首页 > 最新文献

Nanomaterials最新文献

英文 中文
Bacterial Outer Membrane Vesicle (OMV)-Encapsulated TiO2 Nanoparticles: A Dual-Action Strategy for Enhanced Radiotherapy and Immunomodulation in Oral Cancer Treatment.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-20 DOI: 10.3390/nano14242045
Shun-An Kan, Li-Wen Zhang, Yu-Chi Wang, Cheng-Yu Chiang, Mei-Hsiu Chen, Shih-Hao Huang, Ming-Hong Chen, Tse-Ying Liu

Oral squamous-cell carcinoma (OSCC) poses significant treatment challenges due to its high recurrence rates and the limitations of current therapies. Titanium dioxide (TiO2) nanoparticles are promising radiosensitizers, while bacterial outer membrane vesicles (OMVs) are known for their immunomodulatory properties. This study investigates the potential of OMV-encapsulated TiO2 nanoparticles (TiO2@OMV) to combine these effects for improved OSCC treatment. TiO2 nanoparticles were synthesized using a hydrothermal method and encapsulated within OMVs derived from Escherichia coli. The TiO2@OMV carriers were evaluated for their ability to enhance radiosensitivity and stimulate immune responses in OSCC cell lines. Reactive oxygen species (ROS) production, macrophage recruitment, and selective cytotoxicity toward cancer cells were assessed. TiO2@OMV demonstrated significant radiosensitization and immune activation compared to unencapsulated TiO2 nanoparticles. The system selectively induced cytotoxicity in OSCC cells, sparing normal cells, and enhanced ROS generation and macrophage-mediated antitumor responses. This study highlights TiO2@OMV as a dual-action therapeutic platform that synergizes radiotherapy and immunomodulation, offering a targeted and effective strategy for OSCC treatment. The approach could improve therapeutic outcomes and reduce the adverse effects associated with conventional therapies.

{"title":"Bacterial Outer Membrane Vesicle (OMV)-Encapsulated TiO<sub>2</sub> Nanoparticles: A Dual-Action Strategy for Enhanced Radiotherapy and Immunomodulation in Oral Cancer Treatment.","authors":"Shun-An Kan, Li-Wen Zhang, Yu-Chi Wang, Cheng-Yu Chiang, Mei-Hsiu Chen, Shih-Hao Huang, Ming-Hong Chen, Tse-Ying Liu","doi":"10.3390/nano14242045","DOIUrl":"10.3390/nano14242045","url":null,"abstract":"<p><p>Oral squamous-cell carcinoma (OSCC) poses significant treatment challenges due to its high recurrence rates and the limitations of current therapies. Titanium dioxide (TiO<sub>2</sub>) nanoparticles are promising radiosensitizers, while bacterial outer membrane vesicles (OMVs) are known for their immunomodulatory properties. This study investigates the potential of OMV-encapsulated TiO<sub>2</sub> nanoparticles (TiO<sub>2</sub>@OMV) to combine these effects for improved OSCC treatment. TiO<sub>2</sub> nanoparticles were synthesized using a hydrothermal method and encapsulated within OMVs derived from Escherichia coli. The TiO<sub>2</sub>@OMV carriers were evaluated for their ability to enhance radiosensitivity and stimulate immune responses in OSCC cell lines. Reactive oxygen species (ROS) production, macrophage recruitment, and selective cytotoxicity toward cancer cells were assessed. TiO<sub>2</sub>@OMV demonstrated significant radiosensitization and immune activation compared to unencapsulated TiO<sub>2</sub> nanoparticles. The system selectively induced cytotoxicity in OSCC cells, sparing normal cells, and enhanced ROS generation and macrophage-mediated antitumor responses. This study highlights TiO<sub>2</sub>@OMV as a dual-action therapeutic platform that synergizes radiotherapy and immunomodulation, offering a targeted and effective strategy for OSCC treatment. The approach could improve therapeutic outcomes and reduce the adverse effects associated with conventional therapies.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678132/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible and Stable GaN Piezoelectric Sensor for Motion Monitoring and Fall Warning.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-20 DOI: 10.3390/nano14242044
Zhiling Chen, Kun Lv, Renqiang Zhao, Yaxian Lu, Ping Chen

