首页 > 最新文献

Nanotechnology最新文献

英文 中文
Platanus occidentalis L. fruit-derived carbon materials for electrochemical potassium storage. 桔梗果源碳材料的电化学储钾研究。
IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.1088/1361-6528/ada8b4
Jiaxing Hao, Mingyuan Ye, Ajay Piriya Vijaya Kumar Saroja, Liying Liu, Yuhan Wu, Xiaorui Hao, Feng Liu, Yingjiao Fang, Xuejun Dong, Laishi Li, Yusheng Wu, Yang Xu

In the post-lithium-ion battery era, potassium-ion batteries (PIBs) have been considered as a promising candidate because of their electrochemical and economic characteristics. However, as an emerging electrochemical storage technology, it is urgent to develop capable anode materials that can be produced at low cost and on a large scale to promote its practical application. Biomass-derived carbon materials as anodes of PIBs exhibit strong competitiveness by their merits of low weight, high stability, non-toxicity, and wide availability. In this work, we employed Platanus occidentalis L. fruits as a precursor to prepare a series of biomass-derived carbon materials by simply adjusting carbonization temperature, and we explored their electrochemical potassium storage capability as anode materials. The optimized sample (annealed at 800 °C) delivered good potassium storage capability (193.3 mAh g-1at 100 mA g-1after 100 cycles), cycling stability (80.4 mAh g-1after 300 cycles at 300 mA g-1), and rate performance (51.2 mAh g-1at 1000 mA g-1). This work demonstrates a feasible way to utilize biomass waste disposal for emerging sustainable energy storage technologies.

在后锂离子电池时代,钾离子电池因其电化学和经济特性而被认为是一个很有前途的候选材料。然而,作为一项新兴的电化学存储技术,迫切需要开发出低成本、大批量生产的高性能阳极材料,以促进其实际应用。生物质碳材料作为PIBs的阳极材料,具有重量轻、稳定性高、无毒、可获得性广等优点,具有很强的竞争力。本研究以桔果为前驱体,通过简单调节炭化温度制备了一系列生物质衍生碳材料,并对其作为负极材料的电化学储钾性能进行了研究。优化后的样品(800°C退火)具有良好的钾储存能力(100 mA g-1, 100次循环后193.3 mAh g-1),循环稳定性(300次循环后80.4 mAh g-1)和倍率性能(1000 mA g-1, 51.2 mAh g-1)。这项工作展示了利用生物质废物处理新兴可持续能源存储技术的可行方法。
{"title":"Platanus occidentalis L. fruit-derived carbon materials for electrochemical potassium storage.","authors":"Jiaxing Hao, Mingyuan Ye, Ajay Piriya Vijaya Kumar Saroja, Liying Liu, Yuhan Wu, Xiaorui Hao, Feng Liu, Yingjiao Fang, Xuejun Dong, Laishi Li, Yusheng Wu, Yang Xu","doi":"10.1088/1361-6528/ada8b4","DOIUrl":"10.1088/1361-6528/ada8b4","url":null,"abstract":"<p><p>In the post-lithium-ion battery era, potassium-ion batteries (PIBs) have been considered as a promising candidate because of their electrochemical and economic characteristics. However, as an emerging electrochemical storage technology, it is urgent to develop capable anode materials that can be produced at low cost and on a large scale to promote its practical application. Biomass-derived carbon materials as anodes of PIBs exhibit strong competitiveness by their merits of low weight, high stability, non-toxicity, and wide availability. In this work, we employed Platanus occidentalis L. fruits as a precursor to prepare a series of biomass-derived carbon materials by simply adjusting carbonization temperature, and we explored their electrochemical potassium storage capability as anode materials. The optimized sample (annealed at 800 °C) delivered good potassium storage capability (193.3 mAh g<sup>-1</sup>at 100 mA g<sup>-1</sup>after 100 cycles), cycling stability (80.4 mAh g<sup>-1</sup>after 300 cycles at 300 mA g<sup>-1</sup>), and rate performance (51.2 mAh g<sup>-1</sup>at 1000 mA g<sup>-1</sup>). This work demonstrates a feasible way to utilize biomass waste disposal for emerging sustainable energy storage technologies.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142962197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing CFRP damping with graphene nanoplatelets: experiments versus finite element analysis. 石墨烯纳米片增强碳纤维增强材料阻尼:实验与有限元分析。
IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.1088/1361-6528/ada6be
Ch V Katsiropoulos, G I Giannopoulos, P Pappas, C Galiotis

