Pub Date : 2020-12-09eCollection Date: 2020-01-01DOI: 10.2147/NSA.S282204
Ralf P Friedrich, Eveline Schreiber, Rainer Tietze, Hai Yang, Christian Pilarsky, Christoph Alexiou
Background: The limitations of optical microscopy to determine the cellular localization of label-free nanoparticles prevent a solid prediction of the cellular effect of particles intended for medical applications. To avoid the strong physicochemical changes associated with fluorescent labelling, which often result in differences in cellular uptake, efficiency and toxicity of particles, novel detection techniques are required.
Methods: In the present study, we determined the intracellular content of unlabeled SPIONs by analyzing refractive index (RI)-based images from holotomographic three-dimensional (3D) microscopy and side scatter data measured by flow cytometry. The results were compared with the actual cellular SPION amount as quantified by atomic emission spectroscopy (AES).
Results: Live cell imaging by 3D holotomographic microscopy demonstrated cell-specific differences in intracellular nanoparticle uptake in different pancreatic cell lines. Thus, treatment of PANC-1SMAD4 (1-4) and PANC-1SMAD4 (2-6) with SPIONs resulted in a significant increase in number of areas with higher RI, whereas in PANC-1, SUIT-2 and PaCa DD183, only a minimal increase of spots with high RI was observed. The increase in areas with high RI was in accordance with the SPION content determined by quantitative iron measurements using AES. In contrast, determination of the SPION amount by flow cytometry was strongly cell type-dependent and did not allow the discrimination between intracellular and membrane-bound SPIONs. However, flow cytometry is a very rapid and reliable method to assess the cellular toxicity and allows an estimation of the cell-associated SPION content.
Conclusion: Holotomographic 3D microscopy is a useful method to distinguish between intracellular and membrane-associated particles. Thus, it provides a valuable tool for scientists to evaluate the cellular localization and the particle load, which facilitates prediction of potential toxicity and efficiency of nanoparticles for medical applications.
{"title":"Intracellular Quantification and Localization of Label-Free Iron Oxide Nanoparticles by Holotomographic Microscopy.","authors":"Ralf P Friedrich, Eveline Schreiber, Rainer Tietze, Hai Yang, Christian Pilarsky, Christoph Alexiou","doi":"10.2147/NSA.S282204","DOIUrl":"https://doi.org/10.2147/NSA.S282204","url":null,"abstract":"<p><strong>Background: </strong>The limitations of optical microscopy to determine the cellular localization of label-free nanoparticles prevent a solid prediction of the cellular effect of particles intended for medical applications. To avoid the strong physicochemical changes associated with fluorescent labelling, which often result in differences in cellular uptake, efficiency and toxicity of particles, novel detection techniques are required.</p><p><strong>Methods: </strong>In the present study, we determined the intracellular content of unlabeled SPIONs by analyzing refractive index (RI)-based images from holotomographic three-dimensional (3D) microscopy and side scatter data measured by flow cytometry. The results were compared with the actual cellular SPION amount as quantified by atomic emission spectroscopy (AES).</p><p><strong>Results: </strong>Live cell imaging by 3D holotomographic microscopy demonstrated cell-specific differences in intracellular nanoparticle uptake in different pancreatic cell lines. Thus, treatment of PANC-1<sup>SMAD4 (1-4)</sup> and PANC-1<sup>SMAD4 (2-6)</sup> with SPIONs resulted in a significant increase in number of areas with higher RI, whereas in PANC-1, SUIT-2 and PaCa DD183, only a minimal increase of spots with high RI was observed. The increase in areas with high RI was in accordance with the SPION content determined by quantitative iron measurements using AES. In contrast, determination of the SPION amount by flow cytometry was strongly cell type-dependent and did not allow the discrimination between intracellular and membrane-bound SPIONs. However, flow cytometry is a very rapid and reliable method to assess the cellular toxicity and allows an estimation of the cell-associated SPION content.</p><p><strong>Conclusion: </strong>Holotomographic 3D microscopy is a useful method to distinguish between intracellular and membrane-associated particles. Thus, it provides a valuable tool for scientists to evaluate the cellular localization and the particle load, which facilitates prediction of potential toxicity and efficiency of nanoparticles for medical applications.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"13 ","pages":"119-130"},"PeriodicalIF":4.9,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/NSA.S282204","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38381149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-06eCollection Date: 2020-01-01DOI: 10.2147/NSA.S268107
Cezary Marcinkiewicz, Peter I Lelkes, Mark Sternberg, Giora Z Feuerstein
Background: Recently, we reported the safety and biocompatibility of fluorescent diamond particles, FDP-NV-Z-800nm (FDP-NV) injected intravenously into rats, where no morbidity and mortality were noted over a period of 3 months. The acute effects of FDP-NV-800nm particles on cultured human endothelial and hepatic cells remain unexplored.
Purpose: In this study, we aimed to explore select cellular and biochemical functions in cultured human umbilical endothelial cells (HUVEC) and a human hepatic cancer cell line (HepG-2) exposed to FDP-NV-800 in vitro at exposure levels within the pharmacokinetics (Cmax and the nadir) previously reported in vivo.