Wearable devices have potential applications in health monitoring and personalized healthcare due to their portability, conformability, and excellent mechanical flexibility. However, their performance is often limited by instability in acidic or basic environments. In this study, a flexible sensor with excellent stability based on a GaN nanoplate was developed through a simple and controllable fabrication process, where the linearity and stability remained at almost 99% of the original performance for 40 days in an air atmosphere. Moreover, perfect stability was also demonstrated in acid-base environments, with pH values ranging from 1 to 13. Based on its excellent stability and piezotronic performance, a flexible device for motion monitoring was developed, capable of detecting motions such as finger, knee, and wrist bending, as well as swallowing. Furthermore, gesture recognition and intelligent fall monitoring were explored based on the bending properties. In addition, an intelligent fall warning system was proposed for the personalized healthcare application of elders by applying machine learning to analyze data collected from typical activities. Our research provides a path for stable and flexible electronics and personalized healthcare applications.

{"title":"Flexible and Stable GaN Piezoelectric Sensor for Motion Monitoring and Fall Warning.","authors":"Zhiling Chen, Kun Lv, Renqiang Zhao, Yaxian Lu, Ping Chen","doi":"10.3390/nano14242044","DOIUrl":"10.3390/nano14242044","url":null,"abstract":"<p><p>Wearable devices have potential applications in health monitoring and personalized healthcare due to their portability, conformability, and excellent mechanical flexibility. However, their performance is often limited by instability in acidic or basic environments. In this study, a flexible sensor with excellent stability based on a GaN nanoplate was developed through a simple and controllable fabrication process, where the linearity and stability remained at almost 99% of the original performance for 40 days in an air atmosphere. Moreover, perfect stability was also demonstrated in acid-base environments, with pH values ranging from 1 to 13. Based on its excellent stability and piezotronic performance, a flexible device for motion monitoring was developed, capable of detecting motions such as finger, knee, and wrist bending, as well as swallowing. Furthermore, gesture recognition and intelligent fall monitoring were explored based on the bending properties. In addition, an intelligent fall warning system was proposed for the personalized healthcare application of elders by applying machine learning to analyze data collected from typical activities. Our research provides a path for stable and flexible electronics and personalized healthcare applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676375/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrodeposition of Nanostructured Metals on n-Silicon and Insights into Rhodium Deposition.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-20 DOI: 10.3390/nano14242042
Giulio Pappaianni, Francesco Montanari, Marco Bonechi, Giovanni Zangari, Walter Giurlani, Massimo Innocenti

In this study, we investigate the electrodeposition of various metals on silicon. Mn, Co, Ni, Ru, Pd, Rh, and Pt were identified as promising candidates for controlled electrodeposition onto silicon. Electrochemical evaluations employing cyclic voltammetry, Scanning Electron Microscopy (SEM) associated with energy-dispersive X-Ray Spectroscopy (SEM-EDS), and X-Ray Photoelectron Spectroscopy (XPS) techniques confirmed the deposition of Pd, Rh, and Pt as nanoparticles. Multi-cycle charge-controlled depositions were subsequently performed to evaluate the possibility of achieving tunable electrodeposition of nanostructured rhodium on n-doped silicon. The procedure increased surface coverage from 9% to 84%, with the average particle size diameter ranging from 57 nm to 168 nm, and with an equivalent thickness of the deposits up to 43.9 nm, varying the number of charge-controlled deposition cycles. The electrodeposition of rhodium on silicon presents numerous opportunities across various scientific and technological domains, driving innovation and enhancing the performance of devices and materials used in catalysis, electronics, solar cells, fuel cells, and sensing.

{"title":"Electrodeposition of Nanostructured Metals on n-Silicon and Insights into Rhodium Deposition.","authors":"Giulio Pappaianni, Francesco Montanari, Marco Bonechi, Giovanni Zangari, Walter Giurlani, Massimo Innocenti","doi":"10.3390/nano14242042","DOIUrl":"10.3390/nano14242042","url":null,"abstract":"<p><p>In this study, we investigate the electrodeposition of various metals on silicon. Mn, Co, Ni, Ru, Pd, Rh, and Pt were identified as promising candidates for controlled electrodeposition onto silicon. Electrochemical evaluations employing cyclic voltammetry, Scanning Electron Microscopy (SEM) associated with energy-dispersive X-Ray Spectroscopy (SEM-EDS), and X-Ray Photoelectron Spectroscopy (XPS) techniques confirmed the deposition of Pd, Rh, and Pt as nanoparticles. Multi-cycle charge-controlled depositions were subsequently performed to evaluate the possibility of achieving tunable electrodeposition of nanostructured rhodium on n-doped silicon. The procedure increased surface coverage from 9% to 84%, with the average particle size diameter ranging from 57 nm to 168 nm, and with an equivalent thickness of the deposits up to 43.9 nm, varying the number of charge-controlled deposition cycles. The electrodeposition of rhodium on silicon presents numerous opportunities across various scientific and technological domains, driving innovation and enhancing the performance of devices and materials used in catalysis, electronics, solar cells, fuel cells, and sensing.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation and Magnetic Properties of Transition Metal Atomic Chains on Monolayer MoS2 Grain Boundaries: A First-Principles Study.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-20 DOI: 10.3390/nano14242043
Zhiyuan Li, Shuqing Yang, Yiren Wang