This study investigates the enhancement of damping properties in carbon fiber-reinforced polymer (CFRP) composites by incorporating graphene nanoplatelets (GNPs) into the epoxy matrix. Epoxy and CFRP specimens with varying GNP concentrations, were developed and tested through free vibration experiments to measure damping ratios. Additionally, a computational model based on the finite element method was developed to simulate the damping behavior of these hybrid nanocomposites. Using periodic representative volume elements under sinusoidal axial loads, the model accurately predicted damping performance by calculating the time lag between applied loads and resulting deformations. Comparison of numerical results with experimental data revealed a strong correlation, confirming the model's effectiveness in capturing the influence of GNP mass fraction on damping enhancement.

本研究通过将石墨烯纳米片(GNPs)加入到环氧基中,研究了碳纤维增强聚合物(CFRP)复合材料的阻尼性能。开发了不同GNP浓度的环氧树脂和CFRP试件,并通过自由振动实验进行了测试,以测量阻尼比。此外,建立了基于有限元法的计算模型来模拟这些混杂纳米复合材料的阻尼行为。该模型采用周期性代表性体积单元(RVEs),在正弦轴向载荷作用下,通过计算载荷与变形之间的时滞,准确预测阻尼性能。数值结果与实验数据的比较显示了很强的相关性,证实了该模型在捕捉GNP质量分数对阻尼增强的影响方面的有效性。
{"title":"Enhancing CFRP damping with graphene nanoplatelets: experiments versus finite element analysis.","authors":"Ch V Katsiropoulos, G I Giannopoulos, P Pappas, C Galiotis","doi":"10.1088/1361-6528/ada6be","DOIUrl":"10.1088/1361-6528/ada6be","url":null,"abstract":"<p><p>This study investigates the enhancement of damping properties in carbon fiber-reinforced polymer (CFRP) composites by incorporating graphene nanoplatelets (GNPs) into the epoxy matrix. Epoxy and CFRP specimens with varying GNP concentrations, were developed and tested through free vibration experiments to measure damping ratios. Additionally, a computational model based on the finite element method was developed to simulate the damping behavior of these hybrid nanocomposites. Using periodic representative volume elements under sinusoidal axial loads, the model accurately predicted damping performance by calculating the time lag between applied loads and resulting deformations. Comparison of numerical results with experimental data revealed a strong correlation, confirming the model's effectiveness in capturing the influence of GNP mass fraction on damping enhancement.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142952031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical properties of quasi-two-dimensional GaAs/AlGaAs nanosheets prepared by releasing epitaxial layer.
IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.1088/1361-6528/adad79
Bowen Zhang, Yu Hao, Chao Shi, Shuangshuang Pu, Xiaohua Wang, Dengkui Wang, Dan Fang, Hao Yan, Jinhua Li, 铉 方

Quasi-two-dimensional nanosheets exhibit novel properties and promising applications in optoelectronic flexible devices. Research on non-layered III-V semiconductor nanosheets has been constrained by their covalent bonding connections. In this study, GaAs/AlGaAs heterojunction nanosheets were prepared by releasing an epitaxial layer, and their optical properties were investigated by adopting steady-state and transient absorption spectroscopy. The optical properties of the independent GaAs/AlGaAs heterojunction were investigated separately in order to exclude the effect of the substrate. This work provides a comprehensive understanding of the physics of III-V semiconductor quasi-two-dimensional nanosheets. .

