首页 > 最新文献

Nanomaterials最新文献

英文 中文
Mild Temperature Thermal Treatments of Gold-Exfoliated Monolayer MoS2.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-22 DOI: 10.3390/nano15030160
Emanuele Sangiorgi, Antonino Madonia, Gianmarco Laurella, Salvatore Ethan Panasci, Emanuela Schilirò, Filippo Giannazzo, Igor Píš, Federica Bondino, György Zoltán Radnóczi, Viktória Kovács-Kis, Béla Pécz, Gianpiero Buscarino, Franco Mario Gelardi, Marco Cannas, Simonpietro Agnello

Monolayer molybdenum disulfide is considered an extremely promising two-dimensional material for innovative electronics due to its direct bandgap and high charge-carrier mobility. The optical and electronic properties of monolayer MoS2 can, however, be strongly influenced by the specific synthesis route, posing challenges for industrial-scale production. In this study, we investigated the effects of moderate temperature thermal treatments under a controlled O2 atmosphere on the properties of monolayer MoS2 flakes. We found that the treatments can effectively tune the doping level of monolayer MoS2. Notably, 225 °C was identified as the optimal temperature for enhancing its optical emission properties. Our findings suggest that the removal of sulfur vacancies and impurities underlies these effects, demonstrating a promising approach for tuning the properties of monolayer MoS2 at mild temperatures.

{"title":"Mild Temperature Thermal Treatments of Gold-Exfoliated Monolayer MoS<sub>2</sub>.","authors":"Emanuele Sangiorgi, Antonino Madonia, Gianmarco Laurella, Salvatore Ethan Panasci, Emanuela Schilirò, Filippo Giannazzo, Igor Píš, Federica Bondino, György Zoltán Radnóczi, Viktória Kovács-Kis, Béla Pécz, Gianpiero Buscarino, Franco Mario Gelardi, Marco Cannas, Simonpietro Agnello","doi":"10.3390/nano15030160","DOIUrl":"10.3390/nano15030160","url":null,"abstract":"<p><p>Monolayer molybdenum disulfide is considered an extremely promising two-dimensional material for innovative electronics due to its direct bandgap and high charge-carrier mobility. The optical and electronic properties of monolayer MoS<sub>2</sub> can, however, be strongly influenced by the specific synthesis route, posing challenges for industrial-scale production. In this study, we investigated the effects of moderate temperature thermal treatments under a controlled O<sub>2</sub> atmosphere on the properties of monolayer MoS<sub>2</sub> flakes. We found that the treatments can effectively tune the doping level of monolayer MoS<sub>2</sub>. Notably, 225 °C was identified as the optimal temperature for enhancing its optical emission properties. Our findings suggest that the removal of sulfur vacancies and impurities underlies these effects, demonstrating a promising approach for tuning the properties of monolayer MoS<sub>2</sub> at mild temperatures.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Photonic Metasurfaces and Metastructures.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-21 DOI: 10.3390/nano15030153
Viktoriia E Babicheva

Photonic metasurfaces and metastructures have revolutionized the manipulation of electromagnetic waves across diverse applications, from optical communication to sensing and stealth technology [...].

{"title":"Advances in Photonic Metasurfaces and Metastructures.","authors":"Viktoriia E Babicheva","doi":"10.3390/nano15030153","DOIUrl":"10.3390/nano15030153","url":null,"abstract":"<p><p>Photonic metasurfaces and metastructures have revolutionized the manipulation of electromagnetic waves across diverse applications, from optical communication to sensing and stealth technology [...].</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820991/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved Selectivity of CeMnOx/Pt@SnO2 Laminated MOS Sensor for Hydrogen Cyanide Under Temperature Dynamic Modulation.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-21 DOI: 10.3390/nano15030155
Yadong Liu, Yelin Qi, Wen Yang, Tengbo Ma, Shunping Zhang, Ting Liang

