Pub Date : 2021-09-15DOI: 10.1088/2399-7532/ac4ccd
Alecsander N Imhof, J. Domann
This paper presents an analytic model of one dimensional magnetostriction. We show how specific assumptions regarding the symmetry of key micromagnetic energies (magnetocrystalline, magnetoelastic, and Zeeman) reduce a general three-dimensional statistical mechanics model to a one-dimensional form with an exact solution. We additionally provide a useful form of the analytic equations to help ensure numerical accuracy. Numerical results show that the model maintains accuracy over a large range of applied magnetic fields and stress conditions extending well outside those produced in standard laboratory conditions. A comparison to experimental data is performed for several magnetostrictive materials. The model is shown to accurately predict the behavior of Terfenol-D, while two compositions of Galfenol are modeled with varying accuracy. To conclude we discuss what conditions facilitate the description of materials with cubic crystalline anisotropy as transversely isotropic, to achieve peak model performance.
{"title":"Nonlinear one-dimensional constitutive model for magnetostrictive materials","authors":"Alecsander N Imhof, J. Domann","doi":"10.1088/2399-7532/ac4ccd","DOIUrl":"https://doi.org/10.1088/2399-7532/ac4ccd","url":null,"abstract":"This paper presents an analytic model of one dimensional magnetostriction. We show how specific assumptions regarding the symmetry of key micromagnetic energies (magnetocrystalline, magnetoelastic, and Zeeman) reduce a general three-dimensional statistical mechanics model to a one-dimensional form with an exact solution. We additionally provide a useful form of the analytic equations to help ensure numerical accuracy. Numerical results show that the model maintains accuracy over a large range of applied magnetic fields and stress conditions extending well outside those produced in standard laboratory conditions. A comparison to experimental data is performed for several magnetostrictive materials. The model is shown to accurately predict the behavior of Terfenol-D, while two compositions of Galfenol are modeled with varying accuracy. To conclude we discuss what conditions facilitate the description of materials with cubic crystalline anisotropy as transversely isotropic, to achieve peak model performance.","PeriodicalId":18949,"journal":{"name":"Multifunctional Materials","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42486352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01Epub Date: 2021-08-25DOI: 10.1088/2399-7532/ac1b7e
Andy T Clark, Alexander Bennett, Emile Kraus, Katarzyna Pogoda, Andrejs Cēbers, Paul Janmey, Kevin T Turner, Elise A Corbin, Xuemei Cheng
We report tuning of the moduli and surface roughness of magnetorheological elastomers (MREs) by varying applied magnetic field. Ultrasoft MREs are fabricated using a physiologically relevant commercial polymer, Sylgard™ 527, and carbonyl iron powder (CIP). We found that the shear storage modulus, Young's modulus, and root-mean-square surface roughness are increased by ~41×, ~11×, and ~11×, respectively, when subjected to a magnetic field strength of 95.5 kA m-1. Single fit parameter equations are presented that capture the tunability of the moduli and surface roughness as a function of CIP volume fraction and magnetic field strength. These magnetic field-induced changes in the mechanical moduli and surface roughness of MREs are key parameters for biological applications.
