Anastasiia V Shabalina, Valeriy A Kozlov, Ivan A Popov, Sergey V Gudkov
Development of new antibacterial materials for solving biomedical problems is an extremely important and very urgent task. This review aims to summarize recent articles (from the last five and mostly the last three years) on the nanoparticle/polymer composites for biomedical applications. Articles on polymeric nanoparticles (NPs) and hydrogel-based systems were not reviewed, since we focused our attention mostly on the composites of polymeric matrix with at least one inorganic filler in the form of NPs. The fields of application of newly developed antibacterial NPs/polymer composites are described, along with their composition and synthetic approaches that allow researchers to succeed in preparing effective composite materials for medical and healthcare purposes.
{"title":"A Review on Recently Developed Antibacterial Composites of Inorganic Nanoparticles and Non-Hydrogel Polymers for Biomedical Applications.","authors":"Anastasiia V Shabalina, Valeriy A Kozlov, Ivan A Popov, Sergey V Gudkov","doi":"10.3390/nano14211753","DOIUrl":"10.3390/nano14211753","url":null,"abstract":"<p><p>Development of new antibacterial materials for solving biomedical problems is an extremely important and very urgent task. This review aims to summarize recent articles (from the last five and mostly the last three years) on the nanoparticle/polymer composites for biomedical applications. Articles on polymeric nanoparticles (NPs) and hydrogel-based systems were not reviewed, since we focused our attention mostly on the composites of polymeric matrix with at least one inorganic filler in the form of NPs. The fields of application of newly developed antibacterial NPs/polymer composites are described, along with their composition and synthetic approaches that allow researchers to succeed in preparing effective composite materials for medical and healthcare purposes.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Indium phosphide (InP) is widely utilized in the fields of electronics and photovoltaics due to its high electron mobility and high photoelectric conversion efficiency. Strain engineering has been extensively employed in semiconductor devices to adjust physical properties and enhance material performance. In the present work, the band structure and electronic effective mass of InP under different strains are investigated by ab initio calculations. The results show that InP consistently exhibits a direct bandgap under different strains. Both uniaxial strain and biaxial tensile strain exhibit linear effects on the change in bandgap values. However, the bandgap of InP is significantly influenced by uniaxial compressive strain and biaxial tensile strain, respectively. The study of the InP bandgap under different hydrostatic pressures reveals that InP becomes metallic when the pressure is less than -7 GPa. Furthermore, strain also leads to changes in effective mass and the anisotropy of electron mobility. The studies of electronic properties under different strain types are of great significance for broadening the application of InP devices.
磷化铟(InP)具有高电子迁移率和高光电转换效率,因此被广泛应用于电子和光伏领域。应变工程已被广泛应用于半导体器件中,以调整物理特性和提高材料性能。本研究通过 ab initio 计算研究了不同应变下 InP 的能带结构和电子有效质量。结果表明,在不同应变下,InP 始终表现出直接带隙。单轴应变和双轴拉伸应变对带隙值的变化都呈现线性影响。然而,InP 的带隙分别受到单轴压缩应变和双轴拉伸应变的显著影响。对不同静水压力下 InP 带隙的研究表明,当压力小于 -7 GPa 时,InP 会变成金属。此外,应变还会导致有效质量和电子迁移率的各向异性发生变化。研究不同应变类型下的电子特性对于扩大 InP 器件的应用范围具有重要意义。
{"title":"First-Principles Study on Strain-Induced Modulation of Electronic Properties in Indium Phosphide.","authors":"Libin Yan, Zhongcun Chen, Yurong Bai, Wenbo Liu, Huan He, Chaohui He","doi":"10.3390/nano14211756","DOIUrl":"10.3390/nano14211756","url":null,"abstract":"<p><p>Indium phosphide (InP) is widely utilized in the fields of electronics and photovoltaics due to its high electron mobility and high photoelectric conversion efficiency. Strain engineering has been extensively employed in semiconductor devices to adjust physical properties and enhance material performance. In the present work, the band structure and electronic effective mass of InP under different strains are investigated by ab initio calculations. The results show that InP consistently exhibits a direct bandgap under different strains. Both uniaxial strain and biaxial tensile strain exhibit linear effects on the change in bandgap values. However, the bandgap of InP is significantly influenced by uniaxial compressive strain and biaxial tensile strain, respectively. The study of the InP bandgap under different hydrostatic pressures reveals that InP becomes metallic when the pressure is less than -7 GPa. Furthermore, strain also leads to changes in effective mass and the anisotropy of electron mobility. The studies of electronic properties under different strain types are of great significance for broadening the application of InP devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547734/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hagar S Bahlol, Jiawen Li, Jiamin Deng, Mohamed F Foda, Heyou Han
Food safety has recently become a widespread concern among consumers. Surface-enhanced Raman scattering (SERS) is a rapidly developing novel spectroscopic analysis technique with high sensitivity, an ability to provide molecular fingerprint spectra, and resistance to photobleaching, offering broad application prospects in rapid trace detection. With the interdisciplinary development of nanomaterials and biotechnology, the detection performance of SERS biosensors has improved significantly. This review describes the advantages of nanomaterial-based SERS detection technology and SERS's latest applications in the detection of biological and chemical contaminants, the identification of foodborne pathogens, the authentication and quality control of food, and the safety assessment of food packaging materials. Finally, the challenges and prospects of constructing and applying nanomaterial-based SERS sensing platforms in the field of food safety detection are discussed with the aim of early detection and ultimate control of foodborne diseases.