Poor selectivity is one of the main bottlenecks restricting the development of metal oxide semiconductor (MOS) sensors. In this paper, using hydrogen cyanide (HCN) as the target gas, CeMnOx as the catalytic layer material and Pt@SnO2 as the gas-sensitive layer material, we have proposed a scheme to improve the selectivity of a catalytic layer/gas-sensitive layer-laminated MOS sensor under dynamic temperature modulation. We tested HCN and 12 kinds of battlefield environment simulation gases, and the results showed that the CeMnOx/Pt@SnO2 sensor, under the condition of temperature dynamic modulation (a constant temperature of 400 °C for the gas-sensitive layer and a variable temperature of room temperature to 400 °C for the catalytic layer; the heating and cooling rates were 200 °C/s, the highest temperature was maintained for 2 s, and the lowest temperature was maintained for 2 s), distinct characteristic peaks appeared on the G-T curves of the resistance response to HCN only. The quantification of the characteristic peaks was performed by peak heights, and the peak height of 5 mg/m3 HCN was obtained up to 0.104, while the peak heights of the other gases at the same concentration were up to 0.034. The peak height of HCN was significantly higher than that of other gases, which verified the high selectivity of the sensor for HCN. Meanwhile, the sensor also showed good sensitivity, response/recovery time, stability and anti-interference for HCN under the above temperature dynamic modulation. This work provides an important reference for the selectivity improvement of MOS sensors for HCN.

{"title":"Improved Selectivity of CeMnOx/Pt@SnO<sub>2</sub> Laminated MOS Sensor for Hydrogen Cyanide Under Temperature Dynamic Modulation.","authors":"Yadong Liu, Yelin Qi, Wen Yang, Tengbo Ma, Shunping Zhang, Ting Liang","doi":"10.3390/nano15030155","DOIUrl":"10.3390/nano15030155","url":null,"abstract":"<p><p>Poor selectivity is one of the main bottlenecks restricting the development of metal oxide semiconductor (MOS) sensors. In this paper, using hydrogen cyanide (HCN) as the target gas, CeMnOx as the catalytic layer material and Pt@SnO<sub>2</sub> as the gas-sensitive layer material, we have proposed a scheme to improve the selectivity of a catalytic layer/gas-sensitive layer-laminated MOS sensor under dynamic temperature modulation. We tested HCN and 12 kinds of battlefield environment simulation gases, and the results showed that the CeMnOx/Pt@SnO<sub>2</sub> sensor, under the condition of temperature dynamic modulation (a constant temperature of 400 °C for the gas-sensitive layer and a variable temperature of room temperature to 400 °C for the catalytic layer; the heating and cooling rates were 200 °C/s, the highest temperature was maintained for 2 s, and the lowest temperature was maintained for 2 s), distinct characteristic peaks appeared on the G-T curves of the resistance response to HCN only. The quantification of the characteristic peaks was performed by peak heights, and the peak height of 5 mg/m<sup>3</sup> HCN was obtained up to 0.104, while the peak heights of the other gases at the same concentration were up to 0.034. The peak height of HCN was significantly higher than that of other gases, which verified the high selectivity of the sensor for HCN. Meanwhile, the sensor also showed good sensitivity, response/recovery time, stability and anti-interference for HCN under the above temperature dynamic modulation. This work provides an important reference for the selectivity improvement of MOS sensors for HCN.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820410/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface Properties of Coatings Based on Iron Amino-Functionalized Oxides Deposited on DH 36 Steel Plates for Shipbuilding.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-21 DOI: 10.3390/nano15030150
Maria Luisa Testa, Carla Calabrese, Valeria La Parola, Cristina Scolaro, Annamaria Visco, Simone Cappello, Leonarda Francesca Liotta

