ostrowska, Mateusz Wierzbicki","doi":"10.2147/NSA.S439185","DOIUrl":"https://doi.org/10.2147/NSA.S439185","url":null,"abstract":"<p><strong>Introduction: </strong>Disorganisation of the extracellular matrix (ECM) is strongly connected to tumor progression. Even small-scale changes can significantly influence the adhesion and proliferation of cancer cells. Therefore, the use of biocompatible nanomaterials capable of supporting and partially replenishing degraded ECM might be essential to recover the niche after tumor resection. The objective of this study was to evaluate the influence of graphene, graphene oxide, fullerene, and diamond nanofilms on breast cancer and glioblastoma grade IV cell lines.</p><p><strong>Methods: </strong>Nanomaterials were characterized using SEM and TEM techniques; zeta potential analysis was also performed. Nanofilms of graphene, fullerene, and diamond nanoparticles were also characterized using AFM. The toxicity was tested on breast cancer MDA.MB.231 and glioblastoma grade IV U-87 MG cell lines, using LDH assay and by counting stained dead cells in bioprinted 3D models. The following parameters were analyzed: proliferation, adhesion to the nanofilm, and adhesion to particular ECM components covered with diamond nanoparticles.</p><p><strong>Results and discussion: </strong>Our studies demonstrated that nanofilms of graphene and diamond nanoparticles are characterized by cell-specific toxicity. Those nanomaterials were non-toxic to MDA.MB.231 cells. After applying bioprinted 3D models, diamond nanoparticles were not toxic for both cell lines. Nanofilms made of diamond nanoparticles and graphene inhibit the proliferation of MDA.MB.231 cells after 48 and 72 hours. Increased adhesion on nanofilm made of diamond nanoparticles was only observed for MDA.MB.231 cells after 30 and 60 minutes from seeding the cells. However, analysis of adhesion to certain ECM components coated with diamond nanoparticles revealed enhanced adhesion to tenascin and vitronectin for both tested cell lines.</p><p><strong>Conclusion: </strong>Our studies show that nanofilm made of diamond nanoparticles is a non-toxic and pro-adhesive nanomaterial that might stabilize and partially replenish the niche after breast tumor resection as it enhances the adhesion of breast cancer cells and inhibits their proliferation.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"16 ","pages":"41-57"},"PeriodicalIF":4.9,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726834/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138807987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Nanotechnology of Yucca filamentosa- Phytochemicals-Functionalized Gold Nanoparticles-Antitumor Efficacy Against Prostate and Breast Cancers. 丝兰绿色纳米技术--植物化学物质--功能化金纳米粒子--对前列腺癌和乳腺癌的抗肿瘤功效
IF 4.9 Q1 Engineering Pub Date : 2023-12-11 eCollection Date: 2023-01-01 DOI: 10.2147/NSA.S437812
Velaphi C Thipe, Ananya Jatar, Alice Raphael Karikachery, Kavita K Katti, Kattesh V Katti

Purpose: We report an innovative green nanotechnology utilizing an electron-rich cocktail of phytochemicals from Yucca filamentosa L. to synthesize biocompatible gold nanoparticles without the use of any external chemical reducing agents and evaluate their anti-cancer activity.

Methods: Yucca filamentosa L. extract, containing a cocktail of phytochemicals, was prepared, and used to transform gold salt into Y. filamentosa phytochemicals encapsulated gold nanoparticles (YF-AuNPs). Additionally, gum arabic stabilized YF-AuNPs (GAYF-AuNPs) were also prepared to enhance the in vitro/in vivo stability. Anticancer activity was evaluated against prostate (PC-3) and breast (MDAMB-231) cancer cell lines. Targeting abilities of gold nanoparticles were tested using pro-tumor macrophage cell lines.