{"title":"Recent Progress in Nanomaterial-Based Surface-Enhanced Raman Spectroscopy for Food Safety Detection.","authors":"Hagar S Bahlol, Jiawen Li, Jiamin Deng, Mohamed F Foda, Heyou Han","doi":"10.3390/nano14211750","DOIUrl":"10.3390/nano14211750","url":null,"abstract":"<p><p>Food safety has recently become a widespread concern among consumers. Surface-enhanced Raman scattering (SERS) is a rapidly developing novel spectroscopic analysis technique with high sensitivity, an ability to provide molecular fingerprint spectra, and resistance to photobleaching, offering broad application prospects in rapid trace detection. With the interdisciplinary development of nanomaterials and biotechnology, the detection performance of SERS biosensors has improved significantly. This review describes the advantages of nanomaterial-based SERS detection technology and SERS's latest applications in the detection of biological and chemical contaminants, the identification of foodborne pathogens, the authentication and quality control of food, and the safety assessment of food packaging materials. Finally, the challenges and prospects of constructing and applying nanomaterial-based SERS sensing platforms in the field of food safety detection are discussed with the aim of early detection and ultimate control of foodborne diseases.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547707/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
András Bojtor, Dávid Krisztián, Ferenc Korsós, Sándor Kollarics, Gábor Paráda, Márton Kollár, Endre Horváth, Xavier Mettan, Bence G Márkus, László Forró, Ferenc Simon
The measurement and description of the charge-carrier lifetime (τc) is crucial for the wide-ranging applications of lead-halide perovskites. We present time-resolved microwave-detected photoconductivity decay (TRMCD) measurements and a detailed analysis of the possible recombination mechanisms including trap-assisted, radiative, and Auger recombination. We prove that performing injection-dependent measurement is crucial in identifying the recombination mechanism. We present temperature and injection level dependent measurements in CsPbBr3, which is the most common inorganic lead-halide perovskite. In this material, we observe the dominance of charge-carrier trapping, which results in ultra-long charge-carrier lifetimes. Although charge trapping can limit the effectiveness of materials in photovoltaic applications, it also offers significant advantages for various alternative uses, including delayed and persistent photodetection, charge-trap memory, afterglow light-emitting diodes, quantum information storage, and photocatalytic activity.