本文报道了磁流变弹性体(MREs)的模量和表面粗糙度随外加磁场的变化而变化。Ultrasoft MREs是使用生理学相关的商业聚合物Sylgard™527和羰基铁粉(CIP)制造的。结果表明,当磁场强度为95.5 kA m-1时,材料的剪切存储模量、杨氏模量和表面均方根粗糙度分别提高了~ 41x、~ 11x和~ 11x。提出了单拟合参数方程,该方程捕捉了模量和表面粗糙度作为CIP体积分数和磁场强度的函数的可调性。这些磁场引起的MREs机械模量和表面粗糙度的变化是生物应用的关键参数。
{"title":"Magnetic field tuning of mechanical properties of ultrasoft PDMS-based magnetorheological elastomers for biological applications.","authors":"Andy T Clark, Alexander Bennett, Emile Kraus, Katarzyna Pogoda, Andrejs Cēbers, Paul Janmey, Kevin T Turner, Elise A Corbin, Xuemei Cheng","doi":"10.1088/2399-7532/ac1b7e","DOIUrl":"10.1088/2399-7532/ac1b7e","url":null,"abstract":"<p><p>We report tuning of the moduli and surface roughness of magnetorheological elastomers (MREs) by varying applied magnetic field. Ultrasoft MREs are fabricated using a physiologically relevant commercial polymer, Sylgard<sup>™</sup> 527, and carbonyl iron powder (CIP). We found that the shear storage modulus, Young's modulus, and root-mean-square surface roughness are increased by ~41×, ~11×, and ~11×, respectively, when subjected to a magnetic field strength of 95.5 kA m<sup>-1</sup>. Single fit parameter equations are presented that capture the tunability of the moduli and surface roughness as a function of CIP volume fraction and magnetic field strength. These magnetic field-induced changes in the mechanical moduli and surface roughness of MREs are key parameters for biological applications.</p>","PeriodicalId":18949,"journal":{"name":"Multifunctional Materials","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974181/pdf/nihms-1831792.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10856669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-17DOI: 10.1088/2399-7532/ac1e7d
H. Sahabudeen, Rainhard Machatschek, A. Lendlein
From synthesis through storage to disposal, contact lenses (CLs) interact with different system environments throughout their functional life cycle. To fulfill their therapeutic purpose, they need to exhibit a distinct behavior in each of them, which is achieved through a combination of different material functions. As such, CL materials are a showcase of highly advanced and mass-produced multifunctional biomaterials. Their great relevance and long history mean that a vast amount of work has gone into the implementation of ever more advanced functions. From understanding the approaches used to achieve multifunctionality in CLs, a lot of inspiration for the design of other multifunctional medical devices can be drawn. Therefore, here, we provide a systematic overview of the different functions that are combined in today’s CL materials, together with their quantification methods, chemical design principles and fabrication techniques. We further provide an outlook on the functions that are currently under investigation for the next generation of commercial CLs.
{"title":"Multifunctionality as design principle for contact lens materials","authors":"H. Sahabudeen, Rainhard Machatschek, A. Lendlein","doi":"10.1088/2399-7532/ac1e7d","DOIUrl":"https://doi.org/10.1088/2399-7532/ac1e7d","url":null,"abstract":"From synthesis through storage to disposal, contact lenses (CLs) interact with different system environments throughout their functional life cycle. To fulfill their therapeutic purpose, they need to exhibit a distinct behavior in each of them, which is achieved through a combination of different material functions. As such, CL materials are a showcase of highly advanced and mass-produced multifunctional biomaterials. Their great relevance and long history mean that a vast amount of work has gone into the implementation of ever more advanced functions. From understanding the approaches used to achieve multifunctionality in CLs, a lot of inspiration for the design of other multifunctional medical devices can be drawn. Therefore, here, we provide a systematic overview of the different functions that are combined in today’s CL materials, together with their quantification methods, chemical design principles and fabrication techniques. We further provide an outlook on the functions that are currently under investigation for the next generation of commercial CLs.","PeriodicalId":18949,"journal":{"name":"Multifunctional Materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46203130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-12DOI: 10.1088/2399-7532/ac0060
M. Schwartz, Y. Geng, Hakam Agha, Rijeesh Kizhakidathazhath, Danqing Liu, G. Lenzini, J. Lagerwall
The ability to label and track physical objects that are assets in digital representations of the world is foundational to many complex systems. Simple, yet powerful methods such as bar- and QR-codes have been highly successful, e.g. in the retail space, but the lack of security, limited information content and impossibility of seamless integration with the environment have prevented a large-scale linking of physical objects to their digital twins. This paper proposes to link digital assets created through building information modeling (BIM) with their physical counterparts using fiducial markers with patterns defined by cholesteric spherical reflectors (CSRs), selective retroreflectors produced using liquid crystal self-assembly. The markers leverage the ability of CSRs to encode information that is easily detected and read with computer vision while remaining practically invisible to the human eye. We analyze the potential of a CSR-based infrastructure from the perspective of BIM, critically reviewing the outstanding challenges in applying this new class of functional materials, and we discuss extended opportunities arising in assisting autonomous mobile robots to reliably navigate human-populated environments, as well as in augmented reality.