{"title":"Optical properties of quasi-two-dimensional GaAs/AlGaAs nanosheets prepared by releasing epitaxial layer.","authors":"Bowen Zhang, Yu Hao, Chao Shi, Shuangshuang Pu, Xiaohua Wang, Dengkui Wang, Dan Fang, Hao Yan, Jinhua Li, 铉 方","doi":"10.1088/1361-6528/adad79","DOIUrl":"https://doi.org/10.1088/1361-6528/adad79","url":null,"abstract":"<p><p>Quasi-two-dimensional nanosheets exhibit novel properties and promising applications in optoelectronic flexible devices. Research on non-layered III-V semiconductor nanosheets has been constrained by their covalent bonding connections. In this study, GaAs/AlGaAs heterojunction nanosheets were prepared by releasing an epitaxial layer, and their optical properties were investigated by adopting steady-state and transient absorption spectroscopy. The optical properties of the independent GaAs/AlGaAs heterojunction were investigated separately in order to exclude the effect of the substrate. This work provides a comprehensive understanding of the physics of III-V semiconductor quasi-two-dimensional nanosheets.&#xD.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum: Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities (2007, Nanotechnology, 18, 055605).
IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.1088/1361-6528/adad7b
Fang Zeng, Chao Hou, Shuizhu Wu, Xinxing Liu, Zhen Tong, Shuning Yu

In the published article "Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities, Nanotechnology 18 (2007) 055605", the figure caption of Figure 8 has an error in immersion time, and the correct caption is given in this Corrigendum.

{"title":"Corrigendum: Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities (2007, Nanotechnology, 18, 055605).","authors":"Fang Zeng, Chao Hou, Shuizhu Wu, Xinxing Liu, Zhen Tong, Shuning Yu","doi":"10.1088/1361-6528/adad7b","DOIUrl":"https://doi.org/10.1088/1361-6528/adad7b","url":null,"abstract":"<p><p>In the published article \"Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities, Nanotechnology 18 (2007) 055605\", the figure caption of Figure 8 has an error in immersion time, and the correct caption is given in this Corrigendum.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface receptor-targeted Protein-based nanocarriers for drug delivery: Advances in cancer therapy.
IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.1088/1361-6528/adad7a
Panneerselvam Theivendren, Parasuraman Pavadai, Suganthan Veerachamy, Ponnusamy Palanisamy, Selvaraj Kunjiappan

Significant progress has been made in cancer therapy with protein-based nanocarriers targeted directly to surface receptors for drug delivery. The nanocarriers are a potentially effective solution for the potential drawbacks of traditional chemotherapy, such as lack of specificity, side effects, and development resistance. Peptides as nanocarriers have been designed based on their biocompatible, biodegradable, and versatile functions to deliver therapeutic agents into cancer cells, reduce systemic toxicity, and maximize therapy efficacy through utilizing targeted ligands such as antibodies, amino acids, vitamins, and other small molecules onto protein-based nanocarriers and thus ensuring that drugs selectively accumulate in the cancer cells instead of healthy organs/drug release at a target site without effects on normal cells, which inherently caused less systemic toxicity/off-target effect. Moreover, their intrinsic protein backbone naturally degrades in vivo, providing another level of safety over synthetic materials. Various issues like immunogenicity, mass production, and quality control must be addressed for widespread use. However, further studies are necessary to perfect protein engineering and improve drug loading, protein modification, and targeting. Thus, it can be concluded that protein-based nanocarriers targeted against the surface receptors would help achieve cancer management in a more focused manner, thus minimizing toxicity. The further development of these nanoparticles could bring a significant change in cancer treatment so that more personalized, targeted, and safe therapies would be available to all patients.

{"title":"Surface receptor-targeted Protein-based nanocarriers for drug delivery: Advances in cancer therapy.","authors":"Panneerselvam Theivendren, Parasuraman Pavadai, Suganthan Veerachamy, Ponnusamy Palanisamy, Selvaraj Kunjiappan","doi":"10.1088/1361-6528/adad7a","DOIUrl":"https://doi.org/10.1088/1361-6528/adad7a","url":null,"abstract":"<p><p>Significant progress has been made in cancer therapy with protein-based nanocarriers targeted directly to surface receptors for drug delivery. The nanocarriers are a potentially effective solution for the potential drawbacks of traditional chemotherapy, such as lack of specificity, side effects, and development resistance. Peptides as nanocarriers have been designed based on their biocompatible, biodegradable, and versatile functions to deliver therapeutic agents into cancer cells, reduce systemic toxicity, and maximize therapy efficacy through utilizing targeted ligands such as antibodies, amino acids, vitamins, and other small molecules onto protein-based nanocarriers and thus ensuring that drugs selectively accumulate in the cancer cells instead of healthy organs/drug release at a target site without effects on normal cells, which inherently caused less systemic toxicity/off-target effect. Moreover, their intrinsic protein backbone naturally degrades in vivo, providing another level of safety over synthetic materials. Various issues like immunogenicity, mass production, and quality control must be addressed for widespread use. However, further studies are necessary to perfect protein engineering and improve drug loading, protein modification, and targeting. Thus, it can be concluded that protein-based nanocarriers targeted against the surface receptors would help achieve cancer management in a more focused manner, thus minimizing toxicity. The further development of these nanoparticles could bring a significant change in cancer treatment so that more personalized, targeted, and safe therapies would be available to all patients.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Ga-Ion Irradiation on Sub-Micron-Wavelength Spin Waves in Yttrium-Iron-Garnet Films.
IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.1088/1361-6528/adad7d
Johannes Greil, Martina Kiechle, Adam Papp, Peter Neumann, Zoltán Kovács, Janos Volk, Frank Schulz, Sebastian Wintz, Markus Weigand, György Csaba, Markus Becherer