{"title":"Dynamics of Photoinduced Charge Carriers in Metal-Halide Perovskites.","authors":"András Bojtor, Dávid Krisztián, Ferenc Korsós, Sándor Kollarics, Gábor Paráda, Márton Kollár, Endre Horváth, Xavier Mettan, Bence G Márkus, László Forró, Ferenc Simon","doi":"10.3390/nano14211742","DOIUrl":"10.3390/nano14211742","url":null,"abstract":"<p><p>The measurement and description of the charge-carrier lifetime (τc) is crucial for the wide-ranging applications of lead-halide perovskites. We present time-resolved microwave-detected photoconductivity decay (TRMCD) measurements and a detailed analysis of the possible recombination mechanisms including trap-assisted, radiative, and Auger recombination. We prove that performing injection-dependent measurement is crucial in identifying the recombination mechanism. We present temperature and injection level dependent measurements in CsPbBr<sub>3</sub>, which is the most common inorganic lead-halide perovskite. In this material, we observe the dominance of charge-carrier trapping, which results in ultra-long charge-carrier lifetimes. Although charge trapping can limit the effectiveness of materials in photovoltaic applications, it also offers significant advantages for various alternative uses, including delayed and persistent photodetection, charge-trap memory, afterglow light-emitting diodes, quantum information storage, and photocatalytic activity.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The escalating release of multi-walled carbon nanotubes (MWCNTs) into the environment has raised concerns due to their potential ecotoxicological impacts. However, their combined phytotoxicity with heavy metals such as copper (Cu) is still unclear. This study investigated the individual and combined toxic effects of MWCNTs (MWCNT, MWCNT-OH, and MWCNT-COOH) and Cu2+ on ryegrass (Lolium multiflorum), uniquely considering different addition orders. The results show that Cu severely inhibited the growth of ryegrass while MWCNTs exhibited a hormesis effect on ryegrass. When MWCNT and Cu were combined, the malondialdehyde (MDA) content in ryegrass showed a 32.39% increase at 20 mg/L MWCNT exposure, suggesting reduced oxidative stress. However, at the higher concentration of 1000 mg/L, it led to a significant 75.22% reduction in ryegrass biomass. MWCNT-COOH had the most pronounced effect, reducing the total chlorophyll content by 39.76% compared to unmodified MWCNT and by 10.67% compared to MWCNT-OH (500 mg/L). Additionally, pre-induced MWCNTs might alleviate the Cu in the plant by 23.08-35.38% through adsorption in the nutrient solution. Small molecule organic acids and amino acids primarily mediated the response to environmental stress in ryegrass. This research provides crucial insights into understanding the complex interactions of MWCNT and Cu2+ and their combined effects on plant ecosystems.
{"title":"Combined Toxicity of Multi-Walled Carbon Nanotubes and Cu<sup>2+</sup> on the Growth of Ryegrass: Effect of Surface Modification, Dose, and Exposure Time Pattern.","authors":"Wenwen Xie, Cheng Peng, Weiping Wang, Xiaoyi Chen, Jiaqi Tan, Wei Zhang","doi":"10.3390/nano14211746","DOIUrl":"10.3390/nano14211746","url":null,"abstract":"<p><p>The escalating release of multi-walled carbon nanotubes (MWCNTs) into the environment has raised concerns due to their potential ecotoxicological impacts. However, their combined phytotoxicity with heavy metals such as copper (Cu) is still unclear. This study investigated the individual and combined toxic effects of MWCNTs (MWCNT, MWCNT-OH, and MWCNT-COOH) and Cu<sup>2+</sup> on ryegrass (<i>Lolium multiflorum</i>), uniquely considering different addition orders. The results show that Cu severely inhibited the growth of ryegrass while MWCNTs exhibited a hormesis effect on ryegrass. When MWCNT and Cu were combined, the malondialdehyde (MDA) content in ryegrass showed a 32.39% increase at 20 mg/L MWCNT exposure, suggesting reduced oxidative stress. However, at the higher concentration of 1000 mg/L, it led to a significant 75.22% reduction in ryegrass biomass. MWCNT-COOH had the most pronounced effect, reducing the total chlorophyll content by 39.76% compared to unmodified MWCNT and by 10.67% compared to MWCNT-OH (500 mg/L). Additionally, pre-induced MWCNTs might alleviate the Cu in the plant by 23.08-35.38% through adsorption in the nutrient solution. Small molecule organic acids and amino acids primarily mediated the response to environmental stress in ryegrass. This research provides crucial insights into understanding the complex interactions of MWCNT and Cu<sup>2+</sup> and their combined effects on plant ecosystems.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nikoletta Tsiarta, Wolfgang Gernjak, Hrvoje Cajner, Gordana Matijašić, Lidija Ćurković
Batch heterogeneous catalytic ozonation experiments were performed using commercial and synthesized nanoparticles as catalysts in aqueous ozone. The transferred ozone dose (TOD) ranged from 0 to 150 μM, and nanoparticles were added in concentrations between 0 and 1.5 g L-1, with all experiments conducted at 20 °C and a total volume of 240 mL. A Ce-doped TiO2 catalyst (1% molar ratio of Ce/Ti) was synthesized via the sol-gel method. Response surface methodology (RSM) was applied to identify the most significant factors affecting the removal of selected pharmaceuticals, with TOD emerging as the most critical variable. Higher TOD resulted in greater removal efficiencies. Furthermore, it was found that the commercially available metal oxides α-Al2O3, Mn2O3, TiO2, and CeO2, as well as the synthesized CeTiOx, did not increase the catalytic activity of ozone during the degradation of ibuprofen (IBF) and para-chlorobenzoic acid (pCBA). Carbamazepine (CBZ) and diclofenac (DCF) are compounds susceptible to ozone oxidation, thus their complete degradation at 150 μM transferred ozone dose was attained. The limited catalytic effect was attributed to the rapid consumption of ozone within the first minute of reaction, as well as the saturation of catalyst active sites by water molecules, which inhibited effective ozone adsorption and subsequent hydroxyl radical generation (●OH).