{"title":"Linking physical objects to their digital twins via fiducial markers designed for invisibility to humans","authors":"M. Schwartz, Y. Geng, Hakam Agha, Rijeesh Kizhakidathazhath, Danqing Liu, G. Lenzini, J. Lagerwall","doi":"10.1088/2399-7532/ac0060","DOIUrl":"https://doi.org/10.1088/2399-7532/ac0060","url":null,"abstract":"The ability to label and track physical objects that are assets in digital representations of the world is foundational to many complex systems. Simple, yet powerful methods such as bar- and QR-codes have been highly successful, e.g. in the retail space, but the lack of security, limited information content and impossibility of seamless integration with the environment have prevented a large-scale linking of physical objects to their digital twins. This paper proposes to link digital assets created through building information modeling (BIM) with their physical counterparts using fiducial markers with patterns defined by cholesteric spherical reflectors (CSRs), selective retroreflectors produced using liquid crystal self-assembly. The markers leverage the ability of CSRs to encode information that is easily detected and read with computer vision while remaining practically invisible to the human eye. We analyze the potential of a CSR-based infrastructure from the perspective of BIM, critically reviewing the outstanding challenges in applying this new class of functional materials, and we discuss extended opportunities arising in assisting autonomous mobile robots to reliably navigate human-populated environments, as well as in augmented reality.","PeriodicalId":18949,"journal":{"name":"Multifunctional Materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43075260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-12DOI: 10.1088/2399-7532/abfb4f
Zakaria Hsain, Zhimin Jiang, J. Pikul
Low-carbon steel is a widely used structural metal that, when fractured, can be repaired with high temperature processes. There are many applications, however, that would benefit from a room-temperature repair process which maintains the steel microstructure and prevents nearby materials and electronics from overheating. This work seeks to enable effective room-temperature healing of steel by understanding how ion transport and electrolyte chemistry influence growth morphology and strength in fractured steel struts repaired with nickel electrodeposition. Experiments and simulations show that pulsed electroplating mitigates diffusion-limited growth to enable smooth and dense nickel deposits that have 4× higher adhesion to steel than nickel deposited by potentiostatic electroplating. By combining pulsed electroplating and electrolyte chemistry selection, fully fractured steel wires could be repaired to achieve up to 69% of their pristine wire strength. Finally, a simple geometric model highlights the advantageous energy and time requirements of electrochemical healing across length scales.
{"title":"Enabling effective electrochemical healing of structural steel","authors":"Zakaria Hsain, Zhimin Jiang, J. Pikul","doi":"10.1088/2399-7532/abfb4f","DOIUrl":"https://doi.org/10.1088/2399-7532/abfb4f","url":null,"abstract":"Low-carbon steel is a widely used structural metal that, when fractured, can be repaired with high temperature processes. There are many applications, however, that would benefit from a room-temperature repair process which maintains the steel microstructure and prevents nearby materials and electronics from overheating. This work seeks to enable effective room-temperature healing of steel by understanding how ion transport and electrolyte chemistry influence growth morphology and strength in fractured steel struts repaired with nickel electrodeposition. Experiments and simulations show that pulsed electroplating mitigates diffusion-limited growth to enable smooth and dense nickel deposits that have 4× higher adhesion to steel than nickel deposited by potentiostatic electroplating. By combining pulsed electroplating and electrolyte chemistry selection, fully fractured steel wires could be repaired to achieve up to 69% of their pristine wire strength. Finally, a simple geometric model highlights the advantageous energy and time requirements of electrochemical healing across length scales.","PeriodicalId":18949,"journal":{"name":"Multifunctional Materials","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42735110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-06DOI: 10.1088/2399-7532/abfeb8
Siyu Zhao, Manni Yang, Yeshu Tan, D. Brett, Guanjie He, I. Parkin
The electrolysis of water is one of the most promising strategies to produce renewable fuels and it is important to develop an energy-conserving, low-cost and easily prepared electrocatalyst for oxygen evolution reaction (OER). In this work, Ni foam supported Co4S3 (Co4S3/NF) was fabricated by a facile one-step approach at room temperature and exhibited excellent OER performance in alkaline media. Specifically, the Co4S3/NF electrocatalysts showed a small overpotential of only 340 mV to reach a current density of 100 mA cm−2 and a Tafel slope of 71.6 mV dec−1 in alkaline media. More importantly, excellent stability was achieved under a constant current density of 100 mA cm−2 for 100 h and the OER performance of the catalyst was improved after 1400 cycles of linear sweep voltammetry tests in alkaline media. Furthermore, the underpinning mechanism of action was studied by measuring the change of valence states for different elements to elucidate the structural evolution and active species during the electrocatalytic process.
