首页 > 最新文献

Nanotechnology, Science and Applications最新文献

英文 中文
EGF Receptor-Targeting Cancer Therapy Using CD47-Engineered Cell-Derived Nanoplatforms. 利用cd47工程细胞衍生的纳米平台靶向EGF受体治疗癌症。
IF 4.9 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-07-05 eCollection Date: 2022-01-01 DOI: 10.2147/NSA.S352038
Moon Jung Choi, Kang Chan Choi, Do Hyun Lee, Hwa Yeon Jeong, Seong Jae Kang, Min Woo Kim, In Ho Jeong, Young Myoung You, Jin Suk Lee, Yeon Kyung Lee, Chan Su Im, Yong Serk Park

Introduction: Avoiding phagocytic cells and reducing off-target toxicity are the primary hurdles in the clinical application of nanoparticles containing therapeutics. For overcoming these errors, in this study, nanoparticles expressing CD47 proteins inhibiting the phagocytic attack of immune cells were prepared and then evaluated as an anti-cancer drug delivery vehicle.

Methods: The CD47+ cell-derived nanoparticles (CDNs) were prepared from the plasma membranes of human embryonic kidney cells transfected with a plasmid encoding CD47. And the doxorubicin (DOX) was loaded into the CDNs, and anti-EGF receptor (EGFR) antibodies were conjugated to the surface of the CDNs to target tumors overexpressing EGFR.

Results: The CD47+iCDNs-DOX was successfully synthesized having a stable structure. The CD47+CDNs were taken up less by RAW264.7 macrophages compared to control CDNs. Anti-EGFR CD47+CDNs (iCDNs) selectively recognized EGFR-positive MDA-MB-231 cells in vitro and accumulated more effectively in the target tumor xenografts in mice. Moreover, iCDNs encapsulating doxorubicin (iCDNs-DOX) exhibited the highest suppression of tumor growth in mice, presumably due to the enhanced DOX delivery to tumor tissues, compared to non-targeting CDNs or CD47- iCDNs.

Discussion: These results suggest that the clinical application of biocompatible cell membrane-derived nanocarriers could be facilitated by functionalization with macrophage-avoiding CD47 and tumor-targeting antibodies.

简介:避免吞噬细胞和减少脱靶毒性是纳米颗粒治疗药物临床应用的主要障碍。为了克服这些错误,本研究制备了表达CD47蛋白抑制免疫细胞吞噬攻击的纳米颗粒,并对其作为抗癌药物递送载体进行了评估。方法:用编码CD47的质粒转染人胚胎肾细胞质膜制备CD47+细胞源性纳米颗粒(cdn)。将多柔比星(DOX)加载到cdn中,并将抗egf受体(EGFR)抗体偶联到cdn表面,靶向过表达EGFR的肿瘤。结果:成功合成了结构稳定的CD47+iCDNs-DOX。与对照cdn相比,RAW264.7巨噬细胞对CD47+ cdn的摄取较少。抗egfr CD47+ cdn (icdn)在体外选择性识别egfr阳性的MDA-MB-231细胞,并在小鼠靶肿瘤异种移植物中更有效地积累。此外,与非靶向cdn或CD47- icdn相比,封装阿霉素(icdn -DOX)的icdn对小鼠肿瘤生长的抑制作用最高,可能是由于DOX对肿瘤组织的递送增强。讨论:这些结果表明,通过与巨噬细胞避免CD47和肿瘤靶向抗体功能化,可以促进生物相容性细胞膜源性纳米载体的临床应用。
{"title":"EGF Receptor-Targeting Cancer Therapy Using CD47-Engineered Cell-Derived Nanoplatforms.","authors":"Moon Jung Choi,&nbsp;Kang Chan Choi,&nbsp;Do Hyun Lee,&nbsp;Hwa Yeon Jeong,&nbsp;Seong Jae Kang,&nbsp;Min Woo Kim,&nbsp;In Ho Jeong,&nbsp;Young Myoung You,&nbsp;Jin Suk Lee,&nbsp;Yeon Kyung Lee,&nbsp;Chan Su Im,&nbsp;Yong Serk Park","doi":"10.2147/NSA.S352038","DOIUrl":"https://doi.org/10.2147/NSA.S352038","url":null,"abstract":"<p><strong>Introduction: </strong>Avoiding phagocytic cells and reducing off-target toxicity are the primary hurdles in the clinical application of nanoparticles containing therapeutics. For overcoming these errors, in this study, nanoparticles expressing CD47 proteins inhibiting the phagocytic attack of immune cells were prepared and then evaluated as an anti-cancer drug delivery vehicle.</p><p><strong>Methods: </strong>The CD47+ cell-derived nanoparticles (CDNs) were prepared from the plasma membranes of human embryonic kidney cells transfected with a plasmid encoding CD47. And the doxorubicin (DOX) was loaded into the CDNs, and anti-EGF receptor (EGFR) antibodies were conjugated to the surface of the CDNs to target tumors overexpressing EGFR.</p><p><strong>Results: </strong>The CD47+iCDNs-DOX was successfully synthesized having a stable structure. The CD47+CDNs were taken up less by RAW264.7 macrophages compared to control CDNs. Anti-EGFR CD47+CDNs (iCDNs) selectively recognized EGFR-positive MDA-MB-231 cells in vitro and accumulated more effectively in the target tumor xenografts in mice. Moreover, iCDNs encapsulating doxorubicin (iCDNs-DOX) exhibited the highest suppression of tumor growth in mice, presumably due to the enhanced DOX delivery to tumor tissues, compared to non-targeting CDNs or CD47- iCDNs.</p><p><strong>Discussion: </strong>These results suggest that the clinical application of biocompatible cell membrane-derived nanocarriers could be facilitated by functionalization with macrophage-avoiding CD47 and tumor-targeting antibodies.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":" ","pages":"17-31"},"PeriodicalIF":4.9,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/61/95/nsa-15-17.PMC9270928.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40582335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Parallel Multichannel Assessment of Rotationally Manipulated Magnetic Nanoparticles. 旋转操纵磁性纳米颗粒的并行多通道评估
IF 4.9 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2022-04-19 eCollection Date: 2022-01-01 DOI: 10.2147/NSA.S358931
Syed I Hussain, Lamar O Mair, Alexander J Willis, Georgia Papavasiliou, Bing Liu, Irving N Weinberg, Herbert H Engelhard

Background: Rotational manipulation of chains or clusters of magnetic nanoparticles (MNPs) offers a means for directed translation and payload delivery that should be explored for clinical use. Multiple MNP types are available, yet few studies have performed side-by-side comparisons to evaluate characteristics such as velocity, movement at a distance, and capacity for drug conveyance or dispersion.

