Tellurium (Te), a typical p-type elemental semiconductor, exhibits exceptional properties including environmental stability, high carrier mobility, and superior optical responsiveness, demonstrating significant application potential in next-generation optoelectronic devices. This review provides a systematic overview of the crystal structures and optoelectronic properties of Te, along with the research progress in the field of Te-based photodetectors. Firstly, the crystal structures and band characteristics of Te are elucidated, with its optical and electrical properties analyzed in depth to lay a theoretical foundation for subsequent research. On this basis, the photoelectric performance and operating mechanisms of photodetectors based on individual Te nanomaterials are explored, encompassing one-dimensional (1D) Te nanowires, nanoribbons, nanocoils, and two-dimensional (2D) Te nanosheets and nanofilms. Furthermore, the structural designs and application potential of Te nanomaterial heterostructure photodetectors based on different band alignment types are elaborated in detail. Finally, the current bottlenecks encountered by Te-based materials in the field of photoelectric detection are synthesized, and perspectives on future researchdirections within this field are delineated. We believe that that frontier explorations of Te-based materials will yield significant breakthroughs, and such research will offer highly valuable industrial references for the commercialization of nanodevices.
{"title":"Research progress and challenges of low-dimensional telluriumbased photodetectors.","authors":"Xuemei Lu, Yulong Hao, Shiwei Zhang, Aolin Peng, Jie Zhou, Yanling Wang, Guolin Hao","doi":"10.1088/1361-6528/ae36b1","DOIUrl":"https://doi.org/10.1088/1361-6528/ae36b1","url":null,"abstract":"<p><p>Tellurium (Te), a typical p-type elemental semiconductor, exhibits exceptional properties including environmental stability, high carrier mobility, and superior optical responsiveness, demonstrating significant application potential in next-generation optoelectronic devices. This review provides a systematic overview of the crystal structures and optoelectronic properties of Te, along with the research progress in the field of Te-based photodetectors. Firstly, the crystal structures and band characteristics of Te are elucidated, with its optical and electrical properties analyzed in depth to lay a theoretical foundation for subsequent research. On this basis, the photoelectric performance and operating mechanisms of photodetectors based on individual Te nanomaterials are explored, encompassing one-dimensional (1D) Te nanowires, nanoribbons, nanocoils, and two-dimensional (2D) Te nanosheets and nanofilms. Furthermore, the structural designs and application potential of Te nanomaterial heterostructure photodetectors based on different band alignment types are elaborated in detail. Finally, the current bottlenecks encountered by Te-based materials in the field of photoelectric detection are synthesized, and perspectives on future researchdirections within this field are delineated. We believe that that frontier explorations of Te-based materials will yield significant breakthroughs, and such research will offer highly valuable industrial references for the commercialization of nanodevices.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145959844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-12DOI: 10.1088/1361-6528/ae36b3
Sooyeon Park, Fabrizio Riminucci, Dmitriy L Voronov, Howard A Padmore
A nano-inscribing technique was tested as a method of cost-effective replication of blazed diffraction gratings for x-rays. A saw-tooth mold for the nano-inscribing was fabricated by a double-replication process from a master blazed grating. The nano-inscribing was performed using a UV-curable resist of low viscosity to provide a small thickness of the resist replicas, required for a following transfer process. The nano-inscribing process was optimized to minimize surface relaxation and preserve the saw-tooth shape of the grooves, required for high diffraction efficiency. The quality of the replica gratings was evaluated via diffraction efficiency simulations. The simulations demonstrated that near theoretical efficiency can be achieved for the x-ray gratings made by the nano-inscribing approach.
