首页 > 最新文献

Nanomaterials最新文献

英文 中文
Impact of B and P Doping on the Elastic Properties of Si Nanowires.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-25 DOI: 10.3390/nano15030191
Nedhal Ali Mahmood Al-Nuaimi, Angela Thränhardt, Sibylle Gemming

Using gradient-corrected density functional theory we investigate the mechanical properties of ultrathin boron (B) and phosphorus (P) doped silicon nanowires (SiNWs) along the [001] and [111] orientations within the PBE approximation. Both pristine and doped SiNWs under study have diameters ranging from 5 to 8 Å. Our results show that doping significantly enhances the bulk modulus (B0), shear modulus (GV), Young's modulus (Y), and other mechanical parameters. The significant anisotropy observed in the mechanical properties of Si[111] NWs, with varying moduli along different axes, further illustrates the complex interplay between mechanical behavior and electronic structure at the nanoscale. The mechanical flexibility of SiNWs, combined with their tunable electronic properties due to quantum confinement, makes them promising candidates for advanced nanoelectronic devices, nanoelectromechanical systems (NEMS), and advanced technologies.

{"title":"Impact of B and P Doping on the Elastic Properties of Si Nanowires.","authors":"Nedhal Ali Mahmood Al-Nuaimi, Angela Thränhardt, Sibylle Gemming","doi":"10.3390/nano15030191","DOIUrl":"10.3390/nano15030191","url":null,"abstract":"<p><p>Using gradient-corrected density functional theory we investigate the mechanical properties of ultrathin boron (B) and phosphorus (P) doped silicon nanowires (SiNWs) along the [001] and [111] orientations within the PBE approximation. Both pristine and doped SiNWs under study have diameters ranging from 5 to 8 Å. Our results show that doping significantly enhances the bulk modulus (B0), shear modulus (GV), Young's modulus (<i>Y</i>), and other mechanical parameters. The significant anisotropy observed in the mechanical properties of Si[111] NWs, with varying moduli along different axes, further illustrates the complex interplay between mechanical behavior and electronic structure at the nanoscale. The mechanical flexibility of SiNWs, combined with their tunable electronic properties due to quantum confinement, makes them promising candidates for advanced nanoelectronic devices, nanoelectromechanical systems (NEMS), and advanced technologies.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820870/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-Task Optimization Method for Inverse Design of RGB Micro-LED Light Collimator. 用于 RGB 微型 LED 光准直器逆向设计的双任务优化方法
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-25 DOI: 10.3390/nano15030190
Liming Chen, Zhuo Li, Purui Wang, Sihan Wu, Wen Li, Jiechen Wang, Yue Cao, Masood Mortazavi, Liang Peng, Pingfan Wu

Miniaturized pixel sizes in near-eye digital displays lead to pixel emission patterns with large divergence angles, necessitating efficient beam collimation solutions to improve the light coupling efficiency. Traditional beam collimation optics, such as lenses and cavities, are wavelength-sensitive and cannot simultaneously collimate red (R), green (G), and blue (B) light. In this work, we employed inverse design optimization and finite-difference time-domain (FDTD) simulation techniques to design a collimator comprised of nano-sized photonic structures. To alleviate the challenges of the spatial incoherence nature of micro-LED emission light, we developed a strategy called dual-task optimization. Specifically, the method models light collimation as a dual task of color routing. By optimizing a color router, which routes incident light within a small angular range to different locations based on its spectrum, we simultaneously obtained a beam collimator, which can restrict the output of the light emitted from the routing destination with a small divergence angle. We further evaluated the collimation performance for spatially incoherent RGB micro-LED light in an FDTD using a multiple-dipole simulation method, and the simulation results demonstrate that our designed collimator can increase the light coupling efficiency from approximately 30% to 60% within a divergence angle of ±20° for all R/G/B light under the spatially incoherent emission.