Results: Comprehensive characterization of new nanomedicine agents YF-AuNPs and GAYF-AuNPs revealed spherical, and monodisperse AuNPs with moderate zeta potentials (-19 and -20 mV, respectively), indicating in vitro/in vivo stability. The core size of YF-AuNPs (14 ± 5 nm) and GAYF-AuNPs (10 ± 5 nm) is suitable for optimal penetration into tumor cells through both enhanced permeability and retention (EPR) effect as well as through the receptor mediated endocytosis. Notably, YF-AuNPs exhibited potent anticancer activity against prostate (PC-3) and breast tumors (MDAMB-231) by inducing early and late apoptotic stages. Moreover, YF-AuNPs resulted in elevated levels of anti-tumor cytokines (TNF-α and IL-12) and reduced levels of pro-tumor cytokines (IL-6 and IL-10), provide compelling evidence on the immunomodulatory property of YF-AuNPs.

Conclusion: Overall, these Y. filamentosa phytochemicals functionalized nano-Ayurvedic medicine agents demonstrated selective toxicity to cancer cells while sparing normal cells. Most notably, to our knowledge, this is the first study that shows YF-AuNP's targeting efficacy toward pro-tumor macrophage cell lines, suggesting an immunomodulatory pathway for cancer treatment. This work introduces a novel avenue for herbal and nano-Ayurvedic approaches to human cancer treatment, mediated through selective efficacy and immunomodulatory potential.

目的:我们报告了一种创新的绿色纳米技术,利用丝兰富含电子的植物化学物质鸡尾酒,在不使用任何外部化学还原剂的情况下合成生物相容性金纳米粒子,并评估其抗癌活性:方法:制备含有鸡尾酒植物化学物质的丝兰提取物,并将其用于将金盐转化为丝兰植物化学物质包裹的金纳米粒子(YF-AuNPs)。此外,还制备了阿拉伯树胶稳定的 YF-AuNPs (GAYF-AuNPs),以提高体外/体内稳定性。对前列腺癌(PC-3)和乳腺癌(MDAMB-231)细胞系的抗癌活性进行了评估。使用促肿瘤巨噬细胞系测试了金纳米粒子的靶向能力:结果:新型纳米药物YF-AuNPs和GAYF-AuNPs的综合表征显示,金纳米粒子呈球形,单分散,zeta电位适中(分别为-19和-20 mV),表明其在体外/体内均稳定。YF-AuNPs 的核心尺寸(14 ± 5 nm)和 GAYF-AuNPs 的核心尺寸(10 ± 5 nm)适合通过增强渗透性和滞留(EPR)效应以及受体介导的内吞作用最佳地渗透到肿瘤细胞中。值得注意的是,YF-AuNPs 通过诱导早期和晚期细胞凋亡,对前列腺肿瘤(PC-3)和乳腺肿瘤(MDAMB-231)具有很强的抗癌活性。此外,YF-AuNPs 还提高了抗肿瘤细胞因子(TNF-α 和 IL-12)的水平,降低了促肿瘤细胞因子(IL-6 和 IL-10)的水平,为 YF-AuNPs 的免疫调节特性提供了令人信服的证据:总之,这些Y. filamentosa植物化学物质功能化纳米阿育吠陀药剂对癌细胞具有选择性毒性,而对正常细胞则无影响。最值得注意的是,据我们所知,这是首次有研究表明 YF-AuNP 对促癌巨噬细胞系有靶向疗效,从而为癌症治疗提供了一种免疫调节途径。这项研究通过选择性疗效和免疫调节潜力,为草药和纳米阿育吠陀疗法治疗人类癌症开辟了一条新途径。
{"title":"Green Nanotechnology of <i>Yucca filamentosa</i>- Phytochemicals-Functionalized Gold Nanoparticles-Antitumor Efficacy Against Prostate and Breast Cancers.","authors":"Velaphi C Thipe, Ananya Jatar, Alice Raphael Karikachery, Kavita K Katti, Kattesh V Katti","doi":"10.2147/NSA.S437812","DOIUrl":"https://doi.org/10.2147/NSA.S437812","url":null,"abstract":"<p><strong>Purpose: </strong>We report an innovative green nanotechnology utilizing an electron-rich cocktail of phytochemicals from <i>Yucca filamentosa</i> L. to synthesize biocompatible gold nanoparticles without the use of any external chemical reducing agents and evaluate their anti-cancer activity.</p><p><strong>Methods: </strong><i>Yucca filamentosa</i> L. extract, containing a cocktail of phytochemicals, was prepared, and used to transform gold salt into <i>Y. filamentosa</i> phytochemicals encapsulated gold nanoparticles (YF-AuNPs). Additionally, gum arabic stabilized YF-AuNPs (GAYF-AuNPs) were also prepared to enhance the in vitro/in vivo stability. Anticancer activity was evaluated against prostate (PC-3) and breast (MDAMB-231) cancer cell lines. Targeting abilities of gold nanoparticles were tested using pro-tumor macrophage cell lines.