Magnetic one-dimensional nanostructures show great potential in spintronics and can be used as basic building blocks for magnetic materials and devices with multiple functions. In this study, transition group atomic chains (V, Cr, Mn, Fe, Co, and Ni) are introduced into nonmagnetic MoS2 with a 4|8ud-type grain boundary. Based on first-principles calculations, the V atomic chains show good thermodynamic stability and can self-assemble along the grain boundary direction. The formation of V, Cr, Mn, and Ni atomic chains can induce magnetism into a 4|8ud-type MoS2 system through typical d-d and p-d interactions. This joint effect of transition metal doping and grain boundaries on the magnetism of monolayer MoS2 is of great significance for exploring the electromagnetic properties of monolayer MoS2 for the development of electronic devices.

{"title":"Formation and Magnetic Properties of Transition Metal Atomic Chains on Monolayer MoS<sub>2</sub> Grain Boundaries: A First-Principles Study.","authors":"Zhiyuan Li, Shuqing Yang, Yiren Wang","doi":"10.3390/nano14242043","DOIUrl":"10.3390/nano14242043","url":null,"abstract":"<p><p>Magnetic one-dimensional nanostructures show great potential in spintronics and can be used as basic building blocks for magnetic materials and devices with multiple functions. In this study, transition group atomic chains (V, Cr, Mn, Fe, Co, and Ni) are introduced into nonmagnetic MoS<sub>2</sub> with a 4|8ud-type grain boundary. Based on first-principles calculations, the V atomic chains show good thermodynamic stability and can self-assemble along the grain boundary direction. The formation of V, Cr, Mn, and Ni atomic chains can induce magnetism into a 4|8ud-type MoS<sub>2</sub> system through typical d-d and p-d interactions. This joint effect of transition metal doping and grain boundaries on the magnetism of monolayer MoS<sub>2</sub> is of great significance for exploring the electromagnetic properties of monolayer MoS<sub>2</sub> for the development of electronic devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678194/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controllable Synthesis of Three-Dimensional Chiral Au Nanoflowers Induced by Cysteine with Excellent Biocompatible Properties.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-19 DOI: 10.3390/nano14242040
Shengmiao Liu, Jianhao Zhang, Wenjing Yan

Chiral molecules are ubiquitous in nature and biological systems, where the unique optical and physical properties of chiral nanoparticles are closely linked to their shapes. Synthesizing chiral plasmonic nanomaterials with precise structures and tunable sizes is essential for exploring their applications. This study presents a method for growing three-dimensional chiral gold nanoflowers (Au NFs) derived from trisoctahedral (TOH) nanocrystals using D-cysteine and L-cysteine as chiral inducers. By employing a two-step seed-mediated growth approach, stable chiral Au nanoparticles with customizable sizes, shapes, and optical properties were produced by adjusting the Au nanosphere (Au NP) seed concentration and cysteine dosage. These nanoparticles exhibited optical activity in both the visible and near-infrared regions, with a maximum anisotropy factor (g-factor) of 0.024. Furthermore, the PEG-modified chiral Au NFs demonstrated excellent biocompatibility. This approach provides a precise method for geometrically controlling the design of three-dimensional chiral nanomaterials, holding great potential for biomedical applications.