{"title":"Replication of x-ray blazed gratings by nano-inscribing.","authors":"Sooyeon Park, Fabrizio Riminucci, Dmitriy L Voronov, Howard A Padmore","doi":"10.1088/1361-6528/ae36b3","DOIUrl":"https://doi.org/10.1088/1361-6528/ae36b3","url":null,"abstract":"<p><p>A nano-inscribing technique was tested as a method of cost-effective replication of blazed diffraction gratings for x-rays. A saw-tooth mold for the nano-inscribing was fabricated by a double-replication process from a master blazed grating. The nano-inscribing was performed using a UV-curable resist of low viscosity to provide a small thickness of the resist replicas, required for a following transfer process. The nano-inscribing process was optimized to minimize surface relaxation and preserve the saw-tooth shape of the grooves, required for high diffraction efficiency. The quality of the replica gratings was evaluated via diffraction efficiency simulations. The simulations demonstrated that near theoretical efficiency can be achieved for the x-ray gratings made by the nano-inscribing approach.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145959891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-12DOI: 10.1088/1361-6528/ae2f67
Saba Abdul Shakoor, Michael Nolan
Phosphorene exhibits promising tribological application due to its layered structure that imparts intrinsic lubricating properties. Understanding the mechanisms by which oxygen and other ambient species modify phosphorene remains a key challenge, with the impact of the layer thickness and point defects still unknown. Despite its promise as a solid-state lubricant, detailed nanoscale understanding of layer-dependent defect formation, surface reactivity, and potential degradation is still limited. In particular, the possible multilayer-dependent degradation behaviour of phosphorene in the presence of common environmental species such as hydrogen (H), oxygen (O), and hydroxyl (OH) has received little attention. In this work, we perform a systematic density functional theory investigation to explore how these chemical species interact with monolayer to four-layer phosphorene, including systems with and without phosphorus vacancies. Our findings show that H, OH adsorption is energetically not favourable in any layer configurations, while O shows strong exothermic interactions across all thicknesses, regardless of the presence of defects, with the bilayer showing the most favourable interaction with these species. Structural responses, including changes in bond lengths and interlayer spacing, were quantified and found to depend on both the type of adsorbate and the number of layers. The presence of vacancies induces localized distortions but does not compromise the overall structural integrity. Bader charge calculations show charge transfer between phosphorene layers and adsorbates. Overall, our results set a foundation for further work on phosphorene by providing a detailed, layer-by-layer understanding of phosphorene's chemical reactivity in ambient environments and highlight the need to consider layer number, intrinsic defects and environmental species in models of phosphorene.
{"title":"A first-principles study of the reactivity and layer-dependent properties of phosphorene.","authors":"Saba Abdul Shakoor, Michael Nolan","doi":"10.1088/1361-6528/ae2f67","DOIUrl":"10.1088/1361-6528/ae2f67","url":null,"abstract":"<p><p>Phosphorene exhibits promising tribological application due to its layered structure that imparts intrinsic lubricating properties. Understanding the mechanisms by which oxygen and other ambient species modify phosphorene remains a key challenge, with the impact of the layer thickness and point defects still unknown. Despite its promise as a solid-state lubricant, detailed nanoscale understanding of layer-dependent defect formation, surface reactivity, and potential degradation is still limited. In particular, the possible multilayer-dependent degradation behaviour of phosphorene in the presence of common environmental species such as hydrogen (H), oxygen (O), and hydroxyl (OH) has received little attention. In this work, we perform a systematic density functional theory investigation to explore how these chemical species interact with monolayer to four-layer phosphorene, including systems with and without phosphorus vacancies. Our findings show that H, OH adsorption is energetically not favourable in any layer configurations, while O shows strong exothermic interactions across all thicknesses, regardless of the presence of defects, with the bilayer showing the most favourable interaction with these species. Structural responses, including changes in bond lengths and interlayer spacing, were quantified and found to depend on both the type of adsorbate and the number of layers. The presence of vacancies induces localized distortions but does not compromise the overall structural integrity. Bader charge calculations show charge transfer between phosphorene layers and adsorbates. Overall, our results set a foundation for further work on phosphorene by providing a detailed, layer-by-layer understanding of phosphorene's chemical reactivity in ambient environments and highlight the need to consider layer number, intrinsic defects and environmental species in models of phosphorene.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145794420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-12DOI: 10.1088/1361-6528/ae2f68
Jingjing Tan, Hang Xu, Jianbin Guo, Lin Chen, Qingqing Sun, Hao Zhu
In power electronics, silicon carbide (SiC) MOSFETs can experience ultra-high gate voltage pulses during electrostatic events, yet their reliability under such extreme conditions remains insufficiently explored. In this work, we fabricate SiC MOSFETs and present systematic reliability evaluation under ultra-high gate pulse stress. Our results reveal that hole-related charge trapping dominates the degradation for both positive and negative gate stress. Under high positive pulses, the threshold voltage (Vth) exhibits a non-monotonic shift driven by hole injection, whereas under high negative pulses,Vthdecreases rapidly due to hole capture and the formation of additional donor-like traps. Moreover, the time and field dependence ofVthdegradation demonstrates that oxide breakdown is primarily caused by electric field stress. Overall, this study provides new insight into the degradation pathways of SiC MOSFETs under extreme electrical stress and offers practical guidance for improving device robustness in power applications.