Methods: Diverse cellular and biochemical functions were monitored, which cumulatively can provide insights into some vital cellular functions. Cell proliferation and migration were assessed by quantitative microscopy. Mitochondrial metabolic functions were tested by the MTT assay, and cytosolic esterase activity was studied by the calcein AM assay. Chaperons (CHOP), BiP and apoptosis (caspase-3 activation) were monitored by using Western blot (WB). MAPK Erk1/2 signaling was assessed by the detection of the phosphorylated form of the protein (P-Erk 1/2) and its translocation into the cell nucleus.
Results: At all concentrations tested (0.001-0.1mg/mL), FDP-NV did not affect any of the biomarkers of cell integrity of HepG2 cells. In contrast, the proliferation of HUVEC was affected at the highest concentration tested (0.1mg/mL, Cmax). Exposure of HUVEC to (0.01 mg/mL) FDP-NV had a mild-moderate effect on cell proliferation as evident in the MTT assay and was absent when proliferation was assessed by direct cell counting or by using the calcein AM assays. In both cell types, exposure to the highest concentration (0.1 mg/mL) of FDP-NV did neither affect FBS-stimulated cell signaling (MAPK Erk1/2 phosphorylation) nor did it activate of Caspase 3.
Conclusion: Our data suggest that FDP-NV-800nm are largely biocompatible with HepG-2 cells proliferation within the pharmacokinetic data reported previously. In contrast, HUVEC proliferation at the highest exposure dose (0.1 mg/mL) responded adversely with respect to several biomarkers of cell integrity. However, since the Cmax levels are very short-living, the risk for endothelial injury is likely minimal for slow rate cell proliferation such as endothelial cells.
背景:最近,我们报道了FDP-NV- z -800nm荧光金刚石颗粒(FDP-NV)静脉注射大鼠的安全性和生物相容性,在3个月的时间里没有出现发病率和死亡率。FDP-NV-800nm颗粒对培养的人内皮细胞和肝细胞的急性作用尚未研究。目的:在本研究中,我们旨在探讨体外培养的人脐内皮细胞(HUVEC)和人肝癌细胞系(HepG-2)暴露于FDP-NV-800的细胞和生化功能,暴露水平在体内的药代动力学(Cmax和最低点)范围内。方法:对不同的细胞和生化功能进行监测,从而对一些重要的细胞功能有深入的了解。定量显微镜观察细胞增殖和迁移情况。MTT法测定线粒体代谢功能,钙黄蛋白AM法测定胞质酯酶活性。Western blot (WB)检测Chaperons (CHOP)、BiP和凋亡(caspase-3活化)。MAPK Erk1/2信号通过检测蛋白磷酸化形式(P-Erk 1/2)及其在细胞核中的易位来评估。结果:在所有浓度(0.001 ~ 0.1mg/mL)下,FDP-NV均未影响HepG2细胞完整性的任何生物标志物。而在最高浓度(0.1mg/mL, Cmax)时,HUVEC的增殖受到影响。在MTT试验中,HUVEC暴露于(0.01 mg/mL) FDP-NV对细胞增殖有轻度-中度影响,而通过直接细胞计数或使用钙黄蛋白AM试验评估增殖时则不存在这种影响。在两种细胞类型中,暴露于最高浓度(0.1 mg/mL)的FDP-NV既不影响fbs刺激的细胞信号传导(MAPK Erk1/2磷酸化),也不激活Caspase 3。结论:我们的数据表明,FDP-NV-800nm与HepG-2细胞增殖具有很大的生物相容性,符合先前报道的药代动力学数据。相反,在最高暴露剂量(0.1 mg/mL)下,HUVEC增殖对几种细胞完整性的生物标志物有不利反应。然而,由于Cmax水平的存在时间非常短,对于增殖缓慢的细胞(如内皮细胞),内皮损伤的风险可能很小。
{"title":"Effects of Fluorescent Diamond Particles FDP-NV-800nm on Essential Biochemical Functions of Primary Human Umbilical Vein Cells and Human Hepatic Cell Line, HepG-2 in vitro (Part VI): Acute Biocompatibility Studies.","authors":"Cezary Marcinkiewicz, Peter I Lelkes, Mark Sternberg, Giora Z Feuerstein","doi":"10.2147/NSA.S268107","DOIUrl":"https://doi.org/10.2147/NSA.S268107","url":null,"abstract":"<p><strong>Background: </strong>Recently, we reported the safety and biocompatibility of fluorescent diamond particles, FDP-NV-Z-800nm (FDP-NV) injected intravenously into rats, where no morbidity and mortality were noted over a period of 3 months. The acute effects of FDP-NV-800nm particles on cultured human endothelial and hepatic cells remain unexplored.</p><p><strong>Purpose: </strong>In this study, we aimed to explore select cellular and biochemical functions in cultured human umbilical endothelial cells (HUVEC) and a human hepatic cancer cell line (HepG-2) exposed to FDP-NV-800 in vitro at exposure levels within the pharmacokinetics (Cmax and the nadir) previously reported in vivo.</p><p><strong>Methods: </strong>Diverse cellular and biochemical functions were monitored, which cumulatively can provide insights into some vital cellular functions. Cell proliferation and migration were assessed by quantitative microscopy. Mitochondrial metabolic functions were tested by the MTT assay, and cytosolic esterase activity was studied by the calcein AM assay. Chaperons (CHOP), BiP and apoptosis (caspase-3 activation) were monitored by using Western blot (WB). MAPK Erk1/2 signaling was assessed by the detection of the phosphorylated form of the protein (P-Erk 1/2) and its translocation into the cell nucleus.</p><p><strong>Results: </strong>At all concentrations tested (0.001-0.1mg/mL), FDP-NV did not affect any of the biomarkers of cell integrity of HepG2 cells. In contrast, the proliferation of HUVEC was affected at the highest concentration tested (0.1mg/mL, C<sub>max</sub>). Exposure of HUVEC to (0.01 mg/mL) FDP-NV had a mild-moderate effect on cell proliferation as evident in the MTT assay and was absent when proliferation was assessed by direct cell counting or by using the calcein AM assays. In both cell types, exposure to the highest concentration (0.1 mg/mL) of FDP-NV did neither affect FBS-stimulated cell signaling (MAPK Erk1/2 phosphorylation) nor did it activate of Caspase 3.</p><p><strong>Conclusion: </strong>Our data suggest that FDP-NV-800nm are largely biocompatible with HepG-2 cells proliferation within the pharmacokinetic data reported previously. In contrast, HUVEC proliferation at the highest exposure dose (0.1 mg/mL) responded adversely with respect to several biomarkers of cell integrity. However, since the C<sub>max</sub> levels are very short-living, the risk for endothelial injury is likely minimal for slow rate cell proliferation such as endothelial cells.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"13 ","pages":"103-118"},"PeriodicalIF":4.9,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/NSA.S268107","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38642578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-23eCollection Date: 2020-01-01DOI: 10.2147/NSA.S266663