以商用纳米粒子和合成纳米粒子为催化剂,在臭氧水溶液中进行了批量异相催化臭氧实验。臭氧转移剂量(TOD)为 0 至 150 μM,纳米颗粒的添加浓度为 0 至 1.5 g L-1,所有实验均在 20 °C 和 240 mL 总体积下进行。通过溶胶-凝胶法合成了掺杂 Ce 的 TiO2 催化剂(Ce/Ti 摩尔比为 1%)。应用响应面法(RSM)确定了影响选定药物去除率的最重要因素,其中 TOD 是最关键的变量。TOD 越高,去除效率越高。此外,研究还发现,在降解布洛芬(IBF)和对氯苯甲酸(pCBA)的过程中,市售的金属氧化物 α-Al2O3、Mn2O3、TiO2 和 CeO2 以及合成的 CeTiOx 并没有提高臭氧的催化活性。卡马西平(CBZ)和双氯芬酸(DCF)是易被臭氧氧化的化合物,因此它们在 150 μM 的臭氧转移剂量下就能完全降解。催化效果有限的原因是臭氧在反应的第一分钟内迅速消耗,以及催化剂活性位点被水分子饱和,从而抑制了臭氧的有效吸附和随后羟基自由基的生成(●OH)。
{"title":"Heterogeneous Catalytic Ozonation of Pharmaceuticals: Optimization of the Process by Response Surface Methodology.","authors":"Nikoletta Tsiarta, Wolfgang Gernjak, Hrvoje Cajner, Gordana Matijašić, Lidija Ćurković","doi":"10.3390/nano14211747","DOIUrl":"10.3390/nano14211747","url":null,"abstract":"<p><p>Batch heterogeneous catalytic ozonation experiments were performed using commercial and synthesized nanoparticles as catalysts in aqueous ozone. The transferred ozone dose (TOD) ranged from 0 to 150 μM, and nanoparticles were added in concentrations between 0 and 1.5 g L<sup>-1</sup>, with all experiments conducted at 20 °C and a total volume of 240 mL. A Ce-doped TiO<sub>2</sub> catalyst (1% molar ratio of Ce/Ti) was synthesized via the sol-gel method. Response surface methodology (RSM) was applied to identify the most significant factors affecting the removal of selected pharmaceuticals, with TOD emerging as the most critical variable. Higher TOD resulted in greater removal efficiencies. Furthermore, it was found that the commercially available metal oxides α-Al<sub>2</sub>O<sub>3</sub>, Mn<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, and CeO<sub>2</sub>, as well as the synthesized CeTiO<sub>x</sub>, did not increase the catalytic activity of ozone during the degradation of ibuprofen (IBF) and para-chlorobenzoic acid (pCBA). Carbamazepine (CBZ) and diclofenac (DCF) are compounds susceptible to ozone oxidation, thus their complete degradation at 150 μM transferred ozone dose was attained. The limited catalytic effect was attributed to the rapid consumption of ozone within the first minute of reaction, as well as the saturation of catalyst active sites by water molecules, which inhibited effective ozone adsorption and subsequent hydroxyl radical generation (<sup>●</sup>OH).</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547524/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Owing to a lack of methodology for rationally and selectively synthesizing twisted nanographenes, it is usually inevitable that we obtain nanographenes as a mixture with various geometries, such as unidirectionally twisted, alternatively twisted, randomly twisted, and even wavy structures, reflecting the high activation barriers among them. Otherwise, they are interconvertible if the barriers are low enough such that only averaged properties can be observed under a thermal equilibrium. Recently, we reported on a double-twisted nanographene containing four [6]helicene units within the skeleton. In this paper, we discuss the robust conformational stability of the nanographene, both experimentally and computationally. The results indicate that the nanographene could only be racemized at temperatures exceeding 200 °C, and the first flip of one of the four [6]helicene units is the rate-degerming step.