{"title":"Analysis of gate oxide instability of SiC MOSFETs under ultra-high gate voltage pulse stress.","authors":"Jingjing Tan, Hang Xu, Jianbin Guo, Lin Chen, Qingqing Sun, Hao Zhu","doi":"10.1088/1361-6528/ae2f68","DOIUrl":"10.1088/1361-6528/ae2f68","url":null,"abstract":"<p><p>In power electronics, silicon carbide (SiC) MOSFETs can experience ultra-high gate voltage pulses during electrostatic events, yet their reliability under such extreme conditions remains insufficiently explored. In this work, we fabricate SiC MOSFETs and present systematic reliability evaluation under ultra-high gate pulse stress. Our results reveal that hole-related charge trapping dominates the degradation for both positive and negative gate stress. Under high positive pulses, the threshold voltage (<i>V</i><sub>th</sub>) exhibits a non-monotonic shift driven by hole injection, whereas under high negative pulses,<i>V</i><sub>th</sub>decreases rapidly due to hole capture and the formation of additional donor-like traps. Moreover, the time and field dependence of<i>V</i><sub>th</sub>degradation demonstrates that oxide breakdown is primarily caused by electric field stress. Overall, this study provides new insight into the degradation pathways of SiC MOSFETs under extreme electrical stress and offers practical guidance for improving device robustness in power applications.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145794499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper proposes substrate nitridation as an effective method to reduce radio-frequency (RF) loss in Si-based GaN epitaxial wafers. By optimizing the process, an amorphous SiNₓ layer was formed, which effectively blocks the downward diffusion of Al atoms and suppresses the formation of a parasitic conductive channel, thereby leading to a significant reduction in RF loss. Four distinct pre-flow conditions were specifically designed to decouple and modulate the properties of the AlN/Si interface. A detailed analysis of the initial dislocation evolution behavior was conducted, comparing the nitridated substrate with conventional pre-deposited Al processes. Although the nitridation process leads to a moderate increase in threading dislocation density by promoting their parallel propagation, the proposed dislocation coalescence mechanism, supported by our experimental design and analysis, indicates that the spatial extent of individual dislocations and defects is effectively constrained. This results in a substantial improvement in the overall RF electrical characteristics. Based on this proposed process, a coplanar waveguide (CPW) transmission line was fabricated, demonstrating a low RF loss of only -0.6 dB at 40 GHz. These results underscore that the nitridation process is a highly promising pathway for enhancing the RF performance of Si-based GaN materials; more importantly, this study reveals that the advantage of an initially optimized interface must be synergistically integrated and stabilized with subsequent epitaxial processes to achieve low-loss performance in final HEMT devices, which holds significant implications for the development of high-performance RF devices.