The development of eco-friendly paint formulations is part of the transition process to more sustainable materials, which involves many industries such as offshore and shipbuilding, where the deterioration of steel in seawater is a key factor. This article aims to produce innovative coatings and test their protective action on DH 36 steel plates. SiO2 and TiO2 were modified with amino groups and iron sites to be used as filler for the design of ecological paint formulations The antimicrobial features of both NH2 groups and iron ionic species were combined with the chemical and mechanical stability of silica and titania, with silica-based powders showing increased efficacy. The surface properties of the resulting coatings were examined by determination of thickness, water wettability, roughness, and cross-cut adhesion tests (before and after a degradation test in seawater according to ASTM D870-97 standards). Preliminary tests of the microbiological activity of the iron amino functionalized materials were carried out to monitor, as proof of concept, the growth of some bacterial strains through measurements of optical density. The findings indicate that these coatings not only provide effective corrosion protection but are promising for enhancing the durability and environmental performance of steel surfaces exposed to marine environments.

{"title":"Surface Properties of Coatings Based on Iron Amino-Functionalized Oxides Deposited on DH 36 Steel Plates for Shipbuilding.","authors":"Maria Luisa Testa, Carla Calabrese, Valeria La Parola, Cristina Scolaro, Annamaria Visco, Simone Cappello, Leonarda Francesca Liotta","doi":"10.3390/nano15030150","DOIUrl":"10.3390/nano15030150","url":null,"abstract":"<p><p>The development of eco-friendly paint formulations is part of the transition process to more sustainable materials, which involves many industries such as offshore and shipbuilding, where the deterioration of steel in seawater is a key factor. This article aims to produce innovative coatings and test their protective action on DH 36 steel plates. SiO<sub>2</sub> and TiO<sub>2</sub> were modified with amino groups and iron sites to be used as filler for the design of ecological paint formulations The antimicrobial features of both NH<sub>2</sub> groups and iron ionic species were combined with the chemical and mechanical stability of silica and titania, with silica-based powders showing increased efficacy. The surface properties of the resulting coatings were examined by determination of thickness, water wettability, roughness, and cross-cut adhesion tests (before and after a degradation test in seawater according to ASTM D870-97 standards). Preliminary tests of the microbiological activity of the iron amino functionalized materials were carried out to monitor, as proof of concept, the growth of some bacterial strains through measurements of optical density. The findings indicate that these coatings not only provide effective corrosion protection but are promising for enhancing the durability and environmental performance of steel surfaces exposed to marine environments.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820281/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Electrochemical Performance of Ultrahigh-Loading Cathodes via the Addition of Multi-Walled Carbon Nanotubes.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-21 DOI: 10.3390/nano15030156
Chan Ju Choi, Tae Heon Kim, Hyun Woo Kim, Do Man Jeon, Jinhyup Han

Achieving high energy densities in lithium-ion batteries requires advancements in electrode materials and design. This study investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) with high commercial viability as conductive additives into two types of high-nickel cathode materials, LiNi0.8Co0.1Mn0.1O2 and LiNi0.92Co0.07Mn0.01O2. To ensure a uniform distribution within the electrodes, MWCNTs were uniformly dispersed in the solvent using ultrasonication, the most effective and straightforward dispersion method. This enhancement improved both electronic and ionic conductivity, facilitating the formation of an efficient electron transfer network. Unlike the cells using only carbon black, the electrodes with MWCNTs exhibited lower internal resistances, facilitating higher lithium-ion diffusion. The cells with MWCNTs exhibited a capacity retention of 89.5% over their cycle life, and the cells with 2 wt% MWCNTs exhibited a superior rate capability at a high current density of 1 C. This study highlights that incorporating well-dispersed MWCNTs effectively enhances the electrochemical performance of ultrahigh-loading cathodes in lithium-ion batteries (LIBs), providing valuable insights into electrode design.