We investigate the effect of focused-ion-beam (FIB) irradiation on spin waves with sub-micron wavelengths in Yttrium-Iron-Garnet (YIG) films. Time-resolved scanning transmission X-ray (TR-STXM) microscopy was used to image the spin waves in irradiated regions and deduce corresponding changes in the magnetic parameters of the film. We find that the changes of Ga+irradiation can be understood by assuming a few percent change in the effective magnetizationMeffof the film due to a trade-off between changes in anisotropy and effective film thickness. Our results demonstrate that FIB irradiation can be used to locally alter the dispersion relation and the effective refractive indexneffof the film, even for submicron wavelengths. To achieve the same change innefffor shorter wavelengths, a higher dose is required, but no significant deterioration of spin wave propagation length in the irradiated regions was observed, even at the highest applied doses.

{"title":"The Effect of Ga-Ion Irradiation on Sub-Micron-Wavelength Spin Waves in Yttrium-Iron-Garnet Films.","authors":"Johannes Greil, Martina Kiechle, Adam Papp, Peter Neumann, Zoltán Kovács, Janos Volk, Frank Schulz, Sebastian Wintz, Markus Weigand, György Csaba, Markus Becherer","doi":"10.1088/1361-6528/adad7d","DOIUrl":"https://doi.org/10.1088/1361-6528/adad7d","url":null,"abstract":"<p><p>We investigate the effect of focused-ion-beam (FIB) irradiation on spin waves with sub-micron wavelengths in Yttrium-Iron-Garnet (YIG) films. Time-resolved scanning transmission X-ray (TR-STXM) microscopy was used to image the spin waves in irradiated regions and deduce corresponding changes in the magnetic parameters of the film. We find that the changes of Ga<sup>+</sup>irradiation can be understood by assuming a few percent change in the effective magnetization<i>M</i><sub>eff</sub>of the film due to a trade-off between changes in anisotropy and effective film thickness. Our results demonstrate that FIB irradiation can be used to locally alter the dispersion relation and the effective refractive index<i>n</i><sub>eff</sub>of the film, even for submicron wavelengths. To achieve the same change in<i>n</i><sub>eff</sub>for shorter wavelengths, a higher dose is required, but no significant deterioration of spin wave propagation length in the irradiated regions was observed, even at the highest applied doses.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interface effect based nano-scale TiOxvertical synapse device for high-density integration in neuromorphic computing system.
IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.1088/1361-6528/adad78
Seojin Cho, Geonhui Han, Chuljun Lee, Jiyong Woo, Daeseok Lee

To implement a neuromorphic computing system capable of efficiently processing vast amounts of unstructured data, a significant number of synapse and neuron devices are needed, resulting in increased area demands. Therefore, we developed a nanoscale vertically structured synapse device that supports high-density integration. To realize this synapse device, the interface effects between the resistive switching layer and the electrode were investigated and utilized. Electrical and physical analyses were conducted to comprehend the operational mechanism of the developed synapse device. The results indicate that oxygen ions from the resistive switching layer were absorbed by the electrode, forming metal-oxygen bonds. The Voconcentration in the switching layer that can change the total conductance of the device. To assess its potential as a synapse device in the neuromorphic system, the developed device was evaluated through pattern recognition simulation.