{"title":"Controllable Synthesis of Three-Dimensional Chiral Au Nanoflowers Induced by Cysteine with Excellent Biocompatible Properties.","authors":"Shengmiao Liu, Jianhao Zhang, Wenjing Yan","doi":"10.3390/nano14242040","DOIUrl":"10.3390/nano14242040","url":null,"abstract":"<p><p>Chiral molecules are ubiquitous in nature and biological systems, where the unique optical and physical properties of chiral nanoparticles are closely linked to their shapes. Synthesizing chiral plasmonic nanomaterials with precise structures and tunable sizes is essential for exploring their applications. This study presents a method for growing three-dimensional chiral gold nanoflowers (Au NFs) derived from trisoctahedral (TOH) nanocrystals using D-cysteine and L-cysteine as chiral inducers. By employing a two-step seed-mediated growth approach, stable chiral Au nanoparticles with customizable sizes, shapes, and optical properties were produced by adjusting the Au nanosphere (Au NP) seed concentration and cysteine dosage. These nanoparticles exhibited optical activity in both the visible and near-infrared regions, with a maximum anisotropy factor (<i>g</i>-factor) of 0.024. Furthermore, the PEG-modified chiral Au NFs demonstrated excellent biocompatibility. This approach provides a precise method for geometrically controlling the design of three-dimensional chiral nanomaterials, holding great potential for biomedical applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676769/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of Thermalization Mechanisms of Hot Carriers in BABr-Added MAPbBr3 for the Top Layer of Four-Junction Solar Cells.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-19 DOI: 10.3390/nano14242041
Yi Zhang, Huilong Chen, Junfeng Qu, Jiayu Zhang, Gavin Conibeer

The hot carrier multi-junction solar cell (HCMJC) is an advanced-concept solar cell with a theoretical efficiency greater than 65%. It combines the advantages of hot carrier solar cells and multi-junction solar cells with higher power conversion efficiency (PCE). The thermalization coefficient (Qth) has been shown to slow down by an order of magnitude in low-dimensional structures, which will significantly improve PCE. However, there have been no studies calculating the Qth of MAPbBr3 quantum dots so far. In this work, the Qth values of MAPbBr3 quantum dots and after BABr addition were calculated based on power-dependent steady-state photoluminescence (PD-SSPL). Their peak positions in PD-SSPL increased from 2.37 to 2.71 eV after adding BABr. The fitting shows that, after adding BABr, the Qth decreased from 2.64 ± 0.29 mW·K-1·cm-2 to 2.36 ± 0.25 mW·K-1·cm-2, indicating a lower relaxation rate. This is because BABr passivates surface defects, slowing down the carrier thermalization process. This work lays the foundation for the theoretical framework combining perovskite materials, which suggests that the appropriate passivation of BABr has the potential to further reduce Qth and make MAPbBr3 QDs with BABr modified more suitable as the top absorption layer of HCMJCs.

{"title":"Study of Thermalization Mechanisms of Hot Carriers in BABr-Added MAPbBr<sub>3</sub> for the Top Layer of Four-Junction Solar Cells.","authors":"Yi Zhang, Huilong Chen, Junfeng Qu, Jiayu Zhang, Gavin Conibeer","doi":"10.3390/nano14242041","DOIUrl":"10.3390/nano14242041","url":null,"abstract":"<p><p>The hot carrier multi-junction solar cell (HCMJC) is an advanced-concept solar cell with a theoretical efficiency greater than 65%. It combines the advantages of hot carrier solar cells and multi-junction solar cells with higher power conversion efficiency (PCE). The thermalization coefficient (<i>Q<sub>th</sub></i>) has been shown to slow down by an order of magnitude in low-dimensional structures, which will significantly improve PCE. However, there have been no studies calculating the <i>Q<sub>th</sub></i> of MAPbBr<sub>3</sub> quantum dots so far. In this work, the <i>Q<sub>th</sub></i> values of MAPbBr<sub>3</sub> quantum dots and after BABr addition were calculated based on power-dependent steady-state photoluminescence (PD-SSPL). Their peak positions in PD-SSPL increased from 2.37 to 2.71 eV after adding BABr. The fitting shows that, after adding BABr, the <i>Q<sub>th</sub></i> decreased from 2.64 ± 0.29 mW·K<sup>-1</sup>·cm<sup>-2</sup> to 2.36 ± 0.25 mW·K<sup>-1</sup>·cm<sup>-2</sup>, indicating a lower relaxation rate. This is because BABr passivates surface defects, slowing down the carrier thermalization process. This work lays the foundation for the theoretical framework combining perovskite materials, which suggests that the appropriate passivation of BABr has the potential to further reduce <i>Q<sub>th</sub></i> and make MAPbBr<sub>3</sub> QDs with BABr modified more suitable as the top absorption layer of HCMJCs.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678870/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional SERS Chip for Biological Application Realized by Double Fano Resonance.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-19 DOI: 10.3390/nano14242036
Weile Zhu, Huiyang Wang, Yuheng Wang, Shengde Liu, Jianglei Di, Liyun Zhong