{"title":"Dual-Task Optimization Method for Inverse Design of RGB Micro-LED Light Collimator.","authors":"Liming Chen, Zhuo Li, Purui Wang, Sihan Wu, Wen Li, Jiechen Wang, Yue Cao, Masood Mortazavi, Liang Peng, Pingfan Wu","doi":"10.3390/nano15030190","DOIUrl":"10.3390/nano15030190","url":null,"abstract":"<p><p>Miniaturized pixel sizes in near-eye digital displays lead to pixel emission patterns with large divergence angles, necessitating efficient beam collimation solutions to improve the light coupling efficiency. Traditional beam collimation optics, such as lenses and cavities, are wavelength-sensitive and cannot simultaneously collimate red (R), green (G), and blue (B) light. In this work, we employed inverse design optimization and finite-difference time-domain (FDTD) simulation techniques to design a collimator comprised of nano-sized photonic structures. To alleviate the challenges of the spatial incoherence nature of micro-LED emission light, we developed a strategy called dual-task optimization. Specifically, the method models light collimation as a dual task of color routing. By optimizing a color router, which routes incident light within a small angular range to different locations based on its spectrum, we simultaneously obtained a beam collimator, which can restrict the output of the light emitted from the routing destination with a small divergence angle. We further evaluated the collimation performance for spatially incoherent RGB micro-LED light in an FDTD using a multiple-dipole simulation method, and the simulation results demonstrate that our designed collimator can increase the light coupling efficiency from approximately 30% to 60% within a divergence angle of ±20° for all R/G/B light under the spatially incoherent emission.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820347/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143408933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of the Trimer Protein Interface Residue Pair by CNN-GRU Model Based on Multi-Feature Map.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-24 DOI: 10.3390/nano15030188
Yanfen Lyu, Ting Xiong, Shuaibo Shi, Dong Wang, Xueqing Yang, Qihuan Liu, Zhengtan Li, Zhixin Li, Chunxia Wang, Ruiai Chen

Most life activities of organisms are realized through protein-protein interactions, and these interactions are mainly achieved through residue-residue contact between monomer proteins. Consequently, studying residue-residue contact at the protein interaction interface can contribute to a deeper understanding of the protein-protein interaction mechanism. In this paper, we focus on the research of the trimer protein interface residue pair. Firstly, we utilize the amino acid k-interval product factor descriptor (AAIPF(k)) to integrate the positional information and physicochemical properties of amino acids, combined with the electric properties and geometric shape features of residues, to construct an 8 × 16 multi-feature map. This multi-feature map represents a sample composed of two residues on a trimer protein. Secondly, we construct a CNN-GRU deep learning framework to predict the trimer protein interface residue pair. The results show that when each dimer protein provides 10 prediction results and two protein-protein interaction interfaces of a trimer protein needed to be accurately predicted, the accuracy of our proposed method is 60%. When each dimer protein provides 10 prediction results and one protein-protein interaction interface of a trimer protein needs to be accurately predicted, the accuracy of our proposed method is 93%. Our results can provide experimental researchers with a limited yet precise dataset containing correct trimer protein interface residue pairs, which is of great significance in guiding the experimental resolution of the trimer protein three-dimensional structure. Furthermore, compared to other computational methods, our proposed approach exhibits superior performance in predicting residue-residue contact at the trimer protein interface.

{"title":"Prediction of the Trimer Protein Interface Residue Pair by CNN-GRU Model Based on Multi-Feature Map.","authors":"Yanfen Lyu, Ting Xiong, Shuaibo Shi, Dong Wang, Xueqing Yang, Qihuan Liu, Zhengtan Li, Zhixin Li, Chunxia Wang, Ruiai Chen","doi":"10.3390/nano15030188","DOIUrl":"10.3390/nano15030188","url":null,"abstract":"<p><p>Most life activities of organisms are realized through protein-protein interactions, and these interactions are mainly achieved through residue-residue contact between monomer proteins. Consequently, studying residue-residue contact at the protein interaction interface can contribute to a deeper understanding of the protein-protein interaction mechanism. In this paper, we focus on the research of the trimer protein interface residue pair. Firstly, we utilize the amino acid k-interval product factor descriptor (AAIPF(k)) to integrate the positional information and physicochemical properties of amino acids, combined with the electric properties and geometric shape features of residues, to construct an 8 × 16 multi-feature map. This multi-feature map represents a sample composed of two residues on a trimer protein. Secondly, we construct a CNN-GRU deep learning framework to predict the trimer protein interface residue pair. The results show that when each dimer protein provides 10 prediction results and two protein-protein interaction interfaces of a trimer protein needed to be accurately predicted, the accuracy of our proposed method is 60%. When each dimer protein provides 10 prediction results and one protein-protein interaction interface of a trimer protein needs to be accurately predicted, the accuracy of our proposed method is 93%. Our results can provide experimental researchers with a limited yet precise dataset containing correct trimer protein interface residue pairs, which is of great significance in guiding the experimental resolution of the trimer protein three-dimensional structure. Furthermore, compared to other computational methods, our proposed approach exhibits superior performance in predicting residue-residue contact at the trimer protein interface.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143408364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multi-Method Approach to Analyzing MOFs for Chemical Warfare Simulant Capture: Molecular Simulation, Machine Learning, and Molecular Fingerprints.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-24 DOI: 10.3390/nano15030183
Zhongyuan Ming, Min Zhang, Shouxin Zhang, Xiaopeng Li, Xiaoshan Yan, Kexin Guan, Yu Li, Yufeng Peng, Jinfeng Li, Heguo Li, Yue Zhao, Zhiwei Qiao