{"title":"The influence of nucleation layer growth modulation on the RF loss of Si-based GaN epitaxial wafers.","authors":"Yifan Li, Yachao Zhang, Sheng Wu, Shengrui Xu, Kelin Wang, Haijun Liu, Yu Zhang, Junwei Liu, Lu Hao, Zhihong Liu, Yue Hao, Jincheng Zhang","doi":"10.1088/1361-6528/ae36b2","DOIUrl":"https://doi.org/10.1088/1361-6528/ae36b2","url":null,"abstract":"<p><p>This paper proposes substrate nitridation as an effective method to reduce radio-frequency (RF) loss in Si-based GaN epitaxial wafers. By optimizing the process, an amorphous SiNₓ layer was formed, which effectively blocks the downward diffusion of Al atoms and suppresses the formation of a parasitic conductive channel, thereby leading to a significant reduction in RF loss. Four distinct pre-flow conditions were specifically designed to decouple and modulate the properties of the AlN/Si interface. A detailed analysis of the initial dislocation evolution behavior was conducted, comparing the nitridated substrate with conventional pre-deposited Al processes. Although the nitridation process leads to a moderate increase in threading dislocation density by promoting their parallel propagation, the proposed dislocation coalescence mechanism, supported by our experimental design and analysis, indicates that the spatial extent of individual dislocations and defects is effectively constrained. This results in a substantial improvement in the overall RF electrical characteristics. Based on this proposed process, a coplanar waveguide (CPW) transmission line was fabricated, demonstrating a low RF loss of only -0.6 dB at 40 GHz. These results underscore that the nitridation process is a highly promising pathway for enhancing the RF performance of Si-based GaN materials; more importantly, this study reveals that the advantage of an initially optimized interface must be synergistically integrated and stabilized with subsequent epitaxial processes to achieve low-loss performance in final HEMT devices, which holds significant implications for the development of high-performance RF devices.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145959858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-09DOI: 10.1088/1361-6528/ae3618
Zhi Cao, Lei Lu, Dongliang Fan, Fengmei Guo
Lithium-ion batteries face challenges in achieving high energy density and long cycle life, due to limitations of conventional anode materials. MXenes, a class of two-dimensional materials, show great potential as anodes but suffer from low intrinsic capacity and severe nanosheet self-stacking.To overcome these issues, this study developed a double transition metal MXene, Ti 2 NbC 2 T x , which offers enlarged interlayer spacing and high electrical conductivity. To further address the selfstacking issue, a Ti 2 NbC 2 T x @CNFs (carbon nanofibers) composite was fabricated via electrospinning and subsequent carbonization. This structure uniformly embedded the MXene within a continuous conductive carbon matrix, effectively inhibiting self-stacking and facilitating electron/ion transport. As a lithium-ion battery anode, the composite demonstrated excellent electrochemical performance. A reversible capacity of 246.5 mAh g -1 was retained after 7000 cycles at a high current density of 5 A g -1 , demonstrating outstanding specific capacity and cycling stability.This work provides a viable strategy for developing high-performance MXene-based anodes for next-generation energy storage.
由于传统负极材料的限制,锂离子电池在实现高能量密度和长循环寿命方面面临挑战。MXenes是一类二维材料,作为阳极具有很大的潜力,但存在固有容量低和纳米片自堆积严重的问题。为了克服这些问题,本研究开发了一种双过渡金属MXene, Ti 2 NbC 2 tx,它提供了更大的层间距和高导电性。为了进一步解决自堆积问题,通过静电纺丝和随后的碳化制备了Ti 2 NbC 2 T x @CNFs(碳纳米纤维)复合材料。这种结构将MXene均匀地嵌入连续的导电碳基体中,有效地抑制了自堆积,促进了电子/离子的传递。作为锂离子电池负极,该复合材料表现出优异的电化学性能。在5a g -1的高电流密度下,经过7000次循环后仍保持246.5 mAh g -1的可逆容量,表现出出色的比容量和循环稳定性。这项工作为开发用于下一代储能的高性能mxene阳极提供了一种可行的策略。
{"title":"Confining Ti2NbC2Tx MXene in carbon nanofibers to boost lithium-ion storage.","authors":"Zhi Cao, Lei Lu, Dongliang Fan, Fengmei Guo","doi":"10.1088/1361-6528/ae3618","DOIUrl":"https://doi.org/10.1088/1361-6528/ae3618","url":null,"abstract":"<p><p>Lithium-ion batteries face challenges in achieving high energy density and long cycle life, due to limitations of conventional anode materials. MXenes, a class of two-dimensional materials, show great potential as anodes but suffer from low intrinsic capacity and severe nanosheet self-stacking.To overcome these issues, this study developed a double transition metal MXene, Ti 2 NbC 2 T x , which offers enlarged interlayer spacing and high electrical conductivity. To further address the selfstacking issue, a Ti 2 NbC 2 T x @CNFs (carbon nanofibers) composite was fabricated via electrospinning and subsequent carbonization. This structure uniformly embedded the MXene within a continuous conductive carbon matrix, effectively inhibiting self-stacking and facilitating electron/ion transport. As a lithium-ion battery anode, the composite demonstrated excellent electrochemical performance. A reversible capacity of 246.5 mAh g -1 was retained after 7000 cycles at a high current density of 5 A g -1 , demonstrating outstanding specific capacity and cycling stability.This work provides a viable strategy for developing high-performance MXene-based anodes for next-generation energy storage.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145945268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-09DOI: 10.1088/1361-6528/ae3617