由于缺乏合理地、有选择地合成扭曲纳米石墨烯的方法,我们通常不可避免地获得具有各种几何形状的纳米石墨烯混合物,如单向扭曲、交替扭曲、随机扭曲,甚至波浪形结构,这反映了它们之间的高活化障碍。否则,如果壁垒足够低,在热平衡下只能观察到平均特性,那么它们是可以相互转换的。最近,我们报道了一种双扭曲纳米石墨烯,其骨架中含有四个 [6]helicene 单元。在本文中,我们通过实验和计算讨论了这种纳米石墨烯的强大构象稳定性。结果表明,该纳米石墨烯只有在温度超过 200 °C 时才能发生外消旋化,而四个 [6] 螺旋烯单元中一个单元的首次翻转是降速步骤。
{"title":"Twisted Nanographenes with Robust Conformational Stability.","authors":"Penghui Song, Yoshifumi Hashikawa, Chaolumen","doi":"10.3390/nano14211737","DOIUrl":"10.3390/nano14211737","url":null,"abstract":"<p><p>Owing to a lack of methodology for rationally and selectively synthesizing twisted nanographenes, it is usually inevitable that we obtain nanographenes as a mixture with various geometries, such as unidirectionally twisted, alternatively twisted, randomly twisted, and even wavy structures, reflecting the high activation barriers among them. Otherwise, they are interconvertible if the barriers are low enough such that only averaged properties can be observed under a thermal equilibrium. Recently, we reported on a double-twisted nanographene containing four [6]helicene units within the skeleton. In this paper, we discuss the robust conformational stability of the nanographene, both experimentally and computationally. The results indicate that the nanographene could only be racemized at temperatures exceeding 200 °C, and the first flip of one of the four [6]helicene units is the rate-degerming step.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547671/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrii Vovk, Dariia Popadiuk, Bogdan Postolnyi, Sergey Bunyaev, Pavel Štrichovanec, José Ángel Pardo, Pedro Antonio Algarabel, Olga Salyuk, Vladislav Korenivski, Gleb N Kakazei, Vladimir O Golub, João Pedro Araujo
The structure and magnetic properties of epitaxial Heusler alloy films (Co2FeGe) deposited on MgO (100) substrates were investigated. Films of 60 nm thickness were prepared by magnetron co-sputtering at different substrate temperatures (TS), and those deposited at room temperature were later annealed at various temperatures (Ta). X-ray diffraction confirmed (001) [110] Co2FeGe || (001) [100] MgO epitaxial growth. A slight tetragonal distortion of the film cubic structure was found in all samples due to the tensile stress induced by the mismatch of the lattice parameters between Co2FeGe and the substrate. Improved quality of epitaxy and the formation of an atomically ordered L21 structure were observed for films processed at elevated temperatures. The values of magnetization increased with increasing TS and Ta. Ferromagnetic resonance (FMR) studies revealed 45° in-plane rotation of the easy anisotropy axis direction depending on the degree of the tetragonal distortion. The film annealed at Ta = 573 K possesses the minimal FMR linewidth and magnetic damping, while both these parameters increase for another TS and Ta. Overall, this study underscores the crucial role of thermal treatment in optimizing the magnetic properties of Co2FeGe films for potential spintronic and magnonic applications.