</p><p><strong>Results: </strong>Comprehensive characterization of new nanomedicine agents YF-AuNPs and GAYF-AuNPs revealed spherical, and monodisperse AuNPs with moderate zeta potentials (-19 and -20 mV, respectively), indicating in vitro/in vivo stability. The core size of YF-AuNPs (14 ± 5 nm) and GAYF-AuNPs (10 ± 5 nm) is suitable for optimal penetration into tumor cells through both enhanced permeability and retention (EPR) effect as well as through the receptor mediated endocytosis. Notably, YF-AuNPs exhibited potent anticancer activity against prostate (PC-3) and breast tumors (MDAMB-231) by inducing early and late apoptotic stages. Moreover, YF-AuNPs resulted in elevated levels of anti-tumor cytokines (TNF-α and IL-12) and reduced levels of pro-tumor cytokines (IL-6 and IL-10), provide compelling evidence on the immunomodulatory property of YF-AuNPs.</p><p><strong>Conclusion: </strong>Overall, these <i>Y. filamentosa</i> phytochemicals functionalized nano-Ayurvedic medicine agents demonstrated selective toxicity to cancer cells while sparing normal cells. Most notably, to our knowledge, this is the first study that shows YF-AuNP's targeting efficacy toward pro-tumor macrophage cell lines, suggesting an immunomodulatory pathway for cancer treatment. This work introduces a novel avenue for herbal and nano-Ayurvedic approaches to human cancer treatment, mediated through selective efficacy and immunomodulatory potential.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"16 ","pages":"19-40"},"PeriodicalIF":4.9,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138807988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chitosan-Coated Azithromycin/Ciprofloxacin-Loaded Polycaprolactone Nanoparticles: A Characterization and Potency Study 壳聚糖包覆的阿奇霉素/环丙沙星负载型聚己内酯纳米颗粒:特性和药效研究
IF 4.9 Q1 Engineering Pub Date : 2023-12-01 DOI: 10.2147/nsa.s438484
Alaa B. Yassin, Abdulkareem Albekairy, Mustafa E. Omer, Arwa Almutairi, Yousef Alotaibi, Salem Althuwaini, Osama Alaql, Shahad Almozaai, Nouf Almutiri, Wed Alluhaim, Raghad Alzahrani, Asma Alterawi, Majed Halwani
{"title":"Chitosan-Coated Azithromycin/Ciprofloxacin-Loaded Polycaprolactone Nanoparticles: A Characterization and Potency Study","authors":"Alaa B. Yassin, Abdulkareem Albekairy, Mustafa E. Omer, Arwa Almutairi, Yousef Alotaibi, Salem Althuwaini, Osama Alaql, Shahad Almozaai, Nouf Almutiri, Wed Alluhaim, Raghad Alzahrani, Asma Alterawi, Majed Halwani","doi":"10.2147/nsa.s438484","DOIUrl":"https://doi.org/10.2147/nsa.s438484","url":null,"abstract":"","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"393 ","pages":""},"PeriodicalIF":4.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139020188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene Oxide Decreases Pro-Inflammatory Proteins Production in Skeletal Muscle Cells Exposed to SARS-CoV-2 Spike Protein. 氧化石墨烯减少暴露于SARS-CoV-2刺突蛋白的骨骼肌细胞中促炎蛋白的产生
IF 4.9 Q1 Engineering Pub Date : 2023-01-01 DOI: 10.2147/NSA.S391761
Jaśmina Bałaban, Mateusz Wierzbicki, Marlena Zielińska-Górska, Malwina Sosnowska, Karolina Daniluk, Sławomir Jaworski, Piotr Koczoń, Dominik Cysewski, André Chwalibog, Ewa Sawosz