Anubhav Bussooa
Introduction: Biological research relies on the culture of mammalian cells, which are prone to changes in phenotype during experiments involving several passages of cells. In regenerative medicine, specifically, there is an increasing need to expand the characterisation landscape for stem cells by identifying novel stable markers. This paper reports on a novel electric cell-substrate impedance sensing-based electroanalytical diagram which can be used for the "electrical characterisation" of cell monolayers consisting of smooth muscle cells, endothelial cells or co-culture.
Materials and methods: Interdigitated electrodes were microfabricated using standard cleanroom procedures and integrated into cell chambers. Electrochemical impedance spectroscopy data were acquired for 2 vascular cell types after they formed monolayers on the electrodes.
Results and discussion: A Mean impedance per unit area vs Mean phase plots provided a reproducible, visually obvious and statistically significant method of characterising cell monolayers. This electroanalytic diagram has never been used in previous papers, but it confirms findings by other research groups using similar approaches that the complex impedance spectra of different cell type are different. Further work is required to determine whether this method could be extended to other cell types, and if this is the case, a library of "signature spectra" could be generated for "electrical characterisation" of cells.
{"title":"Characterising Vascular Cell Monolayers Using Electrochemical Impedance Spectroscopy and a Novel Electroanalytical Plot.","authors":"Anubhav Bussooa","doi":"10.2147/NSA.S266663","DOIUrl":"10.2147/NSA.S266663","url":null,"abstract":"<p><strong>Introduction: </strong>Biological research relies on the culture of mammalian cells, which are prone to changes in phenotype during experiments involving several passages of cells. In regenerative medicine, specifically, there is an increasing need to expand the characterisation landscape for stem cells by identifying novel stable markers. This paper reports on a novel electric cell-substrate impedance sensing-based electroanalytical diagram which can be used for the \"electrical characterisation\" of cell monolayers consisting of smooth muscle cells, endothelial cells or co-culture.</p><p><strong>Materials and methods: </strong>Interdigitated electrodes were microfabricated using standard cleanroom procedures and integrated into cell chambers. Electrochemical impedance spectroscopy data were acquired for 2 vascular cell types after they formed monolayers on the electrodes.</p><p><strong>Results and discussion: </strong>A Mean impedance per unit area vs Mean phase plots provided a reproducible, visually obvious and statistically significant method of characterising cell monolayers. This electroanalytic diagram has never been used in previous papers, but it confirms findings by other research groups using similar approaches that the complex impedance spectra of different cell type are different. Further work is required to determine whether this method could be extended to other cell types, and if this is the case, a library of \"signature spectra\" could be generated for \"electrical characterisation\" of cells.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"13 ","pages":"89-101"},"PeriodicalIF":4.9,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520662/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38493768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-13eCollection Date: 2020-01-01DOI: 10.2147/NSA.S265641
Rajendran K Selvakesavan, Gregory Franklin
Purpose We report on the expression stability of several housekeeping/reference genes that can be used in the normalization of target gene expression in quantitative real-time PCR (qRT-PCR) analysis of plant cells challenged with metal nanoparticles (NPs). Materials and Methods Uniform cell suspension cultures of Hypericum perforatum were treated with 25 mg/l silver and gold NPs (14–15 nm in diameter). Cells were collected after 0.5, 4.0, and 12 h. The total RNA isolated from the cells was analyzed for the stability of ACT2, ACT3, ACT7, EF1-α, GAPDH, H2A, TUB-α, TUB-β, and 18S rRNA genes using qRT-PCR. The cycle threshold (Ct) values of the genes were analyzed using the geNorm, NormFinder, BestKeeper, and RefFinder statistical algorithms to rank gene stability. The stability of the top-ranked genes was validated by normalizing the expression of HYP1. Results The expression of the tested housekeeping genes varied with treatment duration and NP types. EF1-α in gold NP treatment and TUB-α and EF1-α in silver NP treatment ranked among the top three positions. However, none of the genes retained their top ranking with time and across NP types. Conclusion EF1-α can be used as a reference for treatment involving both silver and gold NPs in H. perforatum cells. TUB-α can be used only for silver NP-treated cells. The expression instability of most of the housekeeping genes highlights the importance of systematic standardization of reference genes for NP treatment conditions to draw proper conclusions on the target gene expression.