Felipe Tejo, Vagson L Carvalho-Santos, Nicolas Vidal Silva
The static and dynamic properties of meron-like magnetic textures stabilised by anisotropic Dzyaloshinskii-Moriya interaction (A-DMI) are examined in nanodots across hosting geometries. By considering a circular magnetic nanoring, we use micromagnetic simulations to identify geometric conditions that minimise the total energy and favour the stabilisation of vortex or antivortex textures as a function of the ring hole. For each texture, we find an optimal geometry that maximises stability. We further map the spin-wave spectra under in-plane and out-of-plane field pulses. For antivortices, out-of-plane excitation yields a single well-defined mode, whereas vortices exhibit a richer modal structure arising from the competition between A-DMI and geometry. Under in-plane excitation, vortices and antivortices support the same number of low-frequency modes with similar spatial profiles. These results highlight the interplay between meron cores and chiral interactions, with implications for spintronic and magnonic devices that rely on stabilising magnetic textures or tailoring spin-wave modes.
{"title":"Topological phase transition and spin-wave signature of meron-like states in nanorings with anisotropic Dzyaloshinskii-Moriya interaction.","authors":"Felipe Tejo, Vagson L Carvalho-Santos, Nicolas Vidal Silva","doi":"10.1088/1361-6528/ae3617","DOIUrl":"https://doi.org/10.1088/1361-6528/ae3617","url":null,"abstract":"<p><p>The static and dynamic properties of meron-like magnetic textures stabilised by anisotropic Dzyaloshinskii-Moriya interaction (A-DMI) are examined in nanodots across hosting geometries. By considering a circular magnetic nanoring, we use micromagnetic simulations to identify geometric conditions that minimise the total energy and favour the stabilisation of vortex or antivortex textures as a function of the ring hole. For each texture, we find an optimal geometry that maximises stability. We further map the spin-wave spectra under in-plane and out-of-plane field pulses. For antivortices, out-of-plane excitation yields a single well-defined mode, whereas vortices exhibit a richer modal structure arising from the competition between A-DMI and geometry. Under in-plane excitation, vortices and antivortices support the same number of low-frequency modes with similar spatial profiles. These results highlight the interplay between meron cores and chiral interactions, with implications for spintronic and magnonic devices that rely on stabilising magnetic textures or tailoring spin-wave modes.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145945375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-09DOI: 10.1088/1361-6528/ae308d
Xuepeng Liu, Zongwang Zhang
Deviatoric stress-induced coalescence of nanocrystal superlattices is a promising route for massively fabricating nanowires. We perform atomistic molecular dynamics simulations to characterize the deviatoric stress-induced fusion behavior of alkylthiol-capped gold superlattices and examine the influence of ligand length on the nanowire formation. The results show that a threshold deviatoric stress along the compression direction is essential for forming the ordered nanowire arrays, and it significantly increases with the ligand length. The ligand length dependence can be attributed to the fusion energy barrier between constituent gold nanocrystals as well as its alternation induced by the change in ligand length. We show that the ligands on neighboring gold nanocrystals abundantly interdigitate at the potential minimum but become highly splayed or bent at the repulsive maximum. Increasing the ligand length promotes ligand interdigitation at the potential minimum but causes a larger contact area between ligands on opposite nanocrystals at the repulsive maximum. This jointly results in a marked increase in fusion energy barrier with the increasing ligand length, thereby requiring a higher critical deviatoric stress to drive the gold nanocrystals into nanowires for longer ligands. This study reveals that reducing the ligand length can effectively decreases the operational stress required for the formation of nanowires, which can provide theoretical guidance for optimizing the stress-induced nanofabrication approaches.