Aim The experiments aimed to document the presence of the ACE2 receptor on human muscle cells and the effects of the interaction of these cells with the spike protein of the SARS-CoV-2 virus in terms of induction of pro-inflammatory proteins, as well as to assess the possibility of reducing the pool of these proteins with the use of graphene oxide (GO) flakes. Methods Human Skeletal Myoblast (HSkM), purchased from Gibco were maintained in standard condition according to the manufacturer’s instruction. The cells were divided into 4 groups; 1. C-control, 2. S-with addition of spike protein, 3. GO-with the addition of graphene oxide, 4. GO-S-with addition of GO followed by the addition of S protein. Protein S (PX-COV-P049) was purchased from ProteoGenix (France). GO was obtained from Advanced Graphene Products (Zielona Gora, Poland). The influence of all the factors on the morphology of cells was investigated using light and confocal microscopy. ACE2 protein expression on muscle cells was visualized and 40 pro-inflammatory cytokines were investigated using the membrane antibody array method. The protein profile of the lysate of cells from individual groups was also analyzed by mass spectrometry. Conclusion The experiments confirmed the presence of the ACE2 receptor in human skeletal muscle cells. It has also been documented that the SARS-CoV-2 virus spike protein influences the activation of selected pro-inflammatory proteins that promote cytokine storm and oxidative stress in muscle cells. The use of low levels of graphene oxide does not adversely affect muscle cells, reducing the levels of most proteins, including pro-inflammatory proteins. It can be assumed that GO may support anti-inflammatory therapy in muscles by scavenging proteins that activate cytokine storm.
目的:本实验旨在记录ACE2受体在人体肌肉细胞上的存在,以及这些细胞与SARS-CoV-2病毒刺突蛋白相互作用在诱导促炎蛋白方面的影响,并评估使用氧化石墨烯(GO)薄片减少这些蛋白池的可能性。方法:从Gibco购买的人骨骼肌母细胞(HSkM)按说明书保持在标准状态。将细胞分为4组;1. C-control 2。s -加入刺突蛋白,3。氧化石墨烯-添加氧化石墨烯,4。GO-S-先加入GO,再加入S蛋白。蛋白S (PX-COV-P049)购于法国ProteoGenix公司。氧化石墨烯是由先进石墨烯产品公司(波兰Zielona Gora)获得的。利用光镜和共聚焦显微镜观察各因素对细胞形态的影响。采用膜抗体阵列法观察肌肉细胞中ACE2蛋白的表达,并检测40种促炎因子的表达。用质谱法分析各组细胞裂解液的蛋白质谱。结论:实验证实了ACE2受体在人体骨骼肌细胞中存在。也有文献表明,SARS-CoV-2病毒刺突蛋白会影响某些促炎蛋白的激活,这些促炎蛋白会促进肌肉细胞中的细胞因子风暴和氧化应激。使用低水平的氧化石墨烯不会对肌肉细胞产生不利影响,会降低大多数蛋白质的水平,包括促炎蛋白。可以假设氧化石墨烯可能通过清除激活细胞因子风暴的蛋白质来支持肌肉的抗炎治疗。
{"title":"Graphene Oxide Decreases Pro-Inflammatory Proteins Production in Skeletal Muscle Cells Exposed to SARS-CoV-2 Spike Protein.","authors":"Jaśmina Bałaban,&nbsp;Mateusz Wierzbicki,&nbsp;Marlena Zielińska-Górska,&nbsp;Malwina Sosnowska,&nbsp;Karolina Daniluk,&nbsp;Sławomir Jaworski,&nbsp;Piotr Koczoń,&nbsp;Dominik Cysewski,&nbsp;André Chwalibog,&nbsp;Ewa Sawosz","doi":"10.2147/NSA.S391761","DOIUrl":"https://doi.org/10.2147/NSA.S391761","url":null,"abstract":"Aim The experiments aimed to document the presence of the ACE2 receptor on human muscle cells and the effects of the interaction of these cells with the spike protein of the SARS-CoV-2 virus in terms of induction of pro-inflammatory proteins, as well as to assess the possibility of reducing the pool of these proteins with the use of graphene oxide (GO) flakes. Methods Human Skeletal Myoblast (HSkM), purchased from Gibco were maintained in standard condition according