{"title":"Nanoparticles Affect the Expression Stability of Housekeeping Genes in Plant Cells.","authors":"Rajendran K Selvakesavan, Gregory Franklin","doi":"10.2147/NSA.S265641","DOIUrl":"https://doi.org/10.2147/NSA.S265641","url":null,"abstract":"Purpose We report on the expression stability of several housekeeping/reference genes that can be used in the normalization of target gene expression in quantitative real-time PCR (qRT-PCR) analysis of plant cells challenged with metal nanoparticles (NPs). Materials and Methods Uniform cell suspension cultures of Hypericum perforatum were treated with 25 mg/l silver and gold NPs (14–15 nm in diameter). Cells were collected after 0.5, 4.0, and 12 h. The total RNA isolated from the cells was analyzed for the stability of ACT2, ACT3, ACT7, EF1-α, GAPDH, H2A, TUB-α, TUB-β, and 18S rRNA genes using qRT-PCR. The cycle threshold (Ct) values of the genes were analyzed using the geNorm, NormFinder, BestKeeper, and RefFinder statistical algorithms to rank gene stability. The stability of the top-ranked genes was validated by normalizing the expression of HYP1. Results The expression of the tested housekeeping genes varied with treatment duration and NP types. EF1-α in gold NP treatment and TUB-α and EF1-α in silver NP treatment ranked among the top three positions. However, none of the genes retained their top ranking with time and across NP types. Conclusion EF1-α can be used as a reference for treatment involving both silver and gold NPs in H. perforatum cells. TUB-α can be used only for silver NP-treated cells. The expression instability of most of the housekeeping genes highlights the importance of systematic standardization of reference genes for NP treatment conditions to draw proper conclusions on the target gene expression.","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"13 ","pages":"77-88"},"PeriodicalIF":4.9,"publicationDate":"2020-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/NSA.S265641","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38438869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Metal-based nanoparticles (M-NPs) have attracted great attention in nanomedicine due to their capacity to amplify and improve the tumor targeting of medical beams. However, their simple, efficient, high-yield and reproducible production remains a challenge. Currently, M-NPs are mainly synthesized by chemical methods or radiolysis using toxic reactants. The waste of time, loss of material and potential environmental hazards are major limitations.
Materials and methods: This work proposes a simple, fast and green strategy to synthesize small, non-toxic and stable NPs in water with a 100% production rate. Ionizing radiation is used to simultaneously synthesize and sterilize the containing NPs solutions. The synthesis of platinum nanoparticles (Pt NPs) coated with biocompatible poly(ethylene glycol) ligands (PEG) is presented as proof of concept. The physicochemical properties of NPs were studied by complementary specialized techniques. Their toxicity and radio-enhancing properties were evaluated in a cancerous in vitro model. Using plasmid nanoprobes, we investigated the elementary mechanisms underpinning radio-enhancement.
Results and discussion: Pt NPs showed nearly spherical-like shapes and an average hydrodynamic diameter of 9 nm. NPs are zero-valent platinum successfully coated with PEG. They were found non-toxic and have the singular property of amplifying cell killing induced by γ-rays (14%) and even more, the effects of carbon ions (44%) used in particle therapy. They induce nanosized-molecular damage, which is a major finding to potentially implement this protocol in treatment planning simulations.
Conclusion: This new eco-friendly, fast and simple proposed method opens a new era of engineering water-soluble biocompatible NPs and boosts the development of NP-aided radiation therapies.