{"title":"Ligand length dependence of critical deviatoric stress required for the formation of ordered nanowire arrays in alkylthiol-capped gold superlattices.","authors":"Xuepeng Liu, Zongwang Zhang","doi":"10.1088/1361-6528/ae308d","DOIUrl":"10.1088/1361-6528/ae308d","url":null,"abstract":"<p><p>Deviatoric stress-induced coalescence of nanocrystal superlattices is a promising route for massively fabricating nanowires. We perform atomistic molecular dynamics simulations to characterize the deviatoric stress-induced fusion behavior of alkylthiol-capped gold superlattices and examine the influence of ligand length on the nanowire formation. The results show that a threshold deviatoric stress along the compression direction is essential for forming the ordered nanowire arrays, and it significantly increases with the ligand length. The ligand length dependence can be attributed to the fusion energy barrier between constituent gold nanocrystals as well as its alternation induced by the change in ligand length. We show that the ligands on neighboring gold nanocrystals abundantly interdigitate at the potential minimum but become highly splayed or bent at the repulsive maximum. Increasing the ligand length promotes ligand interdigitation at the potential minimum but causes a larger contact area between ligands on opposite nanocrystals at the repulsive maximum. This jointly results in a marked increase in fusion energy barrier with the increasing ligand length, thereby requiring a higher critical deviatoric stress to drive the gold nanocrystals into nanowires for longer ligands. This study reveals that reducing the ligand length can effectively decreases the operational stress required for the formation of nanowires, which can provide theoretical guidance for optimizing the stress-induced nanofabrication approaches.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145820308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-09DOI: 10.1088/1361-6528/ae2e03
Hongye Sun, Pin-Chiao Huang, Wenting Xu, Mamun Sarker, Alexander Sinitskii, Joseph W Lyding
This paper demonstrates a significant advance in creating ultra-flat Si(100) surfaces suitable for low thermal budget device fabrication. This is achieved by a two-step pre-flash and protect (PFP) process that locks in an atomically flat surface that survives subsequent device processing steps. The first PFP step is a high-temperature flash in ultra-high vacuum (UHV) that creates an atomically flat surface. The second PFP step is a Piranha solution treatment that preserves the surface with a thin oxide shortly after removal from UHV. This oxide can then be easily removed with buffered oxide etchant (BOE) as needed during subsequent device fabrication. Following BOE, a surface with angstrom-level flatness is recovered, obviating the need for more aggressive thermal or chemical surface flattening processes. With this new process no aggressive chemical cleaning, such as RCA cleaning, is needed and no high-temperature surface cleaning or flattening is required for nanoscale device fabrication. This method offers promising opportunities for device fabrication and other applications that require clean and atomically flat Si(100) surfaces and low thermal budget device processing.