电解水是生产可再生燃料最有前景的策略之一,开发一种节能、低成本、易于制备的析氧反应(OER)电催化剂非常重要。在本工作中,在室温下通过简单的一步法制备了泡沫镍负载的Co4S3(Co4S3/NF),并在碱性介质中表现出优异的OER性能。具体而言,Co4S3/NF电催化剂在碱性介质中显示出仅340 mV的小过电位,以达到100 mA cm−2的电流密度和71.6 mV dec−1的Tafel斜率。更重要的是,在100 mA cm−2的恒定电流密度下保持100小时,获得了优异的稳定性,并且在碱性介质中进行1400次线性扫描伏安测试后,催化剂的OER性能得到了改善。此外,通过测量不同元素的价态变化来研究其作用的基础机制,以阐明电催化过程中的结构演变和活性物种。
{"title":"Facile room-temperature synthesis of cobalt sulphide for efficient oxygen evolution reaction","authors":"Siyu Zhao, Manni Yang, Yeshu Tan, D. Brett, Guanjie He, I. Parkin","doi":"10.1088/2399-7532/abfeb8","DOIUrl":"https://doi.org/10.1088/2399-7532/abfeb8","url":null,"abstract":"The electrolysis of water is one of the most promising strategies to produce renewable fuels and it is important to develop an energy-conserving, low-cost and easily prepared electrocatalyst for oxygen evolution reaction (OER). In this work, Ni foam supported Co4S3 (Co4S3/NF) was fabricated by a facile one-step approach at room temperature and exhibited excellent OER performance in alkaline media. Specifically, the Co4S3/NF electrocatalysts showed a small overpotential of only 340 mV to reach a current density of 100 mA cm−2 and a Tafel slope of 71.6 mV dec−1 in alkaline media. More importantly, excellent stability was achieved under a constant current density of 100 mA cm−2 for 100 h and the OER performance of the catalyst was improved after 1400 cycles of linear sweep voltammetry tests in alkaline media. Furthermore, the underpinning mechanism of action was studied by measuring the change of valence states for different elements to elucidate the structural evolution and active species during the electrocatalytic process.","PeriodicalId":18949,"journal":{"name":"Multifunctional Materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44341793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-14DOI: 10.1088/2399-7532/abf337
Zhen Yao, Yaokai Li, Shuixing Li, M. Shi, Hongzheng Chen
By altering the number and position of oxygen and sulfur substitutions, four simple non-fused electron acceptors, PTO-4F, PDO-4F, PDS-4F and PTS-4F, were synthesized via feasible two-step reactions. These four acceptors serve as good molecular models to investigate the heteroatom effects on performance of organic solar cells (OSCs) based on their blends with typical polymer donor PBDB-T. The quantity of intramolecular noncovalent bonds, conformation of the molecules and performance of OSCs can be easily adjusted. Gradually increasing oxygen atoms could influence the intramolecular noncovalent (O⋯S, O⋯H) interactions, backbone planarity, film morphology, and electrical and photovoltaic properties significantly. When replacing O atoms with S atoms, the torsional angle of the backbone increases from 3.5° to 97° owing to the reduction of O⋯S attractive coulomb interaction and/or O⋯H hydrogen bonding interaction. With increasing oxygen atom numbers, the absorption is red-shifted gradually and the energy levels are lifted. As a result, the power conversion efficiency of the device increases from 4.06% (PTS-4F) to 6.81% (PTO-4F). This study provides helpful molecular design guideline for the optimization of simple non-fused acceptors and device performances by finely controlling the weak intramolecular noncovalent interactions and molecular conformations.