{"title":"Interface effect based nano-scale TiO<sub>x</sub>vertical synapse device for high-density integration in neuromorphic computing system.","authors":"Seojin Cho, Geonhui Han, Chuljun Lee, Jiyong Woo, Daeseok Lee","doi":"10.1088/1361-6528/adad78","DOIUrl":"https://doi.org/10.1088/1361-6528/adad78","url":null,"abstract":"<p><p>To implement a neuromorphic computing system capable of efficiently processing vast amounts of unstructured data, a significant number of synapse and neuron devices are needed, resulting in increased area demands. Therefore, we developed a nanoscale vertically structured synapse device that supports high-density integration. To realize this synapse device, the interface effects between the resistive switching layer and the electrode were investigated and utilized. Electrical and physical analyses were conducted to comprehend the operational mechanism of the developed synapse device. The results indicate that oxygen ions from the resistive switching layer were absorbed by the electrode, forming metal-oxygen bonds. The V<sub>o</sub>concentration in the switching layer that can change the total conductance of the device. To assess its potential as a synapse device in the neuromorphic system, the developed device was evaluated through pattern recognition simulation.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted therapy for glioblastoma utilizing hyaluronic acid-engineered liposomes for adriamycin delivery.
IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-22 DOI: 10.1088/1361-6528/adacef
Yanping Wang, Peiyan Qi, Shenbao Shi, Cong Pang, Weijie Wang, Dazhao Fang

Glioblastoma (GBM) is a malignant tumor with highly heterogeneous and invasive characteristics leading to a poor prognosis. The CD44 molecule, which is highly expressed in GBM, has emerged as a highly sought-after biological marker. Therapeutic strategies targeting the cell membrane protein CD44 have emerged, demonstrating novel therapeutic potential. In this study, we constructed a nanodrug system (HA-Liposome@Dox) based on hyaluronic acid-engineered liposomes delivering adriamycin to target GBM. The system efficiently encapsulated Dox inside the liposomes through a hydrophilic-hydrophobic interaction mechanism, and the resulting HA-Liposome@Dox exhibited excellent loading efficacy, attributed to its uniform particle size distribution and negatively charged surface. Further evaluation revealed that HA-Liposome@Dox possessed excellent stability and safety and could promote the effective uptake of drug particles by CD44-overexpressing tumor cells, thus exerting a more potent cell-killing effect. Notably, in the treatment of GBM, HA-Liposome@Dox demonstrated significantly greater tumor growth inhibition compared to free Dox and prolonged the survival of tumor-bearing mice. Taken together, the present study not only verified the feasibility of HA-Liposome@Dox as an effective therapeutic tool against GBM and other CD44-positively expressing tumors, but also opened a promising new avenue for the clinical treatment of this type of refractory malignancies. .

{"title":"Targeted therapy for glioblastoma utilizing hyaluronic acid-engineered liposomes for adriamycin delivery.","authors":"Yanping Wang, Peiyan Qi, Shenbao Shi, Cong Pang, Weijie Wang, Dazhao Fang","doi":"10.1088/1361-6528/adacef","DOIUrl":"https://doi.org/10.1088/1361-6528/adacef","url":null,"abstract":"<p><p>Glioblastoma (GBM) is a malignant tumor with highly heterogeneous and invasive characteristics leading to a poor prognosis. The CD44 molecule, which is highly expressed in GBM, has emerged as a highly sought-after biological marker. Therapeutic strategies targeting the cell membrane protein CD44 have emerged, demonstrating novel therapeutic potential. In this study, we constructed a nanodrug system (HA-Liposome@Dox) based on hyaluronic acid-engineered liposomes delivering adriamycin to target GBM. The system efficiently encapsulated Dox inside the liposomes through a hydrophilic-hydrophobic interaction mechanism, and the resulting HA-Liposome@Dox exhibited excellent loading efficacy, attributed to its uniform particle size distribution and negatively charged surface. Further evaluation revealed that HA-Liposome@Dox possessed excellent stability and safety and could promote the effective uptake of drug particles by CD44-overexpressing tumor cells, thus exerting a more potent cell-killing effect. Notably, in the treatment of GBM, HA-Liposome@Dox demonstrated significantly greater tumor growth inhibition compared to free Dox and prolonged the survival of tumor-bearing mice. Taken together, the present study not only verified the feasibility of HA-Liposome@Dox as an effective therapeutic tool against GBM and other CD44-positively expressing tumors, but also opened a promising new avenue for the clinical treatment of this type of refractory malignancies.&#xD.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ternary stochastic neuron - implemented with a single strained magnetostrictive nanomagnet. 用单应变磁致伸缩纳米磁体实现三元随机神经元。
IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-21 DOI: 10.1088/1361-6528/adac66
Rahnuma Rahman, Supriyo Bandyopadhyay