{"title":"Improving Electrochemical Performance of Ultrahigh-Loading Cathodes via the Addition of Multi-Walled Carbon Nanotubes.","authors":"Chan Ju Choi, Tae Heon Kim, Hyun Woo Kim, Do Man Jeon, Jinhyup Han","doi":"10.3390/nano15030156","DOIUrl":"10.3390/nano15030156","url":null,"abstract":"<p><p>Achieving high energy densities in lithium-ion batteries requires advancements in electrode materials and design. This study investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) with high commercial viability as conductive additives into two types of high-nickel cathode materials, LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> and LiNi<sub>0.92</sub>Co<sub>0.07</sub>Mn<sub>0.01</sub>O<sub>2</sub>. To ensure a uniform distribution within the electrodes, MWCNTs were uniformly dispersed in the solvent using ultrasonication, the most effective and straightforward dispersion method. This enhancement improved both electronic and ionic conductivity, facilitating the formation of an efficient electron transfer network. Unlike the cells using only carbon black, the electrodes with MWCNTs exhibited lower internal resistances, facilitating higher lithium-ion diffusion. The cells with MWCNTs exhibited a capacity retention of 89.5% over their cycle life, and the cells with 2 wt% MWCNTs exhibited a superior rate capability at a high current density of 1 C. This study highlights that incorporating well-dispersed MWCNTs effectively enhances the electrochemical performance of ultrahigh-loading cathodes in lithium-ion batteries (LIBs), providing valuable insights into electrode design.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and Optimization of Additively Manufactured Hybrid Nanogenerators for Wearable Devices.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-21 DOI: 10.3390/nano15030159
Khaled A Eltoukhy, Mohamed Fawzy Aly, Marc Sarquella, Concepción Langreo, Mohamed Serry

This paper aims to fabricate a hybrid piezoelectric/triboelectric nanogenerator via fusion deposition modeling as a proof of concept in the wearable device industry. The nanogenerator structure consists of a TPU/ZnO nanocomposite and an Ecoflex layer. The nanocomposite layer is fabricated using two different weight percentages (15 wt% and 20 wt%) and poled piezoelectric sheets, generating 2.63 V to 3.46 V. Variations regarding the nanogenerator's physical parameters were implemented to examine the effect on nanogenerator performance under different frequencies. The hybrid nanogenerator enabled energy harvesting for wearable devices. It was strapped on the side of the wrist to generate a potential difference with the motion of the wrist, creating a contact separation piezoelectric/triboelectric nanogenerator. Furthermore, a piezoelectric sheet was placed at the bottom of the wrist to harvest energy. The hybrid nanogenerator provided a maximum triboelectric response of 5.75 V and a maximum piezoelectric response of 2.85 V during wrist motion. The piezoelectric nanogenerator placed at the bottom of the wrist generated up to 4.78 V per wrist motion.

{"title":"Fabrication and Optimization of Additively Manufactured Hybrid Nanogenerators for Wearable Devices.","authors":"Khaled A Eltoukhy, Mohamed Fawzy Aly, Marc Sarquella, Concepción Langreo, Mohamed Serry","doi":"10.3390/nano15030159","DOIUrl":"10.3390/nano15030159","url":null,"abstract":"<p><p>This paper aims to fabricate a hybrid piezoelectric/triboelectric nanogenerator via fusion deposition modeling as a proof of concept in the wearable device industry. The nanogenerator structure consists of a TPU/ZnO nanocomposite and an Ecoflex layer. The nanocomposite layer is fabricated using two different weight percentages (15 wt% and 20 wt%) and poled piezoelectric sheets, generating 2.63 V to 3.46 V. Variations regarding the nanogenerator's physical parameters were implemented to examine the effect on nanogenerator performance under different frequencies. The hybrid nanogenerator enabled energy harvesting for wearable devices. It was strapped on the side of the wrist to generate a potential difference with the motion of the wrist, creating a contact separation piezoelectric/triboelectric nanogenerator. Furthermore, a piezoelectric sheet was placed at the bottom of the wrist to harvest energy. The hybrid nanogenerator provided a maximum triboelectric response of 5.75 V and a maximum piezoelectric response of 2.85 V during wrist motion. The piezoelectric nanogenerator placed at the bottom of the wrist generated up to 4.78 V per wrist motion.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Nanomaterial-Based Approach for the Cryopreservation of Individual Sperm Cells Using Addressable Nanoliter Containers.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-21 DOI: 10.3390/nano15030149
Bat-Sheva Galmidi, Yana Shafran, Chen Shimon, Adva Aizer, Raoul Orvieto, Naomi Zurgil, Mordechai Deutsch, Zeev Schiffer, Dror Fixler