{"title":"Green One-Step Synthesis of Medical Nanoagents for Advanced Radiation Therapy.","authors":"Daniela Salado-Leza, Erika Porcel, Xiaomin Yang, Lenka Štefančíková, Marta Bolsa-Ferruz, Farah Savina, Diana Dragoe, Jean-Luc Guerquin-Kern, Ting-Di Wu, Ryoichi Hirayama, Hynd Remita, Sandrine Lacombe","doi":"10.2147/NSA.S257392","DOIUrl":"10.2147/NSA.S257392","url":null,"abstract":"<p><strong>Purpose: </strong>Metal-based nanoparticles (M-NPs) have attracted great attention in nanomedicine due to their capacity to amplify and improve the tumor targeting of medical beams. However, their simple, efficient, high-yield and reproducible production remains a challenge. Currently, M-NPs are mainly synthesized by chemical methods or radiolysis using toxic reactants. The waste of time, loss of material and potential environmental hazards are major limitations.</p><p><strong>Materials and methods: </strong>This work proposes a simple, fast and green strategy to synthesize small, non-toxic and stable NPs in water with a 100% production rate. Ionizing radiation is used to simultaneously synthesize and sterilize the containing NPs solutions. The synthesis of platinum nanoparticles (Pt NPs) coated with biocompatible poly(ethylene glycol) ligands (PEG) is presented as proof of concept. The physicochemical properties of NPs were studied by complementary specialized techniques. Their toxicity and radio-enhancing properties were evaluated in a cancerous in vitro model. Using plasmid nanoprobes, we investigated the elementary mechanisms underpinning radio-enhancement.</p><p><strong>Results and discussion: </strong>Pt NPs showed nearly spherical-like shapes and an average hydrodynamic diameter of 9 nm. NPs are zero-valent platinum successfully coated with PEG. They were found non-toxic and have the singular property of amplifying cell killing induced by γ-rays (14%) and even more, the effects of carbon ions (44%) used in particle therapy. They induce nanosized-molecular damage, which is a major finding to potentially implement this protocol in treatment planning simulations.</p><p><strong>Conclusion: </strong>This new eco-friendly, fast and simple proposed method opens a new era of engineering water-soluble biocompatible NPs and boosts the development of NP-aided radiation therapies.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"13 ","pages":"61-76"},"PeriodicalIF":4.9,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/31/63/nsa-13-61.PMC7426062.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38312280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently, suspensions of several nanoparticles or nanocomposites have attained a vast field of application in biomedical research works in some specified conditions and clinical trials. These valuable suspensions, which allow the nanoparticles to disperse and act in homogenous and stable media, are named as nanofluids. Several studies have introduced the advantages of nanofluids in biomedical approaches in different fields. Few review articles have been reported for presenting an overview of the wide biomedical applications of nanofluids, such as diagnosis and therapy. The review is focused on nanosuspensions, as the nanofluids with solid particles. Major applications are focused on nanosuspension, which is the main type of nanofluids. So, concise content about major biomedical applications of nanofluids in drug delivery systems, imaging, and antibacterial activities is presented in this paper. For example, applying magnetic nanofluid systems is an important route for targeted drug delivery, hyperthermia, and differential diagnosis. Also, nanofluids could be used as a potential antibacterial agent to overcome antibiotic resistance. This study could be useful for presenting the novel and applicable methods for success in current medical practice.
{"title":"Role of Nanofluids in Drug Delivery and Biomedical Technology: Methods and Applications.","authors":"Mojgan Sheikhpour, Mohadeseh Arabi, Alibakhsh Kasaeian, Ali Rokn Rabei, Zahra Taherian","doi":"10.2147/NSA.S260374","DOIUrl":"https://doi.org/10.2147/NSA.S260374","url":null,"abstract":"<p><p>Recently, suspensions of several nanoparticles or nanocomposites have attained a vast field of application in biomedical research works in some specified conditions and clinical trials. These valuable suspensions, which allow the nanoparticles to disperse and act in homogenous and stable media, are named as nanofluids. Several studies have introduced the advantages of nanofluids in biomedical approaches in different fields. Few review articles have been reported for presenting an overview of the wide biomedical applications of nanofluids, such as diagnosis and therapy. The review is focused on nanosuspensions, as the nanofluids with solid particles. Major applications are focused on nanosuspension, which is the main type of nanofluids. So, concise content about major biomedical applications of nanofluids in drug delivery systems, imaging, and antibacterial activities is presented in this paper. For example, applying magnetic nanofluid systems is an important route for targeted drug delivery, hyperthermia, and differential diagnosis. Also, nanofluids could be used as a potential antibacterial agent to overcome antibiotic resistance. This study could be useful for presenting the novel and applicable methods for success in current medical practice.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"13 ","pages":"47-59"},"PeriodicalIF":4.9,"publicationDate":"2020-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/NSA.S260374","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38267948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-12eCollection Date: 2020-01-01DOI: 10.2147/NSA.S254770
Gregory Marslin, Vinoth Khandelwal, Gregory Franklin
Purpose: Cordycepin, a natural product isolated from the fungus Cordyceps militaris, is a potential candidate for breast cancer therapy. However, due to its structural similarity with adenosine, cordycepin is rapidly metabolized into an inactive form in the body, hindering its development as a therapeutic agent. In the present study, we have prepared cordycepin as nanoparticles in poly(lactic-co-glycolic acid) (PLGA) and compared their cellular uptake, cytotoxicity and hemolytic potential with free cordycepin.