研究了沉积在氧化镁(100)基底上的外延 Heusler 合金薄膜(Co2FeGe)的结构和磁性能。在不同的基底温度(TS)下通过磁控共溅射制备了厚度为 60 nm 的薄膜,在室温下沉积的薄膜随后在不同的温度(Ta)下退火。X 射线衍射证实了 (001) [110] Co2FeGe || (001) [100] MgO 的外延生长。由于 Co2FeGe 和基底之间的晶格参数不匹配所引起的拉伸应力,所有样品的薄膜立方结构都出现了轻微的四方畸变。在高温下加工的薄膜外延质量提高,并形成了原子有序的 L21 结构。磁化值随着 TS 和 Ta 的增加而增加。铁磁共振 (FMR) 研究表明,易各向异性轴方向的 45° 平面内旋转取决于四方畸变的程度。在 Ta = 573 K 下退火的薄膜具有最小的 FMR 线宽和磁阻尼,而随着 TS 和 Ta 的增加,这两个参数都会增加。总之,这项研究强调了热处理在优化 Co2FeGe 薄膜磁性能方面的关键作用,可用于潜在的自旋电子和磁性应用。
{"title":"Effect of Thermal Processing on the Structural and Magnetic Properties of Epitaxial Co<sub>2</sub>FeGe Films.","authors":"Andrii Vovk, Dariia Popadiuk, Bogdan Postolnyi, Sergey Bunyaev, Pavel Štrichovanec, José Ángel Pardo, Pedro Antonio Algarabel, Olga Salyuk, Vladislav Korenivski, Gleb N Kakazei, Vladimir O Golub, João Pedro Araujo","doi":"10.3390/nano14211745","DOIUrl":"10.3390/nano14211745","url":null,"abstract":"<p><p>The structure and magnetic properties of epitaxial Heusler alloy films (Co<sub>2</sub>FeGe) deposited on MgO (100) substrates were investigated. Films of 60 nm thickness were prepared by magnetron co-sputtering at different substrate temperatures (T<sub>S</sub>), and those deposited at room temperature were later annealed at various temperatures (T<sub>a</sub>). X-ray diffraction confirmed (001) [110] Co<sub>2</sub>FeGe || (001) [100] MgO epitaxial growth. A slight tetragonal distortion of the film cubic structure was found in all samples due to the tensile stress induced by the mismatch of the lattice parameters between Co<sub>2</sub>FeGe and the substrate. Improved quality of epitaxy and the formation of an atomically ordered L2<sub>1</sub> structure were observed for films processed at elevated temperatures. The values of magnetization increased with increasing T<sub>S</sub> and T<sub>a</sub>. Ferromagnetic resonance (FMR) studies revealed 45° in-plane rotation of the easy anisotropy axis direction depending on the degree of the tetragonal distortion. The film annealed at T<sub>a</sub> = 573 K possesses the minimal FMR linewidth and magnetic damping, while both these parameters increase for another T<sub>S</sub> and T<sub>a</sub>. Overall, this study underscores the crucial role of thermal treatment in optimizing the magnetic properties of Co<sub>2</sub>FeGe films for potential spintronic and magnonic applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547484/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study highlights the impact of low amounts of MoS2 quantities on composite performance by examining the effects of ultrasonication exfoliated MoS2 at different loadings (0.1-0.5 wt%) on the mechanical and tribological parameters of epoxy composites. Even at low concentrations, the ultrasonication and exfoliation procedures greatly improve the dispersion of MoS2 in the epoxy matrix, enabling its efficient incorporation into the tribofilm during sliding. Optimum mechanical properties were demonstrated by the MoS2/epoxy composite at 0.3 wt%, including a modulus of elasticity of 0.86 GPa, an ultimate tensile strength of 61.88 MPa, and a hardness of 88.0 Shore D, representing improvements of 61.5%, 35.45%, and 16.21%, respectively. Corresponding tribological tests revealed that high sliding velocity (10 N load, 0.2 m/s) resulted in a 44.07% reduction in the coefficient of friction and an 86.29% reduction in wear rate compared to neat epoxy. The enhanced tribological performance is attributed to the efficient removal and incorporation of MoS2 into the tribofilm, where it acts as a solid lubricant that significantly reduces friction and wear. Even though an ultra-low amount of filler concentration was added to the composite, a unique finding was the high MoS2 content in the tribofilm at higher sliding speeds, enhancing lubrication and wear protection. This study establishes that even ultralow MoS2 content, when uniformly dispersed, can profoundly improve the mechanical and tribological properties of epoxy composites, offering a novel approach to enhancing wear resistance.