to the manufacturer’s instruction. The cells were divided into 4 groups; 1. C-control, 2. S-with addition of spike protein, 3. GO-with the addition of graphene oxide, 4. GO-S-with addition of GO followed by the addition of S protein. Protein S (PX-COV-P049) was purchased from ProteoGenix (France). GO was obtained from Advanced Graphene Products (Zielona Gora, Poland). The influence of all the factors on the morphology of cells was investigated using light and confocal microscopy. ACE2 protein expression on muscle cells was visualized and 40 pro-inflammatory cytokines were investigated using the membrane antibody array method. The protein profile of the lysate of cells from individual groups was also analyzed by mass spectrometry. Conclusion The experiments confirmed the presence of the ACE2 receptor in human skeletal muscle cells. It has also been documented that the SARS-CoV-2 virus spike protein influences the activation of selected pro-inflammatory proteins that promote cytokine storm and oxidative stress in muscle cells. The use of low levels of graphene oxide does not adversely affect muscle cells, reducing the levels of most proteins, including pro-inflammatory proteins. It can be assumed that GO may support anti-inflammatory therapy in muscles by scavenging proteins that activate cytokine storm.","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"16 ","pages":"1-18"},"PeriodicalIF":4.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3b/13/nsa-16-1.PMC9869801.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10615267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EGF Receptor-Targeting Cancer Therapy Using CD47-Engineered Cell-Derived Nanoplatforms. 利用cd47工程细胞衍生的纳米平台靶向EGF受体治疗癌症。
IF 4.9 Q1 Engineering Pub Date : 2022-07-05 eCollection Date: 2022-01-01 DOI: 10.2147/NSA.S352038
Moon Jung Choi, Kang Chan Choi, Do Hyun Lee, Hwa Yeon Jeong, Seong Jae Kang, Min Woo Kim, In Ho Jeong, Young Myoung You, Jin Suk Lee, Yeon Kyung Lee, Chan Su Im, Yong Serk Park

Introduction: Avoiding phagocytic cells and reducing off-target toxicity are the primary hurdles in the clinical application of nanoparticles containing therapeutics. For overcoming these errors, in this study, nanoparticles expressing CD47 proteins inhibiting the phagocytic attack of immune cells were prepared and then evaluated as an anti-cancer drug delivery vehicle.

Methods: The CD47+ cell-derived nanoparticles (CDNs) were prepared from the plasma membranes of human embryonic kidney cells transfected with a plasmid encoding CD47. And the doxorubicin (DOX) was loaded into the CDNs, and anti-EGF receptor (EGFR) antibodies were conjugated to the surface of the CDNs to target tumors overexpressing EGFR.

Results: The CD47+iCDNs-DOX was successfully synthesized having a stable structure. The CD47+CDNs were taken up less by RAW264.7 macrophages compared to control CDNs. Anti-EGFR CD47+CDNs (iCDNs) selectively recognized EGFR-positive MDA-MB-231 cells in vitro and accumulated more effectively in the target tumor xenografts in mice. Moreover, iCDNs encapsulating doxorubicin (iCDNs-DOX) exhibited the highest suppression of tumor growth in mice, presumably due to the enhanced DOX delivery to tumor tissues, compared to non-targeting CDNs or CD47- iCDNs.