The in situ and label-free detection of molecular information in biological cells has always been a challenging problem due to the weak Raman signal of biological molecules. The use of various resonance nanostructures has significantly advanced Surface-enhanced Raman spectroscopy (SERS) in signal enhancement in recent years. However, biological cells are often immersed in different formulations of culture medium with varying refractive indexes and are highly sensitive to the temperature of the microenvironment. This necessitates that SERS meets the requirements of refractive index insensitivity, low thermal damage, broadband enhancement, and other needs in addition to signal enhancement. Here, we propose a SERS chip with integrated dual Fano resonance and the corresponding analytical model. This model can be used to quickly lock the parameters and then analyze the performance of the dual resonance SERS chip. The simulation and experimental characterization results demonstrate that the integrated dual Fano resonances have the ability for independent broadband tuning. This capability enhances both the excitation and radiation processes of Raman signals simultaneously, ensuring that the resonance at the excitation wavelength is not affected by the culture medium (the refractive index) and reduces heat generation. Furthermore, the dual Fano resonance modes can synergize with each other to greatly enhance both the amplitude and enhanced range of the Raman signal, providing a stable, reliable, and comprehensive detection tool and strategy for fingerprint signal detection of bioactive samples.

{"title":"Multifunctional SERS Chip for Biological Application Realized by Double Fano Resonance.","authors":"Weile Zhu, Huiyang Wang, Yuheng Wang, Shengde Liu, Jianglei Di, Liyun Zhong","doi":"10.3390/nano14242036","DOIUrl":"10.3390/nano14242036","url":null,"abstract":"<p><p>The in situ and label-free detection of molecular information in biological cells has always been a challenging problem due to the weak Raman signal of biological molecules. The use of various resonance nanostructures has significantly advanced Surface-enhanced Raman spectroscopy (SERS) in signal enhancement in recent years. However, biological cells are often immersed in different formulations of culture medium with varying refractive indexes and are highly sensitive to the temperature of the microenvironment. This necessitates that SERS meets the requirements of refractive index insensitivity, low thermal damage, broadband enhancement, and other needs in addition to signal enhancement. Here, we propose a SERS chip with integrated dual Fano resonance and the corresponding analytical model. This model can be used to quickly lock the parameters and then analyze the performance of the dual resonance SERS chip. The simulation and experimental characterization results demonstrate that the integrated dual Fano resonances have the ability for independent broadband tuning. This capability enhances both the excitation and radiation processes of Raman signals simultaneously, ensuring that the resonance at the excitation wavelength is not affected by the culture medium (the refractive index) and reduces heat generation. Furthermore, the dual Fano resonance modes can synergize with each other to greatly enhance both the amplitude and enhanced range of the Raman signal, providing a stable, reliable, and comprehensive detection tool and strategy for fingerprint signal detection of bioactive samples.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142895823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exposure to a Titanium Dioxide Product Alters DNA Methylation in Human Cells.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-19 DOI: 10.3390/nano14242037
Carlos Wells, Marta Pogribna, Arjun Sharmah, Angel Paredes, Beverly Word, Anil K Patri, Beverly Lyn-Cook, George Hammons

The safety of titanium dioxide (TiO2), widely used in foods and personal care products, has been of ongoing concern. Significant toxicity of TiO2 has been reported, suggesting a risk to human health. To evaluate its potential epigenotoxicity, the effect of exposure to a TiO2 product to which humans could be exposed on DNA methylation, a primary epigenetic mechanism, was investigated using two human cell lines (Caco-2 (colorectal) and HepG2 (liver)) relevant to human exposure. Global methylation was determined by enzyme-linked immunosorbent assay-based immunochemical analysis. Gene promoter methylation was evaluated using EpiTect Methyl II Signature PCR System Array technology. Expression of DNA methyltransferases, MBD2, and URHF1 was quantified by qRT-PCR. A decrease in global DNA methylation was observed in both cell lines. Across the cell lines, seven genes (BNIP3, DNAJC15, GADD45G, GDF15, INSIG1, SCARA3, and TP53) were identified in which promoters were methylated. Changes in promoter methylation were associated with gene expression. Results also revealed aberrant expression of regulatory genes, DNA methyltransferases, MBD2, and UHRF1. Findings from the study clearly demonstrate the impact of TiO2 exposure on DNA methylation in two cell types, supporting the potential involvement of this epigenetic mechanism in its biological responses. Hence, epigenetic studies are critical for complete assessment of potential risk from exposure.