Materials and methods: Cordycepin-loaded PLGA nanoparticles (CPNPs) were prepared by the double-emulsion solvent evaporation method. Physico-chemical characterization of the nanoparticles was done by zetasizer, transmission electron microscopy (TEM) and reverse-phase high-pressure liquid chromatography (RP-HPLC) analyses. Cellular uptake and cytotoxicity of CPNPs and free drug were tested in human breast cancer cells (MCF7). Hemolytic potential of both of these forms was evaluated in rat red blood cells (RBCs).
Results: Physico-chemical characterization revealed that CPNPs were spherical in shape, possessed a size range of 179-246 nm, and released the encapsulated drug sustainably over a period of 10 days. CPNPs exhibited a high level of cellular uptake and cytotoxicity than the free drug in MCF-7 cells. While CPNPs were not toxic to rat RBCs even at high concentrations, free cordycepin induced hemolysis of these cells at relatively low concentration.
Conclusion: Our results reveal that delivery as CPNPs could enhance the clinical efficacy of cordycepin substantially.
{"title":"Cordycepin Nanoencapsulated in Poly(Lactic-Co-Glycolic Acid) Exhibits Better Cytotoxicity and Lower Hemotoxicity Than Free Drug.","authors":"Gregory Marslin, Vinoth Khandelwal, Gregory Franklin","doi":"10.2147/NSA.S254770","DOIUrl":"https://doi.org/10.2147/NSA.S254770","url":null,"abstract":"<p><strong>Purpose: </strong>Cordycepin, a natural product isolated from the fungus <i>Cordyceps militaris,</i> is a potential candidate for breast cancer therapy. However, due to its structural similarity with adenosine, cordycepin is rapidly metabolized into an inactive form in the body, hindering its development as a therapeutic agent. In the present study, we have prepared cordycepin as nanoparticles in poly(lactic-co-glycolic acid) (PLGA) and compared their cellular uptake, cytotoxicity and hemolytic potential with free cordycepin.</p><p><strong>Materials and methods: </strong>Cordycepin-loaded PLGA nanoparticles (CPNPs) were prepared by the double-emulsion solvent evaporation method. Physico-chemical characterization of the nanoparticles was done by zetasizer, transmission electron microscopy (TEM) and reverse-phase high-pressure liquid chromatography (RP-HPLC) analyses. Cellular uptake and cytotoxicity of CPNPs and free drug were tested in human breast cancer cells (MCF7). Hemolytic potential of both of these forms was evaluated in rat red blood cells (RBCs).</p><p><strong>Results: </strong>Physico-chemical characterization revealed that CPNPs were spherical in shape, possessed a size range of 179-246 nm, and released the encapsulated drug sustainably over a period of 10 days. CPNPs exhibited a high level of cellular uptake and cytotoxicity than the free drug in MCF-7 cells. While CPNPs were not toxic to rat RBCs even at high concentrations, free cordycepin induced hemolysis of these cells at relatively low concentration.</p><p><strong>Conclusion: </strong>Our results reveal that delivery as CPNPs could enhance the clinical efficacy of cordycepin substantially.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"13 ","pages":"37-45"},"PeriodicalIF":4.9,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/NSA.S254770","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38109292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-01eCollection Date: 2020-01-01DOI: 10.2147/NSA.S243017
Nasrul Wathoni, Agus Rusdin, Keiichi Motoyama, I Made Joni, Ronny Lesmana, Muchtaridi Muchtaridi
α-Mangostin, a xanthone derivative from the pericarp of Garcinia mangostana L., has numerous bioactivities and pharmacological properties. However, α-mangostin has low aqueous solubility and poor target selectivity in the human body. Recently, nanoparticle drug delivery systems have become an excellent technique to improve the physicochemical properties and effectiveness of drugs. Therefore, many efforts have been made to overcome the limitations of α-mangostin through nanoparticle formulations. Our review aimed to summarise and discuss the nanoparticle drug delivery systems for α-mangostin from published papers recorded in Scopus, PubMed and Google Scholar. We examined various types of nanoparticles for α-mangostin to enhance water solubility, provide controlled release and create targeted delivery systems. These forms include polymeric nanoparticles, nanomicelles, liposomes, solid lipid nanoparticles, nanofibers and nanoemulsions. Notably, nanomicelle modification increased α-mangostin solubility increased more than 10,000 fold. Additionally, polymeric nanoparticles provided targeted delivery and significantly enhanced the biodistribution of α-mangostin into specific organs. In conclusion, the nanoparticle drug delivery system could be a promising technique to increase the solubility, selectivity and efficacy of α-mangostin as a new drug candidate in clinical therapy.
