Pub Date : 2025-12-10DOI: 10.1038/s41588-025-02447-0
Yann Joly, Yunhe Xue, Jessica Huang, Diya Uberoi
Amid growing geopolitical tension and scientific advances, fragmented and reactive governance policies could increase the risks of dual-use genomics, undermining international collaboration and data security. This Comment calls on the international genomics community to meet to establish robust, harmonized standards to safeguard genomic data.
{"title":"A call for a global cyberbiosecurity framework in genomics","authors":"Yann Joly, Yunhe Xue, Jessica Huang, Diya Uberoi","doi":"10.1038/s41588-025-02447-0","DOIUrl":"10.1038/s41588-025-02447-0","url":null,"abstract":"Amid growing geopolitical tension and scientific advances, fragmented and reactive governance policies could increase the risks of dual-use genomics, undermining international collaboration and data security. This Comment calls on the international genomics community to meet to establish robust, harmonized standards to safeguard genomic data.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"58 1","pages":"9-12"},"PeriodicalIF":29.0,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145717914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-09DOI: 10.1038/s41588-025-02457-y
Petra Gross
{"title":"Enhancer activity of transposable elements on ecDNA","authors":"Petra Gross","doi":"10.1038/s41588-025-02457-y","DOIUrl":"10.1038/s41588-025-02457-y","url":null,"abstract":"","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 12","pages":"2942-2942"},"PeriodicalIF":29.0,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145710784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-09DOI: 10.1038/s41588-025-02458-x
Hui Hua
{"title":"A twist to rose fragrance","authors":"Hui Hua","doi":"10.1038/s41588-025-02458-x","DOIUrl":"10.1038/s41588-025-02458-x","url":null,"abstract":"","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 12","pages":"2943-2943"},"PeriodicalIF":29.0,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145715362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-09DOI: 10.1038/s41588-025-02411-y
Boyang Fu, Ali Pazokitoroudi, Zhuozheng Shi, Asha Kar, Albert Xue, Aakarsh Anand, Prateek Anand, Zhengtong Liu, Richard Border, Päivi Pajukanta, Noah Zaitlen, Sriram Sankararaman
The contribution of genetic interactions (epistasis) to human complex trait variation remains poorly understood due, in part, to the statistical and computational challenges involved in testing for interaction effects. Here we introduce FAME (FAst Marginal Epistasis test), a method that can test for marginal epistasis of a single-nucleotide polymorphism (SNP) on a quantitative trait (whether the effect of an SNP on the trait is modulated by genetic background). FAME is computationally efficient, enabling tests of marginal epistasis on biobank-scale data. Applying FAME to genome-wide association study (GWAS)-significant trait-SNP associations across 53 quantitative traits and ≈300 000 unrelated White British individuals in the UK Biobank (UKBB), we identified 16 significant marginal epistasis signals across 12 traits ( $$P < frac{5times {10}^{-8}}{53}$$ ). Leveraging the scalability of FAME, we further localized marginal epistasis signals across chromosomes and estimated the proportion of variance explained by marginal epistasis effects. Our study provides evidence for interactions between individual genetic variants and polygenic background influencing complex traits. FAME is a biobank-scale method that tests whether the effect of an SNP on a quantitative trait is modulated by an individual’s polygenic background. FAME can also be used to estimate of the proportion of variance explained by such marginal epistasis effects
{"title":"A biobank-scale test of marginal epistasis reveals genome-wide signals of polygenic interaction effects","authors":"Boyang Fu, Ali Pazokitoroudi, Zhuozheng Shi, Asha Kar, Albert Xue, Aakarsh Anand, Prateek Anand, Zhengtong Liu, Richard Border, Päivi Pajukanta, Noah Zaitlen, Sriram Sankararaman","doi":"10.1038/s41588-025-02411-y","DOIUrl":"10.1038/s41588-025-02411-y","url":null,"abstract":"The contribution of genetic interactions (epistasis) to human complex trait variation remains poorly understood due, in part, to the statistical and computational challenges involved in testing for interaction effects. Here we introduce FAME (FAst Marginal Epistasis test), a method that can test for marginal epistasis of a single-nucleotide polymorphism (SNP) on a quantitative trait (whether the effect of an SNP on the trait is modulated by genetic background). FAME is computationally efficient, enabling tests of marginal epistasis on biobank-scale data. Applying FAME to genome-wide association study (GWAS)-significant trait-SNP associations across 53 quantitative traits and ≈300 000 unrelated White British individuals in the UK Biobank (UKBB), we identified 16 significant marginal epistasis signals across 12 traits ( $$P < frac{5times {10}^{-8}}{53}$$ ). Leveraging the scalability of FAME, we further localized marginal epistasis signals across chromosomes and estimated the proportion of variance explained by marginal epistasis effects. Our study provides evidence for interactions between individual genetic variants and polygenic background influencing complex traits. FAME is a biobank-scale method that tests whether the effect of an SNP on a quantitative trait is modulated by an individual’s polygenic background. FAME can also be used to estimate of the proportion of variance explained by such marginal epistasis effects","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 12","pages":"3175-3184"},"PeriodicalIF":29.0,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41588-025-02411-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145705137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}