{"title":"Exposure to a Titanium Dioxide Product Alters DNA Methylation in Human Cells.","authors":"Carlos Wells, Marta Pogribna, Arjun Sharmah, Angel Paredes, Beverly Word, Anil K Patri, Beverly Lyn-Cook, George Hammons","doi":"10.3390/nano14242037","DOIUrl":"10.3390/nano14242037","url":null,"abstract":"<p><p>The safety of titanium dioxide (TiO<sub>2</sub>), widely used in foods and personal care products, has been of ongoing concern. Significant toxicity of TiO<sub>2</sub> has been reported, suggesting a risk to human health. To evaluate its potential epigenotoxicity, the effect of exposure to a TiO<sub>2</sub> product to which humans could be exposed on DNA methylation, a primary epigenetic mechanism, was investigated using two human cell lines (Caco-2 (colorectal) and HepG2 (liver)) relevant to human exposure. Global methylation was determined by enzyme-linked immunosorbent assay-based immunochemical analysis. Gene promoter methylation was evaluated using EpiTect Methyl II Signature PCR System Array technology. Expression of DNA methyltransferases, <i>MBD2</i>, and <i>URHF1</i> was quantified by qRT-PCR. A decrease in global DNA methylation was observed in both cell lines. Across the cell lines, seven genes (<i>BNIP3</i>, <i>DNAJC15</i>, <i>GADD45G</i>, <i>GDF15</i>, <i>INSIG1</i>, <i>SCARA3</i>, and <i>TP53</i>) were identified in which promoters were methylated. Changes in promoter methylation were associated with gene expression. Results also revealed aberrant expression of regulatory genes, DNA methyltransferases, MBD2, and UHRF1. Findings from the study clearly demonstrate the impact of TiO<sub>2</sub> exposure on DNA methylation in two cell types, supporting the potential involvement of this epigenetic mechanism in its biological responses. Hence, epigenetic studies are critical for complete assessment of potential risk from exposure.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface Microstructure Enhanced Cryogenic Infrared Light Emitting Diodes for Semiconductor Broadband Upconversion.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-19 DOI: 10.3390/nano14242039
Peng Bai, Hanbin Wang, Rongrong Lv, Yi Wang, Yinqiao Li, Shangjie Han, Jiaxuan Cai, Ning Yang, Weidong Chu, Yan Xie, Meng Chen, Yingxin Wang, Ziran Zhao

Broadband upconversion has various applications in solar photovoltaic, infrared and terahertz detection imaging, and biomedicine. The low efficiency of the light-emitting diodes (LEDs) limits the broadband upconversion performance. In this paper, we propose to use surface microstructures to enhance the electroluminescence efficiency (ELE) of LEDs. Systematical investigations on the cryogenic-temperature performances of microstructure-coupled LEDs, including electroluminescence efficiency, luminescence spectrum, and recombination rate, have been carried out by elaborating their enhancement mechanism and light emitting characteristics both experimentally and theoretically. We have revealed that the reason for the nearly 35% ELE enhancement of the optimized structure under cryogenic temperature and weak injection current is the efficient carrier injection efficiency and the high recombination rate in the active region. We also compare studies of the surface luminescence uniformity of the optimized LED with that of the unoptimized device. This work gives a precise description, and explanation of the performance of the optimized microstructure coupled LED at low temperatures, providing important guidance and inspiration for the optimization of broadband upconverter in the cryogenic temperature region.