{"title":"Conformation tuning of simple non-fused electron acceptors via oxygen and sulfur substitutions and its effects on photovoltaics","authors":"Zhen Yao, Yaokai Li, Shuixing Li, M. Shi, Hongzheng Chen","doi":"10.1088/2399-7532/abf337","DOIUrl":"https://doi.org/10.1088/2399-7532/abf337","url":null,"abstract":"By altering the number and position of oxygen and sulfur substitutions, four simple non-fused electron acceptors, PTO-4F, PDO-4F, PDS-4F and PTS-4F, were synthesized via feasible two-step reactions. These four acceptors serve as good molecular models to investigate the heteroatom effects on performance of organic solar cells (OSCs) based on their blends with typical polymer donor PBDB-T. The quantity of intramolecular noncovalent bonds, conformation of the molecules and performance of OSCs can be easily adjusted. Gradually increasing oxygen atoms could influence the intramolecular noncovalent (O⋯S, O⋯H) interactions, backbone planarity, film morphology, and electrical and photovoltaic properties significantly. When replacing O atoms with S atoms, the torsional angle of the backbone increases from 3.5° to 97° owing to the reduction of O⋯S attractive coulomb interaction and/or O⋯H hydrogen bonding interaction. With increasing oxygen atom numbers, the absorption is red-shifted gradually and the energy levels are lifted. As a result, the power conversion efficiency of the device increases from 4.06% (PTS-4F) to 6.81% (PTO-4F). This study provides helpful molecular design guideline for the optimization of simple non-fused acceptors and device performances by finely controlling the weak intramolecular noncovalent interactions and molecular conformations.","PeriodicalId":18949,"journal":{"name":"Multifunctional Materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45843406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-06DOI: 10.1088/2399-7532/abf158
Reza Pejman, E. C. Kumbur, A. Najafi
Structural battery composite is a new class of multifunctional lightweight materials with profound potential in harvesting electrical energy in the form of chemical energy, while simultaneously providing structural integrity to the system. In this study, we present a multi-physics design optimization framework for structural battery. The objective of the optimization framework is to change the geometrical features and material types of the constituents in a composite lamina to maximize the allowable charging current for a constant rate of charging. In this optimization framework, three sets of inequality constraints are defined to keep the structural battery lightweight, and make sure that the amount of induced stress and generated heat due to the intercalation process remains small. We have also considered several design parameters such as geometrical features of the composite lamina, volume fractions of fibers and LiFePO4 particles, and material types of constituents. The proposed framework includes a gradient-based design optimization method with the ability to perform the optimization process under any source of uncertainty in the material properties, manufacturing process, operating conditions, etc. It also contains a Bayesian design optimization scheme to select the best candidate for the materials of the constituents in a structural battery. We also develop an analytical sensitivity analysis of several electrochemical/thermal/structural response metrics with respect to a few geometrical and material design parameters of a composite lamina. The results show that by using the proposed optimization framework, we are able to maximize the allowable charging current for a constant rate of charging in the optimized solution compared to the considered reference designs while satisfying all of the prescribed constraints. Furthermore, we increase the design reliability of structural battery by at least 45% compared to the deterministic optimized solution. Finally, we find the optimized material types for the fiber and matrix in a structural battery.
{"title":"Multi-physics design optimization of structural battery","authors":"Reza Pejman, E. C. Kumbur, A. Najafi","doi":"10.1088/2399-7532/abf158","DOIUrl":"https://doi.org/10.1088/2399-7532/abf158","url":null,"abstract":"Structural battery composite is a new class of multifunctional lightweight materials with profound potential in harvesting electrical energy in the form of chemical energy, while simultaneously providing structural integrity to the system. In this study, we present a multi-physics design optimization framework for structural battery. The objective of the optimization framework is to change the geometrical features and material types of the constituents in a composite lamina to maximize the allowable charging current for a constant rate of charging. In this optimization framework, three sets of inequality constraints are defined to keep the structural battery lightweight, and make sure that the amount of induced stress and generated heat due to the intercalation process remains