Mustard gas (HD) is a well-known chemical warfare agent, recognized for its extreme toxicity and severe hazards. Metal-organic frameworks (MOFs), with their unique structural properties, show significant potential for HD adsorption applications. Due to the extreme hazards of HD, most experimental studies focus on its simulants, but molecular simulation research on these simulants remains limited. Simulation analyses of simulants can uncover structure-performance relationships and enable experimental validation, optimizing methods, and improving material design and performance predictions. This study integrates molecular simulations, machine learning (ML), and molecular fingerprinting (MFs) to identify MOFs with high adsorption performance for the HD simulant diethyl sulfide (DES), followed by in-depth structural analysis and comparison. First, MOFs are categorized into Top, Middle, and Bottom materials based on their adsorption efficiency. Univariate analysis, machine learning, and molecular fingerprinting are then used to identify and compare the distinguishing features and fingerprints of each category. Univariate analysis helps identify the optimal structural ranges of Top and Bottom materials, providing a reference for initial material screening. Machine learning feature importance analysis, combined with SHAP methods, identifies the key features that most significantly influence model predictions across categories, offering valuable insights for future material design. Molecular fingerprint analysis reveals critical fingerprint combinations, showing that adsorption performance is optimized when features such as metal oxides, nitrogen-containing heterocycles, six-membered rings, and C=C double bonds co-exist. The integrated analysis using HTCS, ML, and MFs provides new perspectives for designing high-performance MOFs and demonstrates significant potential for developing materials for the adsorption of CWAs and their simulants.

{"title":"A Multi-Method Approach to Analyzing MOFs for Chemical Warfare Simulant Capture: Molecular Simulation, Machine Learning, and Molecular Fingerprints.","authors":"Zhongyuan Ming, Min Zhang, Shouxin Zhang, Xiaopeng Li, Xiaoshan Yan, Kexin Guan, Yu Li, Yufeng Peng, Jinfeng Li, Heguo Li, Yue Zhao, Zhiwei Qiao","doi":"10.3390/nano15030183","DOIUrl":"10.3390/nano15030183","url":null,"abstract":"<p><p>Mustard gas (HD) is a well-known chemical warfare agent, recognized for its extreme toxicity and severe hazards. Metal-organic frameworks (MOFs), with their unique structural properties, show significant potential for HD adsorption applications. Due to the extreme hazards of HD, most experimental studies focus on its simulants, but molecular simulation research on these simulants remains limited. Simulation analyses of simulants can uncover structure-performance relationships and enable experimental validation, optimizing methods, and improving material design and performance predictions. This study integrates molecular simulations, machine learning (ML), and molecular fingerprinting (MFs) to identify MOFs with high adsorption performance for the HD simulant diethyl sulfide (DES), followed by in-depth structural analysis and comparison. First, MOFs are categorized into Top, Middle, and Bottom materials based on their adsorption efficiency. Univariate analysis, machine learning, and molecular fingerprinting are then used to identify and compare the distinguishing features and fingerprints of each category. Univariate analysis helps identify the optimal structural ranges of Top and Bottom materials, providing a reference for initial material screening. Machine learning feature importance analysis, combined with SHAP methods, identifies the key features that most significantly influence model predictions across categories, offering valuable insights for future material design. Molecular fingerprint analysis reveals critical fingerprint combinations, showing that adsorption performance is optimized when features such as metal oxides, nitrogen-containing heterocycles, six-membered rings, and C=C double bonds co-exist. The integrated analysis using HTCS, ML, and MFs provides new perspectives for designing high-performance MOFs and demonstrates significant potential for developing materials for the adsorption of CWAs and their simulants.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the Fluorescence and Antimicrobial Performance of Carbon Dots via Hypochlorite Treatment.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-24 DOI: 10.3390/nano15030184
Spyridon Gavalas, Mohammed S Beg, Ella N Gibbons, Antonios Kelarakis

This paper presents a simple, post-synthesis treatment of carbon dots (C-dots) that relies on the oxidizing activity of sodium hypochlorite to induce surface oxidation, etching and pronounced structural rearrangements. The thus treated C-dots (ox-C-dots) exhibit up to six-fold enhancement in quantum yield compared to non-oxidised analogues, while maintaining low levels of cytotoxicity against HeLa and U87 cell lines. In addition, we demonstrate that a range of polymeric materials (polyurethane sponge, polyvinylidene fluoride membrane, polyester fabric) impregnated with ox-C-dots show advanced antifungal properties against Talaromyces pinophilus, while their untreated counterparts fail to do so.