α-芒果苷是从藤黄属植物芒果(Garcinia mangostana L.)果皮中提取的一种黄酮衍生物,具有多种生物活性和药理特性。然而,α-曼戈斯汀在人体内的水溶性低,靶向选择性差。近年来,纳米颗粒给药系统已成为改善药物理化性质和药效的绝佳技术。因此,很多人都在努力通过纳米颗粒制剂来克服α-曼戈斯汀的局限性。我们的综述旨在总结和讨论 Scopus、PubMed 和 Google Scholar 收录的已发表论文中有关α-曼戈斯汀的纳米颗粒给药系统。我们研究了各种类型的α-曼戈斯汀纳米颗粒,以提高水溶性、提供控释和创建靶向给药系统。这些形式包括聚合物纳米颗粒、纳米胶束、脂质体、固体脂质纳米颗粒、纳米纤维和纳米乳液。值得注意的是,纳米胶束的改性使α-曼戈斯汀的溶解度提高了 10,000 倍以上。此外,高分子纳米颗粒还能提供靶向递送,并显著增强α-曼戈斯汀在特定器官中的生物分布。总之,纳米颗粒给药系统是一种很有前途的技术,可提高α-曼戈斯汀作为候选新药在临床治疗中的溶解度、选择性和疗效。
{"title":"Nanoparticle Drug Delivery Systems for α-Mangostin.","authors":"Nasrul Wathoni, Agus Rusdin, Keiichi Motoyama, I Made Joni, Ronny Lesmana, Muchtaridi Muchtaridi","doi":"10.2147/NSA.S243017","DOIUrl":"10.2147/NSA.S243017","url":null,"abstract":"<p><p>α-Mangostin, a xanthone derivative from the pericarp of <i>Garcinia mangostana</i> L., has numerous bioactivities and pharmacological properties. However, α-mangostin has low aqueous solubility and poor target selectivity in the human body. Recently, nanoparticle drug delivery systems have become an excellent technique to improve the physicochemical properties and effectiveness of drugs. Therefore, many efforts have been made to overcome the limitations of α-mangostin through nanoparticle formulations. Our review aimed to summarise and discuss the nanoparticle drug delivery systems for α-mangostin from published papers recorded in Scopus, PubMed and Google Scholar. We examined various types of nanoparticles for α-mangostin to enhance water solubility, provide controlled release and create targeted delivery systems. These forms include polymeric nanoparticles, nanomicelles, liposomes, solid lipid nanoparticles, nanofibers and nanoemulsions. Notably, nanomicelle modification increased α-mangostin solubility increased more than 10,000 fold. Additionally, polymeric nanoparticles provided targeted delivery and significantly enhanced the biodistribution of α-mangostin into specific organs. In conclusion, the nanoparticle drug delivery system could be a promising technique to increase the solubility, selectivity and efficacy of α-mangostin as a new drug candidate in clinical therapy.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"13 ","pages":"23-36"},"PeriodicalIF":4.9,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5d/85/nsa-13-23.PMC7132026.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37824961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-31eCollection Date: 2020-01-01DOI: 10.2147/NSA.S245071
István Csarnovics, Julia Burunkova, Danara Sviazhina, Evgeniy Oskolkov, George Alkhalil, Elena Orishak, Ludmila Nilova, István Szabó, Péter Rutka, Krisztián Bene, Attila Bácsi, Sándor Kökényesi
Introduction: In this work we selected components, developed technology and studied a number of parameters of polymer nanocomposite materials, remembering that the material would have high optical and good mechanical characteristics, good sorption ability in order to ensure high value of the optical signal for a short time while maintaining the initial geometric shape. In addition, if this nanocomposite is used for medicine and biology (biocompatible or biocidal materials or the creation of a sensor based on it), the material must be non-toxic and/or biocompatible. We study the creation of polymer nanocomposites which may be applied as biocompatible materials with new functional parameters.
Material and methods: A number of polymer nanocomposites based on various urethane-acrylate monomers and nanoparticles of gold, silicon oxides, zinc and/or titanium oxides are obtained, their mechanical (microhardness) properties and wettability (contact angle) are studied. The set of required, biology-related properties of these materials, such as toxicity and sorption of microorganisms are also investigated in order to prove their possible applicability.
Results and discussion: The composition of the samples influences their microhardness and the value of contact angle, which means that varying with the monomer and the metallic, oxide nanoparticles composition, we could change these parameters. Besides it, the set of required, biology-related properties of these materials, such as toxicity and sorption of microorganisms were also investigated in order to prove their possible applicability. It was shown that the materials are non-toxic, the adhesion of microorganisms on their surface also could be varied by changing their composition.
Conclusion: The presented polymer nanocomposites with different compositions of monomer and the presence of nanoparticles in them are prospective material for a possible bio-application as it is biocompatible, not toxic. The sorption of microorganism could be varied depending on the type of bacterias, the monomer composition, and nanoparticles.