{"title":"Enhancing Mechanical and Tribological Properties of Epoxy Composites with Ultrasonication Exfoliated MoS<sub>2</sub>: Impact of Low Filler Loading on Wear Performance and Tribofilm Formation.","authors":"Ravisrini Jayasinghe, Maximiano Ramos, Ashveen Nand, Maziar Ramezani","doi":"10.3390/nano14211744","DOIUrl":"10.3390/nano14211744","url":null,"abstract":"<p><p>This study highlights the impact of low amounts of MoS<sub>2</sub> quantities on composite performance by examining the effects of ultrasonication exfoliated MoS<sub>2</sub> at different loadings (0.1-0.5 wt%) on the mechanical and tribological parameters of epoxy composites. Even at low concentrations, the ultrasonication and exfoliation procedures greatly improve the dispersion of MoS<sub>2</sub> in the epoxy matrix, enabling its efficient incorporation into the tribofilm during sliding. Optimum mechanical properties were demonstrated by the MoS<sub>2</sub>/epoxy composite at 0.3 wt%, including a modulus of elasticity of 0.86 GPa, an ultimate tensile strength of 61.88 MPa, and a hardness of 88.0 Shore D, representing improvements of 61.5%, 35.45%, and 16.21%, respectively. Corresponding tribological tests revealed that high sliding velocity (10 N load, 0.2 m/s) resulted in a 44.07% reduction in the coefficient of friction and an 86.29% reduction in wear rate compared to neat epoxy. The enhanced tribological performance is attributed to the efficient removal and incorporation of MoS<sub>2</sub> into the tribofilm, where it acts as a solid lubricant that significantly reduces friction and wear. Even though an ultra-low amount of filler concentration was added to the composite, a unique finding was the high MoS<sub>2</sub> content in the tribofilm at higher sliding speeds, enhancing lubrication and wear protection. This study establishes that even ultralow MoS<sub>2</sub> content, when uniformly dispersed, can profoundly improve the mechanical and tribological properties of epoxy composites, offering a novel approach to enhancing wear resistance.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong Zhu, Quanhua Chen, Lijian Chen, Rozalina Zakaria, Min-Su Park, Chee Leong Tan, Li Zhu, Yong Xu
Organic phototransistors, renowned for their exceptional biocompatibility, hold promise in phototherapy for tracking the efficacy of photosensitive drugs within treatment areas. Nevertheless, it has been found that organic semiconductors are less effective in detecting ultraviolet (UV) light because of their narrow bandgap. Here, we show that UV photodetection in phototransistors using donor-acceptor (D-A) polymer semiconductors can be significantly enhanced by incorporating PCBM nanocrystals. This integration results in a band mismatch between the nanocrystals and the D-A polymer at the interface. These nanocrystals also demonstrate a notable capability of modulating threshold voltage under UV light. The devices incorporating nanocrystals exhibit a photoresponsivity of 0.16 A/W, surpassing the photoresponsivity of the devices without nanocrystals by 50%. The specific detection rate of devices with nanocrystals is around 2.00 × 1010 Jones, which is twice as high as that of devices without nanocrystals. The presented findings offer a potential avenue to improve the efficiency of polymer phototransistors for UV detection.
{"title":"Influence of PCBM Nanocrystals on the Donor-Acceptor Polymer Ultraviolet Phototransistors.","authors":"Hong Zhu, Quanhua Chen, Lijian Chen, Rozalina Zakaria, Min-Su Park, Chee Leong Tan, Li Zhu, Yong Xu","doi":"10.3390/nano14211748","DOIUrl":"10.3390/nano14211748","url":null,"abstract":"<p><p>Organic phototransistors, renowned for their exceptional biocompatibility, hold promise in phototherapy for tracking the efficacy of photosensitive drugs within treatment areas. Nevertheless, it has been found that organic semiconductors are less effective in detecting ultraviolet (UV) light because of their narrow bandgap. Here, we show that UV photodetection in phototransistors using donor-acceptor (D-A) polymer semiconductors can be significantly enhanced by incorporating PCBM nanocrystals. This integration results in a band mismatch between the nanocrystals and the D-A polymer at the interface. These nanocrystals also demonstrate a notable capability of modulating threshold voltage under UV light. The devices incorporating nanocrystals exhibit a photoresponsivity of 0.16 A/W, surpassing the photoresponsivity of the devices without nanocrystals by 50%. The specific detection rate of devices with nanocrystals is around 2.00 × 10<sup>10</sup> Jones, which is twice as high as that of devices without nanocrystals. The presented findings offer a potential avenue to improve the efficiency of polymer phototransistors for UV detection.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}