{"title":"UHV high temperature surface cleaning and piranha treatment for preserving atomically flat, hydrogen-passivated Si(100) surfaces.","authors":"Hongye Sun, Pin-Chiao Huang, Wenting Xu, Mamun Sarker, Alexander Sinitskii, Joseph W Lyding","doi":"10.1088/1361-6528/ae2e03","DOIUrl":"10.1088/1361-6528/ae2e03","url":null,"abstract":"<p><p>This paper demonstrates a significant advance in creating ultra-flat Si(100) surfaces suitable for low thermal budget device fabrication. This is achieved by a two-step pre-flash and protect (PFP) process that locks in an atomically flat surface that survives subsequent device processing steps. The first PFP step is a high-temperature flash in ultra-high vacuum (UHV) that creates an atomically flat surface. The second PFP step is a Piranha solution treatment that preserves the surface with a thin oxide shortly after removal from UHV. This oxide can then be easily removed with buffered oxide etchant (BOE) as needed during subsequent device fabrication. Following BOE, a surface with angstrom-level flatness is recovered, obviating the need for more aggressive thermal or chemical surface flattening processes. With this new process no aggressive chemical cleaning, such as RCA cleaning, is needed and no high-temperature surface cleaning or flattening is required for nanoscale device fabrication. This method offers promising opportunities for device fabrication and other applications that require clean and atomically flat Si(100) surfaces and low thermal budget device processing.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145775145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-08DOI: 10.1088/1361-6528/ae3573
Priscila Vensaus, Yunchang Liang, Rafael Cichelero, Alexandre Dmitriev, Galo J A A Soler-Illia, Magalí Lingenfelder
The efficiency of green hydrogen production via water splitting is typically hindered by the sluggish kinetics of the oxygen evolution reaction (OER). Here we investigate the performance of various nickel nanoclusters, deposited via a binder-free gas-phase method, as OER catalysts on two distinct porous platforms: commercial gas diffusion layers (GDL) for electrocatalysis and mesoporous TiO2thin films for photoelectrocatalysis. For dark electrocatalysis on GDL, we find a non-linear relationship between catalyst loading and activity, where the lowest Ni loadings exhibited the highest specific activity. Trace iron impurities in the electrolyte dramatically enhanced the performance, leading to a 120-fold increase in specific current for the lowest loading samples through the in situ formation of highly active NiFe oxyhydroxide species. When integrated as co-catalysts on mesoporous TiO₂ photoanodes, Ni nanoclusters significantly improved photocurrents, with an optimal loading of 0.27-0.89 μg/cm2. While Fe impurities also boosted photoelectrochemical performance at low Ni coverages, the effect was less pronounced and became detrimental at higher loadings. These findings underscore that the precise control of the catalyst loading and composition is decisive for designing scalable and highly efficient systems for water oxidation.
{"title":"Ni nanoclusters as oxygen evolution catalysts on porous supports for electro- and photocatalysis.","authors":"Priscila Vensaus, Yunchang Liang, Rafael Cichelero, Alexandre Dmitriev, Galo J A A Soler-Illia, Magalí Lingenfelder","doi":"10.1088/1361-6528/ae3573","DOIUrl":"https://doi.org/10.1088/1361-6528/ae3573","url":null,"abstract":"<p><p>The efficiency of green hydrogen production via water splitting is typically hindered by the sluggish kinetics of the oxygen evolution reaction (OER). Here we investigate the performance of various nickel nanoclusters, deposited via a binder-free gas-phase method, as OER catalysts on two distinct porous platforms: commercial gas diffusion layers (GDL) for electrocatalysis and mesoporous TiO<sub>2</sub>thin films for photoelectrocatalysis. For dark electrocatalysis on GDL, we find a non-linear relationship between catalyst loading and activity, where the lowest Ni loadings exhibited the highest specific activity. Trace iron impurities in the electrolyte dramatically enhanced the performance, leading to a 120-fold increase in specific current for the lowest loading samples through the in situ formation of highly active NiFe oxyhydroxide species. When integrated as co-catalysts on mesoporous TiO₂ photoanodes, Ni nanoclusters significantly improved photocurrents, with an optimal loading of 0.27-0.89 μg/cm<sup>2</sup>. While Fe impurities also boosted photoelectrochemical performance at low Ni coverages, the effect was less pronounced and became detrimental at higher loadings. These findings underscore that the precise control of the catalyst loading and composition is decisive for designing scalable and highly efficient systems for water oxidation.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145934386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}