{"title":"Surface Microstructure Enhanced Cryogenic Infrared Light Emitting Diodes for Semiconductor Broadband Upconversion.","authors":"Peng Bai, Hanbin Wang, Rongrong Lv, Yi Wang, Yinqiao Li, Shangjie Han, Jiaxuan Cai, Ning Yang, Weidong Chu, Yan Xie, Meng Chen, Yingxin Wang, Ziran Zhao","doi":"10.3390/nano14242039","DOIUrl":"10.3390/nano14242039","url":null,"abstract":"<p><p>Broadband upconversion has various applications in solar photovoltaic, infrared and terahertz detection imaging, and biomedicine. The low efficiency of the light-emitting diodes (LEDs) limits the broadband upconversion performance. In this paper, we propose to use surface microstructures to enhance the electroluminescence efficiency (ELE) of LEDs. Systematical investigations on the cryogenic-temperature performances of microstructure-coupled LEDs, including electroluminescence efficiency, luminescence spectrum, and recombination rate, have been carried out by elaborating their enhancement mechanism and light emitting characteristics both experimentally and theoretically. We have revealed that the reason for the nearly 35% ELE enhancement of the optimized structure under cryogenic temperature and weak injection current is the efficient carrier injection efficiency and the high recombination rate in the active region. We also compare studies of the surface luminescence uniformity of the optimized LED with that of the unoptimized device. This work gives a precise description, and explanation of the performance of the optimized microstructure coupled LED at low temperatures, providing important guidance and inspiration for the optimization of broadband upconverter in the cryogenic temperature region.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678078/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Label-Free DNA Nanosensor Based on Top-Gated Metal-Ferroelectric-Metal Graphene Nanoribbon on Insulator Field-Effect Transistor: A Quantum Simulation Study.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-19 DOI: 10.3390/nano14242038
Khalil Tamersit, Abdellah Kouzou, José Rodriguez, Mohamed Abdelrahem

In this paper, a new label-free DNA nanosensor based on a top-gated (TG) metal-ferroelectric-metal (MFM) graphene nanoribbon field-effect transistor (TG-MFM GNRFET) is proposed through a simulation approach. The DNA sensing principle is founded on the dielectric modulation concept. The computational method employed to evaluate the proposed nanobiosensor relies on the coupled solutions of a rigorous quantum simulation with the Landau-Khalatnikov equation, considering ballistic transport conditions. The investigation analyzes the effects of DNA molecules on nanodevice behavior, encompassing potential distribution, ferroelectric-induced gate voltage amplification, transfer characteristics, subthreshold swing, and current ratio. It has been observed that the feature of ferroelectric-induced gate voltage amplification using the integrated MFM structure can significantly enhance the biosensor's sensitivity to DNA molecules, whether in terms of threshold voltage shift or drain current variation. Additionally, we propose the current ratio as a sensing metric due to its ability to consider all DNA-induced modulations of electrical parameters, specifically the increase in on-state current and the decrease in off-state current and subthreshold swing. The obtained results indicate that the proposed negative-capacitance GNRFET-based DNA nanosensor could be considered an intriguing option for advanced point-of-care testing.

{"title":"New Label-Free DNA Nanosensor Based on Top-Gated Metal-Ferroelectric-Metal Graphene Nanoribbon on Insulator Field-Effect Transistor: A Quantum Simulation Study.","authors":"Khalil Tamersit, Abdellah Kouzou, José Rodriguez, Mohamed Abdelrahem","doi":"10.3390/nano14242038","DOIUrl":"10.3390/nano14242038","url":null,"abstract":"<p><p>In this paper, a new label-free DNA nanosensor based on a top-gated (TG) metal-ferroelectric-metal (MFM) graphene nanoribbon field-effect transistor (TG-MFM GNRFET) is proposed through a simulation approach. The DNA sensing principle is founded on the dielectric modulation concept. The computational method employed to evaluate the proposed nanobiosensor relies on the coupled solutions of a rigorous quantum simulation with the Landau-Khalatnikov equation, considering ballistic transport conditions. The investigation analyzes the effects of DNA molecules on nanodevice behavior, encompassing potential distribution, ferroelectric-induced gate voltage amplification, transfer characteristics, subthreshold swing, and current ratio. It has been observed that the feature of ferroelectric-induced gate voltage amplification using the integrated MFM structure can significantly enhance the biosensor's sensitivity to DNA molecules, whether in terms of threshold voltage shift or drain current variation. Additionally, we propose the current ratio as a sensing metric due to its ability to consider all DNA-induced modulations of electrical parameters, specifically the increase in on-state current and the decrease in off-state current and subthreshold swing. The obtained results indicate that the proposed negative-capacitance GNRFET-based DNA nanosensor could be considered an intriguing option for advanced point-of-care testing.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676356/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nanomaterials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1