small. We have also considered several design parameters such as geometrical features of the composite lamina, volume fractions of fibers and LiFePO4 particles, and material types of constituents. The proposed framework includes a gradient-based design optimization method with the ability to perform the optimization process under any source of uncertainty in the material properties, manufacturing process, operating conditions, etc. It also contains a Bayesian design optimization scheme to select the best candidate for the materials of the constituents in a structural battery. We also develop an analytical sensitivity analysis of several electrochemical/thermal/structural response metrics with respect to a few geometrical and material design parameters of a composite lamina. The results show that by using the proposed optimization framework, we are able to maximize the allowable charging current for a constant rate of charging in the optimized solution compared to the considered reference designs while satisfying all of the prescribed constraints. Furthermore, we increase the design reliability of structural battery by at least 45% compared to the deterministic optimized solution. Finally, we find the optimized material types for the fiber and matrix in a structural battery.","PeriodicalId":18949,"journal":{"name":"Multifunctional Materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47351999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-22DOI: 10.1088/2399-7532/abf0f9
C. H. Keck, N. Rommelfanger, Zihao Ou, Guosong Hong
Opsins with high sensitivity are desired to reduce dependence on optical fibers and enable deep-brain optogenetic stimulation through the intact scalp and skull, while minimizing brain tissue heating and the associated biasing of neural activity. While optimized opsin engineering has produced ultrasensitive and red-shifted opsins suitable for transcranial optogenetic stimulation, further improvements in sensitivity are throttled by biological limitations. Nanostructures are capable of generating near-field intensity enhancements of over 104, but thus far nanomaterials have not been applied to amplify local light intensity for optogenetic applications. In this manuscript, we propose the use of bowtie nanoantennas for local enhancement of 470 nm light to sensitize channelrhodopsin (ChR2) to low light intensities. We begin with a comparison of the near-field intensity enhancement offered by different metals at 470 nm, before selecting aluminum as the optimal material. Next, we tune the geometric parameters of aluminum bowtie nanoantennas to maximize the intensity enhancement at 470 nm. We further optimize enhancement by constructing bowtie nanoantenna arrays inspired by patterns occurring in biology, obtaining intensity enhancements up to a factor of 5000. Monte Carlo simulations suggest that transcranial 470 nm illumination of only 50 mW mm−2 is capable of stimulating bowtie-sensitized ChR2 in the deep brain (∼5 mm) in mice, enabling minimally invasive deep-brain stimulation with opsins found in the traditional optogenetic toolbox. This computation-guided optical antenna engineering approach opens opportunities for designing multifunctional materials for enhancing the efficiency of optogenetic neuromodulation, optical neural activity imaging, and highly localized electrical microstimulation in the brain.
高灵敏度的视蛋白可以减少对光纤的依赖,并通过完整的头皮和颅骨实现脑深部光遗传刺激,同时最大限度地减少脑组织加热和相关的神经活动偏倚。虽然优化的视蛋白工程已经产生了适合经颅光遗传刺激的超灵敏和红移视蛋白,但灵敏度的进一步提高受到生物学限制的限制。纳米结构能够产生超过104的近场强度增强,但到目前为止,纳米材料还没有应用于光遗传学应用中放大局部光强度。在本文中,我们建议使用领结纳米天线对470 nm光进行局部增强,以使通道视紫红质(ChR2)对低光强度敏感。在选择铝作为最佳材料之前,我们首先比较了不同金属在470nm处提供的近场强度增强。接下来,我们调整了铝领结纳米天线的几何参数,以最大限度地提高470 nm处的强度。我们通过构建受生物学模式启发的领结纳米天线阵列进一步优化增强,获得高达5000倍的强度增强。蒙特卡罗模拟表明,仅50 mW mm - 2的经颅470 nm照明能够刺激小鼠脑深部(~ 5 mm)的领结致敏ChR2,从而实现传统光遗传学工具箱中发现的视蛋白的微创脑深部刺激。这种计算引导的光学天线工程方法为设计多功能材料提供了机会,可以提高光遗传神经调节、光学神经活动成像和大脑高度局部电微刺激的效率。
{"title":"Bioinspired nanoantennas for opsin sensitization in optogenetic applications: a theoretical investigation","authors":"C. H. Keck, N. Rommelfanger, Zihao Ou, Guosong Hong","doi":"10.1088/2399-7532/abf0f9","DOIUrl":"https://doi.org/10.1088/2399-7532/abf0f9","url":null,"abstract":"Opsins with high sensitivity are desired to reduce dependence on optical fibers and enable deep-brain optogenetic stimulation through the intact scalp and skull, while minimizing brain tissue heating and the associated biasing of neural activity. While optimized opsin engineering has produced ultrasensitive and red-shifted opsins suitable for transcranial optogenetic stimulation, further improvements in sensitivity are throttled by biological limitations. Nanostructures are capable of generating near-field intensity enhancements of over 104, but thus far nanomaterials have not been applied to amplify local light intensity for optogenetic applications. In this manuscript, we propose the use of bowtie nanoantennas for local enhancement of 470 nm light to sensitize channelrhodopsin (ChR2) to low light intensities. We begin with a comparison