{"title":"Enhancing the Fluorescence and Antimicrobial Performance of Carbon Dots via Hypochlorite Treatment.","authors":"Spyridon Gavalas, Mohammed S Beg, Ella N Gibbons, Antonios Kelarakis","doi":"10.3390/nano15030184","DOIUrl":"10.3390/nano15030184","url":null,"abstract":"<p><p>This paper presents a simple, post-synthesis treatment of carbon dots (C-dots) that relies on the oxidizing activity of sodium hypochlorite to induce surface oxidation, etching and pronounced structural rearrangements. The thus treated C-dots (ox-C-dots) exhibit up to six-fold enhancement in quantum yield compared to non-oxidised analogues, while maintaining low levels of cytotoxicity against HeLa and U87 cell lines. In addition, we demonstrate that a range of polymeric materials (polyurethane sponge, polyvinylidene fluoride membrane, polyester fabric) impregnated with ox-C-dots show advanced antifungal properties against <i>Talaromyces pinophilus</i>, while their untreated counterparts fail to do so.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11819752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Convergence of Nanotechnology and Biotechnology in Modern Medicine.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-24 DOI: 10.3390/nano15030182
Rúben Fernandes

The combination of nanotechnology and biotechnology is paving the way for new medical treatments, with promising results in therapy [...].

{"title":"The Convergence of Nanotechnology and Biotechnology in Modern Medicine.","authors":"Rúben Fernandes","doi":"10.3390/nano15030182","DOIUrl":"10.3390/nano15030182","url":null,"abstract":"<p><p>The combination of nanotechnology and biotechnology is paving the way for new medical treatments, with promising results in therapy [...].</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Nanoporous Composited Aerogels: Enhancing Durability and Expanding Applications.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-24 DOI: 10.3390/nano15030185
Jialu Lu, Lidija Siller, Bin Zhou, Ai Du

As highly porous nanomaterials, aerogels are fascinating due to their remarkable structural properties and performance [...].

{"title":"Advances in Nanoporous Composited Aerogels: Enhancing Durability and Expanding Applications.","authors":"Jialu Lu, Lidija Siller, Bin Zhou, Ai Du","doi":"10.3390/nano15030185","DOIUrl":"10.3390/nano15030185","url":null,"abstract":"<p><p>As highly porous nanomaterials, aerogels are fascinating due to their remarkable structural properties and performance [...].</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex Refractive Index Spectrum of CsPbBr3 Nanocrystals via the Effective Medium Approximation.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-24 DOI: 10.3390/nano15030181
Sang-Hyuk Park, Jungwon Kim, Min Ju Kim, Min Woo Kim, Robert A Taylor, Kwangseuk Kyhm

We have estimated the intrinsic complex refractive index spectrum of a CsPbBr3 nanocrystal. With various dilute solutions of CsPbBr3 nanocrystals dissolved in toluene, effective refractive indices were measured at two different wavelengths using Michelson interferometry. Given the effective absorption spectrum of the solution, a full spectrum of the effective refractive index was also obtained through the Kramers-Krönig relations. Based on the Maxwell-Garnett model in the effective medium approximation, the real and imaginary spectrum of the complex refractive index was estimated for the CsPbBr3 nanocrystal, and the dominant inaccuracy was attributed to the size inhomogeneity.