Purpose: Our goal was to design, build, and study an electric device allowing simultaneous, multichannel testing (e.g., racing) of MNPs in response to a rotating magnetic field. We would then select the "best" MNP and use it with optimized device settings, to transport an unbound therapeutic agent.

Methods: A magnetomotive system was constructed, with a Helmholtz pair of coils on either side of a single perpendicular coil, on top of which was placed an acrylic tray having multiple parallel lanes. Five different MNPs were tested: graphene-coated cobalt MNPs (TurboBeads™), nickel nanorods, gold-iron alloy MNPs, gold-coated Fe3O4 MNPs, and uncoated Fe3O4 MNPs. Velocities were determined in response to varying magnetic field frequencies (5-200 Hz) and heights (0-18 cm). Velocities were normalized to account for minor lane differences. Doxorubicin was chosen as the therapeutic agent, assayed using a CLARIOstar Plus microplate reader.

Results: The MMS generated a maximal MNP velocity of 0.9 cm/s. All MNPs encountered a "critical" frequency at 20-30 Hz. Nickel nanorods had the optimal response based on tray height and were then shown to enable unbound doxorubicin dispersion along 10.5 cm in <30 sec.

Conclusion: A rotating magnetic field can be conveniently generated using a three-coil electromagnetic device, and used to induce rotational and translational movement of MNP aggregates over mesoscale distances. The responses of various MNPs can be compared side-by-side using multichannel acrylic trays to assess suitability for drug delivery, highlighting their potential for further in vivo applications.