The research and development of a matrix of Addressable Nanoliter Containers (ANLCs) is the focus of this work. ANLCs introduce a novel approach for cryopreserving single sperm cells. A significant increase in sperm cell mortality was observed after cryopreserving nanoliter-scale cell suspensions, attributed to the diffusion of water from the aqueous droplets into the surrounding oil phase. This process elevated the salt concentration within the droplets. A practical solution was devised by saturating the oil with water, significantly reducing the concentration gradient and, consequently, the diffusion. For ANLCs smaller than a few nanoliters, locating individual sperm cells within the containers became highly feasible. Using saturated oil, the survival rate reached 100%. Optical simulations were conducted to evaluate the impact of ANLCs on light scattering, enabling the selection of designs with minimal scattering. The simulations conclusively demonstrated that a cylindrical container with a flat bottom produced the least light scattering. This device was tested under clinical conditions in an in vitro fertilization (IVF) laboratory, revealing its strong potential as a practical tool for housing individual sperm cells. It enables characterization using interferometric indicators and facilitates the selection of sperm cells for IVF.

{"title":"A Novel Nanomaterial-Based Approach for the Cryopreservation of Individual Sperm Cells Using Addressable Nanoliter Containers.","authors":"Bat-Sheva Galmidi, Yana Shafran, Chen Shimon, Adva Aizer, Raoul Orvieto, Naomi Zurgil, Mordechai Deutsch, Zeev Schiffer, Dror Fixler","doi":"10.3390/nano15030149","DOIUrl":"10.3390/nano15030149","url":null,"abstract":"<p><p>The research and development of a matrix of Addressable Nanoliter Containers (ANLCs) is the focus of this work. ANLCs introduce a novel approach for cryopreserving single sperm cells. A significant increase in sperm cell mortality was observed after cryopreserving nanoliter-scale cell suspensions, attributed to the diffusion of water from the aqueous droplets into the surrounding oil phase. This process elevated the salt concentration within the droplets. A practical solution was devised by saturating the oil with water, significantly reducing the concentration gradient and, consequently, the diffusion. For ANLCs smaller than a few nanoliters, locating individual sperm cells within the containers became highly feasible. Using saturated oil, the survival rate reached 100%. Optical simulations were conducted to evaluate the impact of ANLCs on light scattering, enabling the selection of designs with minimal scattering. The simulations conclusively demonstrated that a cylindrical container with a flat bottom produced the least light scattering. This device was tested under clinical conditions in an in vitro fertilization (IVF) laboratory, revealing its strong potential as a practical tool for housing individual sperm cells. It enables characterization using interferometric indicators and facilitates the selection of sperm cells for IVF.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821078/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-21 DOI: 10.3390/nano15030158
Alessandra Spada, Sandrine Gerber-Lemaire

Active cancer targeting consists of the selective recognition of overexpressed biomarkers on cancer cell surfaces or within the tumor microenvironment, enabled by ligands conjugated to drug carriers. Nanoparticle (NP)-based systems are highly relevant for such an approach due to their large surface area which is amenable to a variety of chemical modifications. Over the past decades, several studies have debated the efficiency of passive targeting, highlighting active targeting as a more specific and selective approach. The choice of conjugation chemistry for attaching ligands to nanocarriers is critical to ensure a stable and robust system. Among the panel of cancer biomarkers, the epidermal growth factor receptor (EGFR) stands as one of the most frequently overexpressed receptors in different cancer types. The design and development of nanocarriers with surface-bound anti-EGFR ligands are vital for targeted therapy, relying on their facilitated capture by EGFR-overexpressing tumor cells and enabling receptor-mediated endocytosis to improve drug accumulation within the tumor microenvironment. In this review, we examine several examples of the most recent and significant anti-EGFR nanocarriers and explore the various conjugation strategies for NP functionalization with anti-EGFR biomolecules and small molecular ligands. In addition, we also describe some of the most common characterization techniques to confirm and analyze the conjugation patterns.