{"title":"Complex Refractive Index Spectrum of CsPbBr<sub>3</sub> Nanocrystals via the Effective Medium Approximation.","authors":"Sang-Hyuk Park, Jungwon Kim, Min Ju Kim, Min Woo Kim, Robert A Taylor, Kwangseuk Kyhm","doi":"10.3390/nano15030181","DOIUrl":"10.3390/nano15030181","url":null,"abstract":"<p><p>We have estimated the intrinsic complex refractive index spectrum of a CsPbBr<sub>3</sub> nanocrystal. With various dilute solutions of CsPbBr<sub>3</sub> nanocrystals dissolved in toluene, effective refractive indices were measured at two different wavelengths using Michelson interferometry. Given the effective absorption spectrum of the solution, a full spectrum of the effective refractive index was also obtained through the Kramers-Krönig relations. Based on the Maxwell-Garnett model in the effective medium approximation, the real and imaginary spectrum of the complex refractive index was estimated for the CsPbBr<sub>3</sub> nanocrystal, and the dominant inaccuracy was attributed to the size inhomogeneity.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820716/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143408269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation on the Interaction of Dendritic Core Multi-Shell Nanoparticles with Human Red Blood Cells. 树突状核多壳纳米粒子与人类红细胞相互作用的研究
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-24 DOI: 10.3390/nano15030187
Jakob Krauß, Radostina Georgieva, Miroslav Karabaliev, Moritz Hackmann, Pichayut Rerkshanandana, Saranya Chaiwaree, Ulrich Kalus, Axel Pruß, Yu Xiong, Hans Bäumler

The use of nanoparticles is becoming increasingly apparent in a growing number of medical fields. To exploit the full potential of these particles, it is essential to examine their behavior in the blood and their possible interactions with blood cells. Dendritic core multi-shell DendroSol™ nanoparticles (DS-NPs) are able to penetrate into viable layers of human skin, but nothing is known about their interaction with blood cells. In the present study, we analyze the effect of DS-NPs on red blood cells (RBCs) using confocal laser scanning microscopy (CLSM), flow cytometry, sedimentation rate analysis, spectrophotometry, and hemolysis assays. DS-NPs labeled with Nile red (NR) were added to RBC suspensions and their accumulation in the area of the RBC membranes was demonstrated by CLSM as well as by flow cytometry. In the presence of DS-NPs, the RBCs show an increased sedimentation rate, which also confirms the binding of the NPs to the cells. Interestingly, in the presence of DS-NPs, the RBCs are stabilized against hypotonic hemolysis as well as against the hemolytic action of Triton X-100. This proven anti-hemolytic effect could be utilized to enhance the circulation time of RBCs loaded with drugs for prolonged sustained release and drug delivery with enhanced bioavailability.

{"title":"Investigation on the Interaction of Dendritic Core Multi-Shell Nanoparticles with Human Red Blood Cells.","authors":"Jakob Krauß, Radostina Georgieva, Miroslav Karabaliev, Moritz Hackmann, Pichayut Rerkshanandana, Saranya Chaiwaree, Ulrich Kalus, Axel Pruß, Yu Xiong, Hans Bäumler","doi":"10.3390/nano15030187","DOIUrl":"10.3390/nano15030187","url":null,"abstract":"<p><p>The use of nanoparticles is becoming increasingly apparent in a growing number of medical fields. To exploit the full potential of these particles, it is essential to examine their behavior in the blood and their possible interactions with blood cells. Dendritic core multi-shell DendroSol™ nanoparticles (DS-NPs) are able to penetrate into viable layers of human skin, but nothing is known about their interaction with blood cells. In the present study, we analyze the effect of DS-NPs on red blood cells (RBCs) using confocal laser scanning microscopy (CLSM), flow cytometry, sedimentation rate analysis, spectrophotometry, and hemolysis assays. DS-NPs labeled with Nile red (NR) were added to RBC suspensions and their accumulation in the area of the RBC membranes was demonstrated by CLSM as well as by flow cytometry. In the presence of DS-NPs, the RBCs show an increased sedimentation rate, which also confirms the binding of the NPs to the cells. Interestingly, in the presence of DS-NPs, the RBCs are stabilized against hypotonic hemolysis as well as against the hemolytic action of Triton X-100. This proven anti-hemolytic effect could be utilized to enhance the circulation time of RBCs loaded with drugs for prolonged sustained release and drug delivery with enhanced bioavailability.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820349/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal-Based Nanomaterials: Fabrications, Optical Properties, and Ultrafast Photonics.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-24 DOI: 10.3390/nano15030186
Bo Fu, Vittorio Scardaci

Metals are known for conductivity and luster due to the abundance of free electrons [...].

{"title":"Metal-Based Nanomaterials: Fabrications, Optical Properties, and Ultrafast Photonics.","authors":"Bo Fu, Vittorio Scardaci","doi":"10.3390/nano15030186","DOIUrl":"10.3390/nano15030186","url":null,"abstract":"<p><p>Metals are known for conductivity and luster due to the abundance of free electrons [...].</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nanomaterials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1