背景磁性纳米颗粒(MNP)链或簇的旋转操作为定向翻译和有效载荷递送提供了一种手段,应在临床应用中进行探索。多种MNP类型可用,但很少有研究进行并排比较,以评估速度、远距离运动以及药物输送或分散能力等特征。目的我们的目标是设计、制造和研究一种电气设备,允许对MNP进行响应旋转磁场的同时多通道测试(例如赛车)。然后,我们将选择“最佳”MNP,并将其与优化的设备设置一起使用,以运输未结合的治疗剂。方法构建一个磁动势系统,在单个垂直线圈的两侧各有一对亥姆霍兹线圈,线圈顶部放置一个具有多个平行通道的丙烯酸托盘。测试了五种不同的MNP:石墨烯涂层的钴MNP(TurboBeads™), 镍纳米棒、金-铁合金MNP、镀金的Fe3O4 MNP和未涂覆的Fe3O4 MNP。速度是根据不同的磁场频率(5–200 Hz)和高度(0–18 cm)确定的。将速度标准化,以考虑较小的车道差异。选择阿霉素作为治疗剂,使用CLARIOstar Plus微孔板读取器进行测定。结果MMS产生的最大MNP速度为0.9cm/s。所有MNP都遇到了20–30 Hz的“临界”频率。基于托盘高度,镍纳米棒具有最佳响应,然后显示出能够在<30秒内使未结合的阿霉素沿着10.5厘米分散。结论使用三线圈电磁装置可以方便地产生旋转磁场,并用于诱导MNP聚集体在中尺度距离上的旋转和平移运动。可以使用多通道丙烯酸托盘并排比较各种MNP的反应,以评估其对药物递送的适用性,突出其在体内进一步应用的潜力。
{"title":"Parallel Multichannel Assessment of Rotationally Manipulated Magnetic Nanoparticles.","authors":"Syed I Hussain, Lamar O Mair, Alexander J Willis, Georgia Papavasiliou, Bing Liu, Irving N Weinberg, Herbert H Engelhard","doi":"10.2147/NSA.S358931","DOIUrl":"10.2147/NSA.S358931","url":null,"abstract":"<p><strong>Background: </strong>Rotational manipulation of chains or clusters of magnetic nanoparticles (MNPs) offers a means for directed translation and payload delivery that should be explored for clinical use. Multiple MNP types are available, yet few studies have performed side-by-side comparisons to evaluate characteristics such as velocity, movement at a distance, and capacity for drug conveyance or dispersion.</p><p><strong>Purpose: </strong>Our goal was to design, build, and study an electric device allowing simultaneous, multichannel testing (e.g., racing) of MNPs in response to a rotating magnetic field. We would then select the \"best\" MNP and use it with optimized device settings, to transport an unbound therapeutic agent.</p><p><strong>Methods: </strong>A magnetomotive system was constructed, with a Helmholtz pair of coils on either side of a single perpendicular coil, on top of which was placed an acrylic tray having multiple parallel lanes. Five different MNPs were tested: graphene-coated cobalt MNPs (TurboBeads™), nickel nanorods, gold-iron alloy MNPs, gold-coated Fe<sub>3</sub>O<sub>4</sub> MNPs, and uncoated Fe<sub>3</sub>O<sub>4</sub> MNPs. Velocities were determined in response to varying magnetic field frequencies (5-200 Hz) and heights (0-18 cm). Velocities were normalized to account for minor lane differences. Doxorubicin was chosen as the therapeutic agent, assayed using a CLARIOstar Plus microplate reader.</p><p><strong>Results: </strong>The MMS generated a maximal MNP velocity of 0.9 cm/s. All MNPs encountered a \"critical\" frequency at 20-30 Hz. Nickel nanorods had the optimal response based on tray height and were then shown to enable unbound doxorubicin dispersion along 10.5 cm in <30 sec.</p><p><strong>Conclusion: </strong>A rotating magnetic field can be conveniently generated using a three-coil electromagnetic device, and used to induce rotational and translational movement of MNP aggregates over mesoscale distances. The responses of various MNPs can be compared side-by-side using multichannel acrylic trays to assess suitability for drug delivery, highlighting their potential for further in vivo applications.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"15 1","pages":"1-15"},"PeriodicalIF":4.9,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9034901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41443951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dielectric Behavior and Transport Properties of Electrospun Polyvinylidene Fluoride Nanofiber Membrane 静电纺聚偏氟乙烯纳米纤维膜的介电行为和输运性能
IF 4.9 Q1 Engineering Pub Date : 2021-12-30 DOI: 10.33425/2639-9466.1027
Sharvare Palwai, A. Batra, K. Arun, Ashok Vaseashta
Poly (vinylidene fluoride) (PVDF) is a chemical resistance polymer with high ferroelectric, piezoelectric and pyroelectric properties. PVDF has been chosen due to its unique properties compared with others in the polymers family and is used in a variety of sensors and transducers. A PVDF nanofiber membrane with relatively uniform morphology was prepared by an electrospinning technique. The surface morphology of the electrospun PVDF nanofibers was observed by scanning electron microscopy (SEM). The microstructure of electrospun PVDF nanofibers was characterized by Fourier Transform Infrared spectroscopy (FTIR) in the range 400 to 4000 cm-1. The functional groups were identified in the membrane. Infrared vibrational spectroscopy (FTIR + Raman) curves revealed a ferroelectric β-phase in the un-annealed membrane intrinsically. It showed that the electrospinning technique induce crystalline and polar β-phase by applying an electric field to the PVDF polymer solution during high solution jet stretching. The membrane (7 mm x5 mm) with full-face copper electrodes was produced to form a capacitor for testing.
聚偏氟乙烯(PVDF)是一种具有高铁电性、压电性和热释电性的耐化学性聚合物。PVDF之所以被选择,是因为它与聚合物家族中的其他聚合物相比具有独特的性能,并用于各种传感器和换能器。采用静电纺丝技术制备了形貌相对均匀的聚偏氟乙烯纳米纤维膜。用扫描电镜观察了静电纺PVDF纳米纤维的表面形貌。利用傅里叶变换红外光谱(FTIR)对静电纺PVDF纳米纤维在400 ~ 4000 cm-1范围内的微观结构进行了表征。在膜上鉴定了功能基团。红外振动光谱(FTIR + Raman)曲线揭示了未退火膜本质上存在铁电β相。结果表明,静电纺丝技术通过在高射流拉伸过程中施加电场诱导PVDF聚合物溶液产生结晶相和极性β相。该膜(7mm x5mm)与全面铜电极被制作成一个电容器用于测试。
{"title":"Dielectric Behavior and Transport Properties of Electrospun Polyvinylidene Fluoride Nanofiber Membrane","authors":"Sharvare Palwai, A. Batra, K. Arun, Ashok Vaseashta","doi":"10.33425/2639-9466.1027","DOIUrl":"https://doi.org/10.33425/2639-9466.1027","url":null,"abstract":"Poly (vinylidene fluoride) (PVDF) is a chemical resistance polymer with high ferroelectric, piezoelectric and pyroelectric properties. PVDF has been chosen due to its unique properties compared with others in the polymers family and is used in a variety of sensors and transducers. A PVDF nanofiber membrane with relatively uniform morphology was prepared by an electrospinning technique. The surface morphology of the electrospun PVDF nanofibers was observed by scanning electron microscopy (SEM). The microstructure of electrospun PVDF nanofibers was characterized by Fourier Transform Infrared spectroscopy (FTIR) in the range 400 to 4000 cm-1. The functional groups were identified in the membrane. Infrared vibrational spectroscopy (FTIR + Raman) curves revealed a ferroelectric β-phase in the un-annealed membrane intrinsically. It showed that the electrospinning technique induce crystalline and polar β-phase by applying an electric field to the PVDF polymer solution during high solution jet stretching. The membrane (7 mm x5 mm) with full-face copper electrodes was produced to form a capacitor for testing.","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"30 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78235642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Polymeric (Self-Disappearing) Nano Medical Patches Loaded with a Long-Acting Pharmacological Substance by Electrospinning Method 静电纺丝法合成负载长效药理学物质的高分子(自消失)纳米医用贴片