Discussion: These results suggest that the clinical application of biocompatible cell membrane-derived nanocarriers could be facilitated by functionalization with macrophage-avoiding CD47 and tumor-targeting antibodies.

简介:避免吞噬细胞和减少脱靶毒性是纳米颗粒治疗药物临床应用的主要障碍。为了克服这些错误,本研究制备了表达CD47蛋白抑制免疫细胞吞噬攻击的纳米颗粒,并对其作为抗癌药物递送载体进行了评估。方法:用编码CD47的质粒转染人胚胎肾细胞质膜制备CD47+细胞源性纳米颗粒(cdn)。将多柔比星(DOX)加载到cdn中,并将抗egf受体(EGFR)抗体偶联到cdn表面,靶向过表达EGFR的肿瘤。结果:成功合成了结构稳定的CD47+iCDNs-DOX。与对照cdn相比,RAW264.7巨噬细胞对CD47+ cdn的摄取较少。抗egfr CD47+ cdn (icdn)在体外选择性识别egfr阳性的MDA-MB-231细胞,并在小鼠靶肿瘤异种移植物中更有效地积累。此外,与非靶向cdn或CD47- icdn相比,封装阿霉素(icdn -DOX)的icdn对小鼠肿瘤生长的抑制作用最高,可能是由于DOX对肿瘤组织的递送增强。讨论:这些结果表明,通过与巨噬细胞避免CD47和肿瘤靶向抗体功能化,可以促进生物相容性细胞膜源性纳米载体的临床应用。
{"title":"EGF Receptor-Targeting Cancer Therapy Using CD47-Engineered Cell-Derived Nanoplatforms.","authors":"Moon Jung Choi,&nbsp;Kang Chan Choi,&nbsp;Do Hyun Lee,&nbsp;Hwa Yeon Jeong,&nbsp;Seong Jae Kang,&nbsp;Min Woo Kim,&nbsp;In Ho Jeong,&nbsp;Young Myoung You,&nbsp;Jin Suk Lee,&nbsp;Yeon Kyung Lee,&nbsp;Chan Su Im,&nbsp;Yong Serk Park","doi":"10.2147/NSA.S352038","DOIUrl":"https://doi.org/10.2147/NSA.S352038","url":null,"abstract":"<p><strong>Introduction: </strong>Avoiding phagocytic cells and reducing off-target toxicity are the primary hurdles in the clinical application of nanoparticles containing therapeutics. For overcoming these errors, in this study, nanoparticles expressing CD47 proteins inhibiting the phagocytic attack of immune cells were prepared and then evaluated as an anti-cancer drug delivery vehicle.</p><p><strong>Methods: </strong>The CD47+ cell-derived nanoparticles (CDNs) were prepared from the plasma membranes of human embryonic kidney cells transfected with a plasmid encoding CD47. And the doxorubicin (DOX) was loaded into the CDNs, and anti-EGF receptor (EGFR) antibodies were conjugated to the surface of the CDNs to target tumors overexpressing EGFR.</p><p><strong>Results: </strong>The CD47+iCDNs-DOX was successfully synthesized having a stable structure. The CD47+CDNs were taken up less by RAW264.7 macrophages compared to control CDNs. Anti-EGFR CD47+CDNs (iCDNs) selectively recognized EGFR-positive MDA-MB-231 cells in vitro and accumulated more effectively in the target tumor xenografts in mice. Moreover, iCDNs encapsulating doxorubicin (iCDNs-DOX) exhibited the highest suppression of tumor growth in mice, presumably due to the enhanced DOX delivery to tumor tissues, compared to non-targeting CDNs or CD47- iCDNs.</p><p><strong>Discussion: </strong>These results suggest that the clinical application of biocompatible cell membrane-derived nanocarriers could be facilitated by functionalization with macrophage-avoiding CD47 and tumor-targeting antibodies.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":" ","pages":"17-31"},"PeriodicalIF":4.9,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/61/95/nsa-15-17.PMC9270928.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40582335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Nanotechnology, Science and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1