{"title":"Development and Study of Biocompatible Polyurethane-Based Polymer-Metallic Nanocomposites.","authors":"István Csarnovics, Julia Burunkova, Danara Sviazhina, Evgeniy Oskolkov, George Alkhalil, Elena Orishak, Ludmila Nilova, István Szabó, Péter Rutka, Krisztián Bene, Attila Bácsi, Sándor Kökényesi","doi":"10.2147/NSA.S245071","DOIUrl":"10.2147/NSA.S245071","url":null,"abstract":"<p><strong>Introduction: </strong>In this work we selected components, developed technology and studied a number of parameters of polymer nanocomposite materials, remembering that the material would have high optical and good mechanical characteristics, good sorption ability in order to ensure high value of the optical signal for a short time while maintaining the initial geometric shape. In addition, if this nanocomposite is used for medicine and biology (biocompatible or biocidal materials or the creation of a sensor based on it), the material must be non-toxic and/or biocompatible. We study the creation of polymer nanocomposites which may be applied as biocompatible materials with new functional parameters.</p><p><strong>Material and methods: </strong>A number of polymer nanocomposites based on various urethane-acrylate monomers and nanoparticles of gold, silicon oxides, zinc and/or titanium oxides are obtained, their mechanical (microhardness) properties and wettability (contact angle) are studied. The set of required, biology-related properties of these materials, such as toxicity and sorption of microorganisms are also investigated in order to prove their possible applicability.</p><p><strong>Results and discussion: </strong>The composition of the samples influences their microhardness and the value of contact angle, which means that varying with the monomer and the metallic, oxide nanoparticles composition, we could change these parameters. Besides it, the set of required, biology-related properties of these materials, such as toxicity and sorption of microorganisms were also investigated in order to prove their possible applicability. It was shown that the materials are non-toxic, the adhesion of microorganisms on their surface also could be varied by changing their composition.</p><p><strong>Conclusion: </strong>The presented polymer nanocomposites with different compositions of monomer and the presence of nanoparticles in them are prospective material for a possible bio-application as it is biocompatible, not toxic. The sorption of microorganism could be varied depending on the type of bacterias, the monomer composition, and nanoparticles.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"13 ","pages":"11-22"},"PeriodicalIF":4.9,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c4/21/nsa-13-11.PMC7127852.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37824960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Recent formulation and microencapsulation studies of probucol (PB) using the polymer sodium alginate (SA) and bile acids have shown promising results but PB stability, and pharmacology profiles remain suboptimal. This study aimed to investigate novel polymers for the nano and micro encapsulation of PB, with the anti-inflammatory bile acid ursodeoxycholic acid (UDCA).
Material and methods: Six formulations using three types of polymers were investigated with and without UDCA. The polymers were NM30D, RL30D, and RS30D and they were mixed with SA and PB at set ratios and microencapsulated using oscillating-voltage-mediated nozzle technology coupled with ionic gelation. The microcapsules were examined for physical and biological effects using pancreatic β-cells.
Results and discussion: UDCA addition did not adversely affect the morphology and physical features of the microcapsules. Despite thermal stability remaining unchanged, bile acid incorporation did enhance the electrokinetic stability of the formulation system for NM30D and RL30D polymers. Mechanical stability remained similar in all groups. Enhanced uptake of PB from the microcapsule by pancreatic β-cells was only seen with NM30D-UDCA-intercalated microcapsules and this effect was sustained at both glucose levels of 5.5 and 35.5 mM.
Conclusion: UDCA addition enhanced PB delivery and biological effects in a formulation-dependent manner.
{"title":"Bio Micro-Nano Technologies of Antioxidants Optimised Their Pharmacological and Cellular Effects, ex vivo, in Pancreatic β-Cells.","authors":"Armin Mooranian, Nassim Zamani, Momir Mikov, Svetlana Goločorbin-Kon, Goran Stojanovic, Frank Arfuso, Bozica Kovacevic, Hani Al-Salami","doi":"10.2147/NSA.S212323","DOIUrl":"https://doi.org/10.2147/NSA.S212323","url":null,"abstract":"<p><strong>Introduction: </strong>Recent formulation and microencapsulation studies of probucol (PB) using the polymer sodium alginate (SA) and bile acids have shown promising results but PB stability, and pharmacology profiles remain suboptimal. This study aimed to investigate novel polymers for the nano and micro encapsulation of PB, with the anti-inflammatory bile acid ursodeoxycholic acid (UDCA).</p><p><strong>Material and methods: </strong>Six formulations using three types of polymers were investigated with and without UDCA. The polymers were NM30D, RL30D, and RS30D and they were mixed with SA and PB at set ratios and microencapsulated using oscillating-voltage-mediated nozzle technology coupled with ionic gelation. The microcapsules were examined for physical and biological effects using pancreatic β-cells.</p><p><strong>Results and discussion: </strong>UDCA addition did not adversely affect the morphology and physical features of the microcapsules. Despite thermal stability remaining unchanged, bile acid incorporation did enhance the electrokinetic stability of the formulation system for NM30D and RL30D polymers. Mechanical stability remained similar in all groups. Enhanced uptake of PB from the microcapsule by pancreatic β-cells was only seen with NM30D-UDCA-intercalated microcapsules and this effect was sustained at both glucose levels of 5.5 and 35.5 mM.</p><p><strong>Conclusion: </strong>UDCA addition enhanced PB delivery and biological effects in a formulation-dependent manner.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"13 ","pages":"1-9"},"PeriodicalIF":4.9,"publicationDate":"2020-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/NSA.S212323","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37611619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}