IF 4.9 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2021-12-30 DOI: 10.33425/2639-9466.1029
Alia Hindi, Mohammad Yahia Masri, S. Hardcastle, M. Batal
Nano-polymer (self-disappearing) medical patches loaded with a long-acting drug were manufactured by cospinning method of synthetic polymers PVA and PVP at a rate of 10%W for each polymer and with the addition different medicinal substances, namely diclofenac de ethylamine, gentamicin, in concentration 5%w (each substance separately). And studding the morphological structure of the prepared samples by scanning electron microscope (SEM) and X- Ray diffraction (XRD), then converted into a medical adhesive form, and then tested on the human hand directly, as it has proven its effectiveness in delivering the drug to the affected area directly. It is very easy to use, medically safe and economic, as it does not need huge industrial equipment for its production.
采用合成聚合物PVA和PVP共旋法制备载长效药物的纳米聚合物(自消失)医用贴片,每种聚合物的共旋率为10%W,添加不同的药用物质双氯芬酸去乙胺、庆大霉素,浓度为5%w(每种物质分别)。并通过扫描电镜(SEM)和X射线衍射(XRD)研究制备的样品的形态结构,然后将其转化为医用胶粘剂形式,然后直接在人的手上进行测试,因为它已经证明了其直接将药物传递到患处的有效性。它的生产不需要庞大的工业设备,因此非常容易使用,医学上安全且经济。
{"title":"Synthesis of Polymeric (Self-Disappearing) Nano Medical Patches Loaded with a Long-Acting Pharmacological Substance by Electrospinning Method","authors":"Alia Hindi, Mohammad Yahia Masri, S. Hardcastle, M. Batal","doi":"10.33425/2639-9466.1029","DOIUrl":"https://doi.org/10.33425/2639-9466.1029","url":null,"abstract":"Nano-polymer (self-disappearing) medical patches loaded with a long-acting drug were manufactured by cospinning method of synthetic polymers PVA and PVP at a rate of 10%W for each polymer and with the addition different medicinal substances, namely diclofenac de ethylamine, gentamicin, in concentration 5%w (each substance separately). And studding the morphological structure of the prepared samples by scanning electron microscope (SEM) and X- Ray diffraction (XRD), then converted into a medical adhesive form, and then tested on the human hand directly, as it has proven its effectiveness in delivering the drug to the affected area directly. It is very easy to use, medically safe and economic, as it does not need huge industrial equipment for its production.","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"67 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79635998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Chemically Modified Castor Seed (Ricinus Communis) Shell Powder on The Mechanical Properties of Natural Rubber Vulcanizate 化学改性蓖麻籽壳粉对天然硫化橡胶力学性能的影响
IF 4.9 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2021-12-30 DOI: 10.33425/2639-9466.1028
Tenebe O.G, Madufor I.C, Obidiegwu M.U, O. H.C
Mechanical properties of natural rubber filled with modified castor seed shell powder for some engineering applications were studied. Castor seed shells were obtained and treated with 20% NaOH for 1h, washed and dried at 75oC and were pulverized and sieved to 75μm. Treated castor seed shell (TCSS) powder showed improved characteristics when compared to the untreated (UCSS) in terms of pH, bulk density, moisture content, lignin content, cellulose content, hemicelluloses content, thermal stability, SEM and FTIR spectra respectively. Natural rubber was compounded at varying filler loadings of 0, 10, 20, 30, 40 and 50phr on a two-roll mill. The cure characteristics of the compounded rubber were determined using a Mosanto Rheometer (model MDR 2000) and the result obtained were used for vulcanization in a hydraulic press. The cure characteristics, mechanical and morphological properties of the vulcanizates were analysed and compared with carbon black filled samples. The preliminary results showed that castor seed shell is hydrophilic which was chemically treated to decrease the hydrophilicity. The maximum and minimum torques increased with filler loadings. The result of the natural rubber filled vulcanizates showed improved mechanical properties such as; tensile strength, modulus, tear strength, hardness, abrasion resistance which increased with increased filler loadings while elongation at break, flex fatigue, compression set, impact strength and rebound resilience decreased with filler loadings. The TCSS filled vulcanizate showed superior abrasion resistance and compression set when compared with UCSS and CB filled. The sample morphology at 30phr revealed that TCSS was well dispersed due to strong interfacial adhesion between the filler and the matrices contributing to the improved mechanical properties investigated when compared to UCSS filled with poor interfacial interaction. The result reveal that TCSS is a reinforcing filler that can be used for the production of natural rubber-based products for some engineering applications.
对改性蓖麻籽壳粉填充天然橡胶的力学性能进行了研究。取蓖麻籽壳,用20% NaOH处理1h,在75℃下洗涤干燥,粉碎筛分至75μm。处理后的蓖麻籽壳粉在pH、容重、含水量、木质素含量、纤维素含量、半纤维素含量、热稳定性、SEM和FTIR光谱等方面均优于未处理的蓖麻籽壳粉。天然橡胶在两辊轧机上以0、10、20、30、40和50phr不同的填料负荷进行复合。用Mosanto流变仪(型号MDR 2000)测定了复合橡胶的硫化特性,并将所得结果用于液压机的硫化。分析了硫化胶的硫化特性、力学性能和形态性能,并与炭黑填充样品进行了比较。初步结果表明,蓖麻籽壳具有亲水性,经化学处理降低了其亲水性。最大和最小扭矩随着填料载荷的增加而增加。结果表明,天然橡胶填充的硫化胶的力学性能得到改善,如:拉伸强度、模量、撕裂强度、硬度、耐磨性随填料用量的增加而增加,而断裂伸长率、弯曲疲劳伸长率、压缩凝固率、冲击强度和回弹回弹率随填料用量的增加而降低。与UCSS和CB填充的硫化胶相比,TCSS填充的硫化胶具有更好的耐磨性和压缩性。30phr下的样品形貌表明,与界面相互作用较差的UCSS相比,TCSS具有良好的分散性,这是由于填料和基体之间具有很强的界面附着力,从而改善了所研究的力学性能。结果表明,TCSS是一种具有一定工程应用价值的补强填料,可用于生产天然橡胶基产品。