of the near-field intensity enhancement offered by different metals at 470 nm, before selecting aluminum as the optimal material. Next, we tune the geometric parameters of aluminum bowtie nanoantennas to maximize the intensity enhancement at 470 nm. We further optimize enhancement by constructing bowtie nanoantenna arrays inspired by patterns occurring in biology, obtaining intensity enhancements up to a factor of 5000. Monte Carlo simulations suggest that transcranial 470 nm illumination of only 50 mW mm−2 is capable of stimulating bowtie-sensitized ChR2 in the deep brain (∼5 mm) in mice, enabling minimally invasive deep-brain stimulation with opsins found in the traditional optogenetic toolbox. This computation-guided optical antenna engineering approach opens opportunities for designing multifunctional materials for enhancing the efficiency of optogenetic neuromodulation, optical neural activity imaging, and highly localized electrical microstimulation in the brain.","PeriodicalId":18949,"journal":{"name":"Multifunctional Materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44058581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-22DOI: 10.1088/2399-7532/abf0fa
Islam Zmerli, J. Michel, A. Makky
Polydopamine (PDA) is a mussel-inspired and a melanin-mimicking material that has attracted considerable attention during the recent years. This ‘polymer’ displays diverse promising properties, like its simple preparation procedures, easy functionalization, free radicals scavenging activity, outstanding photothermal and photoacoustic performance, and its great biocompatibility and biodegradability. A remarkable feature of PDA is its ability to form colloidal nanosized particles or nanoscaled coatings, allowing the preparation of various nanoparticulate structures. The first studies into PDA mainly explored the polymerization mechanisms of this material and the development of controlled preparation protocols. Later works focused on the investigation of these nanomaterials for the design and development of multifunctional platforms and their implementation in multiple biomedical fields, particularly in cancer treatment and bio-imaging. The purpose of this review is to (a) give a detailed overview about the synthesis methods of PDA and the formation mechanisms proposed so far in the literature, (b) outline the remarkable physico-chemical and functional properties of PDA nanomaterials, and (c) summarize the application of PDA-derived nanosystems in cancer theranostics and particularly in drug delivery and light-mediated cancer therapy with a special emphasis on the different strategies that can be used for the design of smart nanosystems with bimodal photothermal/photodynamic properties. Finally, a comparison of physicochemical properties and biomedical applications between PDA and other catecholamine derivatives is made.
{"title":"Multifunctional polydopamine-based nanoparticles: synthesis, physico-chemical properties and applications for bimodal photothermal/photodynamic therapy of cancer","authors":"Islam Zmerli, J. Michel, A. Makky","doi":"10.1088/2399-7532/abf0fa","DOIUrl":"https://doi.org/10.1088/2399-7532/abf0fa","url":null,"abstract":"Polydopamine (PDA) is a mussel-inspired and a melanin-mimicking material that has attracted considerable attention during the recent years. This ‘polymer’ displays diverse promising properties, like its simple preparation procedures, easy functionalization, free radicals scavenging activity, outstanding photothermal and photoacoustic performance, and its great biocompatibility and biodegradability. A remarkable feature of PDA is its ability to form colloidal nanosized particles or nanoscaled coatings, allowing the preparation of various nanoparticulate structures. The first studies into PDA mainly explored the polymerization mechanisms of this material and the development of controlled preparation protocols. Later works focused on the investigation of these nanomaterials for the design and development of multifunctional platforms and their implementation in multiple biomedical fields, particularly in cancer treatment and bio-imaging. The purpose of this review is to (a) give a detailed overview about the synthesis methods of PDA and the formation mechanisms proposed so far in the literature, (b) outline the remarkable physico-chemical and functional properties of PDA nanomaterials, and (c) summarize the application of PDA-derived nanosystems in cancer theranostics and particularly in drug delivery and light-mediated cancer therapy with a special emphasis on the different strategies that can be used for the design of smart nanosystems with bimodal photothermal/photodynamic properties. Finally, a comparison of physicochemical properties and biomedical applications between PDA and other catecholamine derivatives is made.","PeriodicalId":18949,"journal":{"name":"Multifunctional Materials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48756027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}