{"title":"Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting.","authors":"Alessandra Spada, Sandrine Gerber-Lemaire","doi":"10.3390/nano15030158","DOIUrl":"10.3390/nano15030158","url":null,"abstract":"<p><p>Active cancer targeting consists of the selective recognition of overexpressed biomarkers on cancer cell surfaces or within the tumor microenvironment, enabled by ligands conjugated to drug carriers. Nanoparticle (NP)-based systems are highly relevant for such an approach due to their large surface area which is amenable to a variety of chemical modifications. Over the past decades, several studies have debated the efficiency of passive targeting, highlighting active targeting as a more specific and selective approach. The choice of conjugation chemistry for attaching ligands to nanocarriers is critical to ensure a stable and robust system. Among the panel of cancer biomarkers, the epidermal growth factor receptor (EGFR) stands as one of the most frequently overexpressed receptors in different cancer types. The design and development of nanocarriers with surface-bound anti-EGFR ligands are vital for targeted therapy, relying on their facilitated capture by EGFR-overexpressing tumor cells and enabling receptor-mediated endocytosis to improve drug accumulation within the tumor microenvironment. In this review, we examine several examples of the most recent and significant anti-EGFR nanocarriers and explore the various conjugation strategies for NP functionalization with anti-EGFR biomolecules and small molecular ligands. In addition, we also describe some of the most common characterization techniques to confirm and analyze the conjugation patterns.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of GaN Bent Waveguides in the Visible Spectrum for Reduced Insertion Loss.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-21 DOI: 10.3390/nano15030151
Wendi Li, Huiping Yin, Qian Fang, Feifei Qin, Zheng Shi, Yongjin Wang, Xin Li

The development of GaN-based photonic integrated chips has attracted significant attention for visible light communication systems due to their direct bandgap and excellent optical properties across the visible spectrum. However, achieving compact and efficient light routing through bent waveguides remains challenging due to high insertion losses. This paper presents a comprehensive investigation of GaN bent waveguides optimization for visible light photonic integrated chips. Through systematic simulation analysis, we examined the effects of bending angle, process optimization approaches, and geometric parameters on insertion loss characteristics. The back-side thinning process demonstrates superior performance compared to front-side etching, reducing the insertion loss of 90° bends from 1.80 dB to 0.71 dB. Further optimization using silver reflection layers achieves an insertion loss of 0.57 dB. The optimized structure shows excellent performance in the blue-green spectral range (420-500 nm) with insertion losses below 0.9 dB, providing practical solutions for compact GaN photonic integrated chips in visible light communications.

{"title":"Optimization of GaN Bent Waveguides in the Visible Spectrum for Reduced Insertion Loss.","authors":"Wendi Li, Huiping Yin, Qian Fang, Feifei Qin, Zheng Shi, Yongjin Wang, Xin Li","doi":"10.3390/nano15030151","DOIUrl":"10.3390/nano15030151","url":null,"abstract":"<p><p>The development of GaN-based photonic integrated chips has attracted significant attention for visible light communication systems due to their direct bandgap and excellent optical properties across the visible spectrum. However, achieving compact and efficient light routing through bent waveguides remains challenging due to high insertion losses. This paper presents a comprehensive investigation of GaN bent waveguides optimization for visible light photonic integrated chips. Through systematic simulation analysis, we examined the effects of bending angle, process optimization approaches, and geometric parameters on insertion loss characteristics. The back-side thinning process demonstrates superior performance compared to front-side etching, reducing the insertion loss of 90° bends from 1.80 dB to 0.71 dB. Further optimization using silver reflection layers achieves an insertion loss of 0.57 dB. The optimized structure shows excellent performance in the blue-green spectral range (420-500 nm) with insertion losses below 0.9 dB, providing practical solutions for compact GaN photonic integrated chips in visible light communications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820026/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143408173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shutter-Synchronized Molecular Beam Epitaxy for Wafer-Scale Homogeneous GaAs and Telecom Wavelength Quantum Emitter Growth. 用于晶圆级均匀砷化镓和电信波长量子发射器生长的快门同步分子束外延。
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-21 DOI: 10.3390/nano15030157
Elias Kersting, Hans-Georg Babin, Nikolai Spitzer, Jun-Yong Yan, Feng Liu, Andreas D Wieck, Arne Ludwig