{"title":"Effect of Chemically Modified Castor Seed (Ricinus Communis) Shell Powder on The Mechanical Properties of Natural Rubber Vulcanizate","authors":"Tenebe O.G, Madufor I.C, Obidiegwu M.U, O. H.C","doi":"10.33425/2639-9466.1028","DOIUrl":"https://doi.org/10.33425/2639-9466.1028","url":null,"abstract":"Mechanical properties of natural rubber filled with modified castor seed shell powder for some engineering applications were studied. Castor seed shells were obtained and treated with 20% NaOH for 1h, washed and dried at 75oC and were pulverized and sieved to 75μm. Treated castor seed shell (TCSS) powder showed improved characteristics when compared to the untreated (UCSS) in terms of pH, bulk density, moisture content, lignin content, cellulose content, hemicelluloses content, thermal stability, SEM and FTIR spectra respectively. Natural rubber was compounded at varying filler loadings of 0, 10, 20, 30, 40 and 50phr on a two-roll mill. The cure characteristics of the compounded rubber were determined using a Mosanto Rheometer (model MDR 2000) and the result obtained were used for vulcanization in a hydraulic press. The cure characteristics, mechanical and morphological properties of the vulcanizates were analysed and compared with carbon black filled samples. The preliminary results showed that castor seed shell is hydrophilic which was chemically treated to decrease the hydrophilicity. The maximum and minimum torques increased with filler loadings. The result of the natural rubber filled vulcanizates showed improved mechanical properties such as; tensile strength, modulus, tear strength, hardness, abrasion resistance which increased with increased filler loadings while elongation at break, flex fatigue, compression set, impact strength and rebound resilience decreased with filler loadings. The TCSS filled vulcanizate showed superior abrasion resistance and compression set when compared with UCSS and CB filled. The sample morphology at 30phr revealed that TCSS was well dispersed due to strong interfacial adhesion between the filler and the matrices contributing to the improved mechanical properties investigated when compared to UCSS filled with poor interfacial interaction. The result reveal that TCSS is a reinforcing filler that can be used for the production of natural rubber-based products for some engineering applications.","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"24 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86601524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanomaterials and Rare Earths Used To Evaluate the Photocatalytic Degradation of a Dye, with Potential Use in Decontaminating Water Bodies 纳米材料和稀土用于评价染料光催化降解及其在水体净化中的潜在应用
IF 4.9 Q1 Engineering Pub Date : 2021-12-30 DOI: 10.33425/2639-9466.1026
Naranjo-Castañeda Felix Antonio, Palacios-Grijalva Laura Nadxieli, Martínez-Jiménez Anatolio, Chávez-Sandoval Blanca Estela
In this work, nanomaterials and rare earths were obtained with application in the degradation of dyes since in the developing countries the decontamination of water bodies is essential. We used TiO2 for incorporation of rare earths applied to photocatalytic activity in degradation of methyl blue due to its high chemical stability and corrosion resistance. We obtain nanostructured materials of TiO2, TiO2: Ln3+ (Ln3+ = Sm3+, Gd3+ and Yb3+) by sol gel method, for decontamination of dye such as methylene blue in surface water bodies. Through x-ray diffraction, we found that anatase-rutile phase was achieved in TiO2 and tetragonal anatase phase in TiO2 : Ln3+. Size average in nanometres of 31, 37, 44 y 34 for TiO2, TiO2 : Sm3+, TiO2: Gd3+ and TiO2:Yb3+ respectively determinate by atomic force microscopy and by UV spectroscopy the energy gap (2.94, 2.87, 2.85 and 2.95) eV respectively. As for the degradation of the methylene blue dye, the best catalyst under UV radiation was TiO2 : Gd3+ with 54% degradation compared to TiO2 that presented 52%, 29% for TiO2 : Sm3+ and with 27% to TiO2 : Yb3+ determined by fluorimetry. These materials must be applied in industrial post-treatment processes using photo catalysis for the decontamination of bodies of water.
在这项工作中,纳米材料和稀土被用于染料的降解,因为在发展中国家,水体的净化是必不可少的。由于TiO2具有较高的化学稳定性和耐腐蚀性,我们使用TiO2掺入稀土用于光催化降解甲基蓝。采用溶胶-凝胶法制备TiO2: TiO2: Ln3+ (Ln3+ = Sm3+, Gd3+和Yb3+)纳米结构材料,用于地表水体内亚甲基蓝等染料的净化。通过x射线衍射,我们发现TiO2中形成锐钛矿-金红石相,TiO2: Ln3+中形成四方锐钛矿相。TiO2、TiO2: Sm3+、TiO2: Gd3+和TiO2:Yb3+的平均纳米尺寸分别为31、37、44 y 34,通过原子力显微镜和紫外光谱分别确定了能隙(2.94、2.87、2.85和2.95)eV。对于亚甲基蓝染料,紫外辐射下的最佳催化剂为TiO2: Gd3+,降解率为54%,而荧光法测定的TiO2降解率为52%,TiO2: Sm3+为29%,TiO2: Yb3+为27%。这些材料必须应用于利用光催化净化水体的工业后处理过程。
{"title":"Nanomaterials and Rare Earths Used To Evaluate the Photocatalytic Degradation of a Dye, with Potential Use in Decontaminating Water Bodies","authors":"Naranjo-Castañeda Felix Antonio, Palacios-Grijalva Laura Nadxieli, Martínez-Jiménez Anatolio, Chávez-Sandoval Blanca Estela","doi":"10.33425/2639-9466.1026","DOIUrl":"https://doi.org/10.33425/2639-9466.1026","url":null,"abstract":"In this work, nanomaterials and rare earths were obtained with application in the degradation of dyes since in the developing countries the decontamination of water bodies is essential. We used TiO2 for incorporation of rare earths applied to photocatalytic activity in degradation of methyl blue due to its high chemical stability and corrosion resistance. We obtain nanostructured materials of TiO2, TiO2: Ln3+ (Ln3+ = Sm3+, Gd3+ and Yb3+) by sol gel method, for decontamination of dye such as methylene blue in surface water bodies. Through x-ray diffraction, we found that anatase-rutile phase was achieved in TiO2 and tetragonal anatase phase in TiO2 : Ln3+. Size average in nanometres of 31, 37, 44 y 34 for TiO2, TiO2 : Sm3+, TiO2: Gd3+ and TiO2:Yb3+ respectively determinate by atomic force microscopy and by UV spectroscopy the energy gap (2.94, 2.87, 2.85 and 2.95) eV respectively. As for the degradation of the methylene blue dye, the best catalyst under UV radiation was TiO2 : Gd3+ with 54% degradation compared to TiO2 that presented 52%, 29% for TiO2 : Sm3+ and with 27% to TiO2 : Yb3+ determined by fluorimetry. These materials must be applied in industrial post-treatment processes using photo catalysis for the decontamination of bodies of water.","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"46 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82581502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene Oxide as a Collagen Modifier of Amniotic Membrane and Burnt Skin. 氧化石墨烯作为羊膜和烧伤皮肤胶原蛋白改性剂的研究。
IF 4.9 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2021-12-07 eCollection Date: 2021-01-01 DOI: 10.2147/NSA.S343540
Anna Pielesz, Czesław Ślusarczyk, Marta Sieradzka, Tomasz Kukulski, Dorota Biniaś, Ryszard Fryczkowski, Rafał Bobiński, Wioletta Waksmańska

Introduction: The aim of this interdisciplinary study was to answer the question of whether active antioxidants as graphene oxide (GO), sodium ascorbate, and L-ascorbic acid modify at a molecular and supramolecular level the tissue of pathological amnion and the necrotic eschar degraded in thermal burn. We propose new solutions of modifiers based on GO that will become innovative ingredients to be used in transplants (amnion) and enhance regeneration of epidermis degraded in thermal burn.

Methods: A Nicolet 6700 spectrophotometer with Omnic software and the EasiDiff diffusion accessory were used in FTIR spectroscopic analysis. A Nicolet Magna-IR 860 spectrometer with an FT Raman accessory was used to record the Raman spectra of the samples. The surface of the samples was examined using a Phenom ProX scanning electron microscope with an energy-dispersive X-ray spectroscopy detector to diagnose and illustrate morphological effects on skin and amnion samples. SAXS measurements were carried out with a compact Kratky camera equipped with the SWAXS optical system.

Results: Characterisation of amide I-III regions, important for molecular structure, on both FTIR and FTR spectra revealed distinct shifts, testifying to organization of protein structure after GO modification. A wide lipid band associated with ester-group vibrations in phospholipids of cell membranes and vibrations of the carbonyl group of GO in the 1,790-1,720 cm-1 band were observed in the spectra of thermally degraded and GO-modified epidermis and pathological amnion. SAXS studies revealed that GO caused a significant change in the structure of the burnt skin, but its influence on the structure of the amnion was weak.

Conclusion: Modification of burn-damaged epidermis and pathological amnion by means of GO results in stabilization and regeneration of tissue at the level of molecular (FTIR, FTR) and supramolecular (SAXS) interactions.

简介:这项跨学科研究的目的是回答活性抗氧化剂如氧化石墨烯(GO)、抗坏血酸钠和l -抗坏血酸是否在分子和超分子水平上改变病理性羊膜组织和热烧伤坏死痂的降解。我们提出了基于氧化石墨烯的改性剂的新解决方案,这些改性剂将成为用于移植(羊膜)的创新成分,并增强热烧伤中降解的表皮的再生。方法:采用Nicolet 6700分光光度计,采用Omnic软件和EasiDiff扩散附件进行FTIR光谱分析。用带FT拉曼附件的Nicolet Magna-IR 860光谱仪记录样品的拉曼光谱。使用Phenom ProX扫描电子显微镜和能量色散x射线光谱检测器检查样品表面,以诊断和说明对皮肤和羊膜样品的形态学影响。SAXS的测量是用配备了SWAXS光学系统的紧凑型Kratky相机进行的。结果:在FTIR和FTR光谱上,对分子结构重要的酰胺I-III区域的表征显示出明显的变化,证明了氧化石墨烯修饰后蛋白质结构的组织。在热降解和氧化石墨烯修饰的表皮和病理羊膜的光谱中观察到细胞膜磷脂的酯基振动和氧化石墨烯羰基在1790 - 1720 cm-1波段的宽脂带。SAXS研究表明,氧化石墨烯引起烧伤皮肤结构的显著变化,但对羊膜结构的影响较弱。结论:氧化石墨烯修饰烧伤损伤表皮和病理羊膜在分子(FTIR、FTR)和超分子(SAXS)相互作用水平上具有组织稳定和再生的作用。
{"title":"Graphene Oxide as a Collagen Modifier of Amniotic Membrane and Burnt Skin.","authors":"Anna Pielesz,&nbsp;Czesław Ślusarczyk,&nbsp;Marta Sieradzka,&nbsp;Tomasz Kukulski,&nbsp;Dorota Biniaś,&nbsp;Ryszard Fryczkowski,&nbsp;Rafał Bobiński,&nbsp;Wioletta Waksmańska","doi":"10.2147/NSA.S343540","DOIUrl":"https://doi.org/10.2147/NSA.S343540","url":null,"abstract":"<p><strong>Introduction: </strong>The aim of this interdisciplinary study was to answer the question of whether active antioxidants as graphene oxide (GO), sodium ascorbate, and L-ascorbic acid modify at a molecular and supramolecular level the tissue of pathological amnion and the necrotic eschar degraded in thermal burn. We propose new solutions of modifiers based on GO that will become innovative ingredients to be used in transplants (amnion) and enhance regeneration of epidermis degraded in thermal burn.</p><p><strong>Methods: </strong>A Nicolet 6700 spectrophotometer with Omnic software and the EasiDiff diffusion accessory were used in FTIR spectroscopic analysis. A Nicolet Magna-IR 860 spectrometer with an FT Raman accessory was used to record the Raman spectra of the samples. The surface of the samples was examined using a Phenom ProX scanning electron microscope with an energy-dispersive X-ray spectroscopy detector to diagnose and illustrate morphological effects on skin and amnion samples. SAXS measurements were carried out with a compact Kratky camera equipped with the SWAXS optical system.</p><p><strong>Results: </strong>Characterisation of amide I-III regions, important for molecular structure, on both FTIR and FTR spectra revealed distinct shifts, testifying to organization of protein structure after GO modification. A wide lipid band associated with ester-group vibrations in phospholipids of cell membranes and vibrations of the carbonyl group of GO in the 1,790-1,720 cm<sup>-1</sup> band were observed in the spectra of thermally degraded and GO-modified epidermis and pathological amnion. SAXS studies revealed that GO caused a significant change in the structure of the burnt skin, but its influence on the structure of the amnion was weak.</p><p><strong>Conclusion: </strong>Modification of burn-damaged epidermis and pathological amnion by means of GO results in stabilization and regeneration of tissue at the level of molecular (FTIR, FTR) and supramolecular (SAXS) interactions.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":" ","pages":"221-235"},"PeriodicalIF":4.9,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1f/57/nsa-14-221.PMC8665888.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39727788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Graphene and Graphene Oxide as a Support for Biomolecules in the Development of Biosensors. 石墨烯和石墨烯氧化物作为生物分子的支持物用于开发生物传感器。
IF 4.9 Q2 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2021-11-16 eCollection Date: 2021-01-01 DOI: 10.2147/NSA.S334487
Shiva Shahriari, Murali Sastry, Santosh Panjikar, R K Singh Raman