Quantum dot (QD)-based single-photon emitter devices today are based on self-assembled random position nucleated QDs emitting at random wavelengths. Deterministic QD growth in position and emitter wavelength would be highly appreciated for industry-scale high-yield device manufacturing from wafers. Local droplet etching during molecular beam epitaxy is an all in situ method that allows excellent density control and predetermines the nucleation site of quantum dots. This method can produce strain-free GaAs QDs with excellent photonic and spin properties. Here, we focus on the emitter wavelength homogeneity. By wafer rotation-synchronized shutter opening time and adapted growth parameters, we grow QDs with a narrow peak emission wavelength homogeneity with no more than 1.2 nm shifts on a 45 mm diameter area and a narrow inhomogeneous ensemble broadening of only 2 nm at 4 K. The emission wavelength of these strain-free GaAs QDs is <800 nm, attractive for quantum optics experiments and quantum memory applications. We can use a similar random local droplet nucleation, nanohole drilling, and now, InAs infilling to produce QDs emitting in the telecommunication optical fiber transparency window around 1.3 µm, the so-called O-band. For this approach, we demonstrate good wavelength homogeneity and excellent density homogeneity beyond the possibilities of standard Stranski-Krastanov self-assembly. We discuss our methodology, structural and optical properties, and limitations set by our current setup capabilities.

{"title":"Shutter-Synchronized Molecular Beam Epitaxy for Wafer-Scale Homogeneous GaAs and Telecom Wavelength Quantum Emitter Growth.","authors":"Elias Kersting, Hans-Georg Babin, Nikolai Spitzer, Jun-Yong Yan, Feng Liu, Andreas D Wieck, Arne Ludwig","doi":"10.3390/nano15030157","DOIUrl":"10.3390/nano15030157","url":null,"abstract":"<p><p>Quantum dot (QD)-based single-photon emitter devices today are based on self-assembled random position nucleated QDs emitting at random wavelengths. Deterministic QD growth in position and emitter wavelength would be highly appreciated for industry-scale high-yield device manufacturing from wafers. Local droplet etching during molecular beam epitaxy is an all in situ method that allows excellent density control and predetermines the nucleation site of quantum dots. This method can produce strain-free GaAs QDs with excellent photonic and spin properties. Here, we focus on the emitter wavelength homogeneity. By wafer rotation-synchronized shutter opening time and adapted growth parameters, we grow QDs with a narrow peak emission wavelength homogeneity with no more than 1.2 nm shifts on a 45 mm diameter area and a narrow inhomogeneous ensemble broadening of only 2 nm at 4 K. The emission wavelength of these strain-free GaAs QDs is <800 nm, attractive for quantum optics experiments and quantum memory applications. We can use a similar random local droplet nucleation, nanohole drilling, and now, InAs infilling to produce QDs emitting in the telecommunication optical fiber transparency window around 1.3 µm, the so-called O-band. For this approach, we demonstrate good wavelength homogeneity and excellent density homogeneity beyond the possibilities of standard Stranski-Krastanov self-assembly. We discuss our methodology, structural and optical properties, and limitations set by our current setup capabilities.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820245/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143408983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nanomaterials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1