Graphene and graphene oxide have become the base of many advanced biosensors due to their exceptional characteristics. However, lack of some properties, such as inertness of graphene in organic solutions and non-electrical conductivity of graphene oxide, are their drawbacks in sensing applications. To compensate for these shortcomings, various methods of modifications have been developed to provide the appropriate properties required for biosensing. Efficient modification of graphene and graphene oxide facilitates the interaction of biomolecules with their surface, and the ultimate bioconjugate can be employed as the main sensing part of the biosensors. Graphene nanomaterials as transducers increase the signal response in various sensing applications. Their large surface area and perfect biocompatibility with lots of biomolecules provide the prerequisite of a stable biosensor, which is the immobilization of bioreceptor on transducer. Biosensor development has paramount importance in the field of environmental monitoring, security, defense, food safety standards, clinical sector, marine sector, biomedicine, and drug discovery. Biosensor applications are also prevalent in the plant biology sector to find the missing links required in the metabolic process. In this review, the importance of oxygen functional groups in functionalizing the graphene and graphene oxide and different types of functionalization will be explained. Moreover, immobilization of biomolecules (such as protein, peptide, DNA, aptamer) on graphene and graphene oxide and at the end, the application of these biomaterials in biosensors with different transducing mechanisms will be discussed.

石墨烯和氧化石墨烯因其优异的特性已成为许多先进生物传感器的基础。然而,石墨烯在有机溶液中的惰性和氧化石墨烯的非导电性等一些特性的缺乏是它们在传感应用中的缺点。为了弥补这些缺陷,人们开发了各种改性方法,以提供生物传感所需的适当特性。对石墨烯和氧化石墨烯的有效改性可促进生物分子与其表面的相互作用,最终的生物共轭物可用作生物传感器的主要传感部分。石墨烯纳米材料作为传感器可提高各种传感应用中的信号响应。石墨烯纳米材料的大表面积和与大量生物分子的完美生物相容性为稳定的生物传感器提供了先决条件,这就是将生物受体固定在传感器上。生物传感器的开发在环境监测、安全、国防、食品安全标准、临床部门、海洋部门、生物医学和药物研发领域具有极其重要的意义。在植物生物学领域,生物传感器的应用也很普遍,可以找到新陈代谢过程中所需的缺失环节。本综述将解释氧官能团在功能化石墨烯和氧化石墨烯方面的重要性以及不同类型的功能化。此外,还将讨论在石墨烯和氧化石墨烯上固定生物大分子(如蛋白质、肽、DNA、aptamer)的问题,最后将讨论这些生物材料在具有不同传导机制的生物传感器中的应用。
{"title":"Graphene and Graphene Oxide as a Support for Biomolecules in the Development of Biosensors.","authors":"Shiva Shahriari, Murali Sastry, Santosh Panjikar, R K Singh Raman","doi":"10.2147/NSA.S334487","DOIUrl":"10.2147/NSA.S334487","url":null,"abstract":"<p><p>Graphene and graphene oxide have become the base of many advanced biosensors due to their exceptional characteristics. However, lack of some properties, such as inertness of graphene in organic solutions and non-electrical conductivity of graphene oxide, are their drawbacks in sensing applications. To compensate for these shortcomings, various methods of modifications have been developed to provide the appropriate properties required for biosensing. Efficient modification of graphene and graphene oxide facilitates the interaction of biomolecules with their surface, and the ultimate bioconjugate can be employed as the main sensing part of the biosensors. Graphene nanomaterials as transducers increase the signal response in various sensing applications. Their large surface area and perfect biocompatibility with lots of biomolecules provide the prerequisite of a stable biosensor, which is the immobilization of bioreceptor on transducer. Biosensor development has paramount importance in the field of environmental monitoring, security, defense, food safety standards, clinical sector, marine sector, biomedicine, and drug discovery. Biosensor applications are also prevalent in the plant biology sector to find the missing links required in the metabolic process. In this review, the importance of oxygen functional groups in functionalizing the graphene and graphene oxide and different types of functionalization will be explained. Moreover, immobilization of biomolecules (such as protein, peptide, DNA, aptamer) on graphene and graphene oxide and at the end, the application of these biomaterials in biosensors with different transducing mechanisms will be discussed.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":" ","pages":"197-220"},"PeriodicalIF":4.9,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/21/ce/nsa-14-197.PMC8605898.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39920141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prospective Application of Nanoparticles Green Synthesized Using Medicinal Plant Extracts as Novel Nanomedicines. 利用药用植物提取物绿色合成的纳米粒子作为新型纳米药物的应用前景。
IF 4.9 Q1 Engineering Pub Date : 2021-09-23 eCollection Date: 2021-01-01 DOI: 10.2147/NSA.S333467
Rajendran K Selvakesavan, Gregory Franklin

The use of medicinal plants in green synthesis of metal nanoparticles is increasing day by day. A simple search for the keywords "green synthesis" and "nanoparticles" yields more than 33,000 articles in Scopus. As of August 10, 2021, more than 4000 articles have been published in 2021 alone. Besides demonstrating the ease and environmental-friendly route of synthesizing nanomaterials, many studies report the superior pharmacological properties of green synthesized nanoparticles compared to those synthesized by other methods. This is probably due to the fact that bioactive molecules are entrapped on the surface of these nanoparticles. On the other hand, recent studies have confirmed the nano-dimension and biocompatibility of metal ash (Bhasma) preparations, which are commonly macerated with biological products and administered for the treatment of various diseases in Indian medicine since ancient times. This perspective article argues for the prospective medical application of green nanoparticles in the light of Bhasma.

药用植物在金属纳米粒子绿色合成中的应用与日俱增。在 Scopus 中以 "绿色合成 "和 "纳米颗粒 "为关键词进行简单搜索,就能找到 33,000 多篇文章。截至 2021 年 8 月 10 日,仅 2021 年就发表了 4000 多篇文章。除了证明合成纳米材料的途径简单且环保之外,许多研究还报告了绿色合成的纳米粒子与其他方法合成的纳米粒子相比具有更优越的药理特性。这可能是由于生物活性分子被包裹在这些纳米颗粒的表面。另一方面,最近的研究证实了金属灰(Bhasma)制剂的纳米尺寸和生物相容性,自古以来,印度医学通常将金属灰与生物制品一起浸渍并用于治疗各种疾病。本视角文章从 Bhasma 的角度论证了绿色纳米粒子的医学应用前景。
{"title":"Prospective Application of Nanoparticles Green Synthesized Using Medicinal Plant Extracts as Novel Nanomedicines.","authors":"Rajendran K Selvakesavan, Gregory Franklin","doi":"10.2147/NSA.S333467","DOIUrl":"10.2147/NSA.S333467","url":null,"abstract":"<p><p>The use of medicinal plants in green synthesis of metal nanoparticles is increasing day by day. A simple search for the keywords \"green synthesis\" and \"nanoparticles\" yields more than 33,000 articles in Scopus. As of August 10, 2021, more than 4000 articles have been published in 2021 alone. Besides demonstrating the ease and environmental-friendly route of synthesizing nanomaterials, many studies report the superior pharmacological properties of green synthesized nanoparticles compared to those synthesized by other methods. This is probably due to the fact that bioactive molecules are entrapped on the surface of these nanoparticles. On the other hand, recent studies have confirmed the nano-dimension and biocompatibility of metal ash (<i>Bhasma</i>) preparations, which are commonly macerated with biological products and administered for the treatment of various diseases in Indian medicine since ancient times. This perspective article argues for the prospective medical application of green nanoparticles in the light of <i>Bhasma</i>.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":" ","pages":"179-195"},"PeriodicalIF":4.9,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d6/1e/nsa-14-179.PMC8476107.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39470745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial Biofilm Destruction: A Focused Review On The Recent Use of Phage-Based Strategies With Other Antibiofilm Agents. 细菌生物膜破坏:基于噬菌体的策略与其他抗生物膜剂的最新应用综述。
IF 4.9 Q1 Engineering Pub Date : 2021-09-14 eCollection Date: 2021-01-01 DOI: 10.2147/NSA.S325594
Stephen Amankwah, Kedir Abdella, Tesfaye Kassa

Biofilms are bacterial communities that live in association with biotic or abiotic surfaces and enclosed in an extracellular polymeric substance. Their formation on both biotic and abiotic surfaces, including human tissue and medical device surfaces, pose a major threat causing chronic infections. In addition, current antibiotics and antiseptic agents have shown limited ability to completely remove biofilms. In this review, the authors provide an overview on the formation of bacterial biofilms and its characteristics, burden and evolution with phages. Moreover, the most recent possible use of phages and phage-derived enzymes to combat bacteria in biofilm structures is elucidated. From the emerging results, it can be concluded that despite successful use of phages and phage-derived products in destroying biofilms, they are mostly not adequate to eradicate all bacterial cells. Nevertheless, a combined therapy with the use of phages and/or phage-derived products with other antimicrobial agents including antibiotics, nanoparticles, and antimicrobial peptides may be effective approaches to remove biofilms from medical device surfaces and to treat their associated infections in humans.

生物膜是生活在生物或非生物表面的细菌群落,被细胞外聚合物物质包裹。它们在生物表面和非生物表面(包括人体组织和医疗设备表面)形成,是造成慢性感染的主要威胁。此外,目前的抗生素和杀菌剂完全清除生物膜的能力有限。在这篇综述中,作者概述了细菌生物膜的形成及其特点、负担和噬菌体的进化。此外,作者还阐明了噬菌体和噬菌体衍生酶在对付生物膜结构中的细菌方面的最新应用。从新出现的结果中可以得出结论,尽管噬菌体和噬菌体衍生产品在破坏生物膜方面取得了成功,但它们大多不足以消灭所有细菌细胞。不过,将噬菌体和/或噬菌体衍生产品与其他抗菌剂(包括抗生素、纳米粒子和抗菌肽)结合使用,可能是清除医疗器械表面生物膜和治疗人类相关感染的有效方法。
{"title":"Bacterial Biofilm Destruction: A Focused Review On The Recent Use of Phage-Based Strategies With Other Antibiofilm Agents.","authors":"Stephen Amankwah, Kedir Abdella, Tesfaye Kassa","doi":"10.2147/NSA.S325594","DOIUrl":"10.2147/NSA.S325594","url":null,"abstract":"<p><p>Biofilms are bacterial communities that live in association with biotic or abiotic surfaces and enclosed in an extracellular polymeric substance. Their formation on both biotic and abiotic surfaces, including human tissue and medical device surfaces, pose a major threat causing chronic infections. In addition, current antibiotics and antiseptic agents have shown limited ability to completely remove biofilms. In this review, the authors provide an overview on the formation of bacterial biofilms and its characteristics, burden and evolution with phages. Moreover, the most recent possible use of phages and phage-derived enzymes to combat bacteria in biofilm structures is elucidated. From the emerging results, it can be concluded that despite successful use of phages and phage-derived products in destroying biofilms, they are mostly not adequate to eradicate all bacterial cells. Nevertheless, a combined therapy with the use of phages and/or phage-derived products with other antimicrobial agents including antibiotics, nanoparticles, and antimicrobial peptides may be effective approaches to remove biofilms from medical device surfaces and to treat their associated infections in humans.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":" ","pages":"161-177"},"PeriodicalIF":4.9,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/13/7e/nsa-14-161.PMC8449863.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39437289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nanotechnology, Science and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1