Stochastic neurons are extremely efficient hardware for solving a large class of problems and usually come in two varieties - "binary" where the neuronal state varies randomly between two values of ±1 and "analog" where the neuronal state can randomly assume any value between -1 and +1. Both have their uses in neuromorphic computing and both can be implemented with low- or zero-energy-barrier nanomagnets whose random magnetization orientations in the presence of thermal noise encode the binary or analog state variables. In between these two classes is n-ary stochastic neurons, mainly ternary stochastic neurons (TSN) whose state randomly assumes one of three values (-1, 0, +1), which have proved to be efficient in pattern classification tasks such as recognizing handwritten digits from the MNIST data set or patterns from the CIFAR-10 data set. Here, we show how to implement a TSN with a zero-energy-barrier (shape isotropic) magnetostrictive nanomagnet subjected to uniaxial strain.

随机神经元是一种非常有效的硬件,用于解决大量问题,通常分为两种:“二进制”,神经元状态在±1的两个值之间随机变化;“模拟”,神经元状态可以随机假设-1和+1之间的任何值。两者在神经形态计算中都有其用途,并且都可以用低或零能垒纳米磁体实现,其在热噪声存在下的随机磁化方向编码二进制或模拟状态变量。在这两类之间是n-ary随机神经元,主要是三元随机神经元(TSN),其状态随机假设三个值(- 1,0,+1)之一,已被证明在模式分类任务中是有效的,例如识别来自MNIST数据集的手写数字或来自CIFAR-10数据集的模式。在这里,我们展示了如何在单轴应变下实现零能垒(形状各向同性)磁致伸缩纳米磁体的TSN。
{"title":"Ternary stochastic neuron - implemented with a single strained magnetostrictive nanomagnet.","authors":"Rahnuma Rahman, Supriyo Bandyopadhyay","doi":"10.1088/1361-6528/adac66","DOIUrl":"https://doi.org/10.1088/1361-6528/adac66","url":null,"abstract":"<p><p>Stochastic neurons are extremely efficient hardware for solving a large class of problems and usually come in two varieties - \"binary\" where the neuronal state varies randomly between two values of ±1 and \"analog\" where the neuronal state can randomly assume any value between -1 and +1. Both have their uses in neuromorphic computing and both can be implemented with low- or zero-energy-barrier nanomagnets whose random magnetization orientations in the presence of thermal noise encode the binary or analog state variables. In between these two classes is n-ary stochastic neurons, mainly ternary stochastic neurons (TSN) whose state randomly assumes one of three values (-1, 0, +1), which have proved to be efficient in pattern classification tasks such as recognizing handwritten digits from the MNIST data set or patterns from the CIFAR-10 data set. Here, we show how to implement a TSN with a zero-energy-barrier (shape isotropic) magnetostrictive nanomagnet subjected to uniaxial strain.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational simulation of graphene/h-BN nanopores for single-molecule herbicide sensing. 用于单分子除草剂传感的石墨烯/h-BN纳米孔的计算模拟。
IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-21 DOI: 10.1088/1361-6528/adac67
Wanderla Luis Scopel, Fábio A L de Souza, Sávio Bastos de Souza, Rodrigo Amorim, Ralph H Scheicher

The growing world population and climate change are key drivers for the increasing pursuit of more efficient and environmentally-safe food production. In this scenario, the large scale use of herbicides demands the development new technologies to control and monitor the application of these compounds, due to their several environmental and health-related problems. Motivated by all these issues, in this work, a hybrid graphene/boron nitride nanopore is explore to detect/identify herbicide molecules (Glyphosate, AMPA, Diuron, and 2,4-D). Solid-state nanopores based on 2D materials have been widely explored as novel generation sensors capable of single-molecule resolution. The present investigation combines the density functional theory (DFT) and non-equilibrium Green's function (NEGF) method to assess the interaction of each herbicide with the nanopore and how its interaction modulates the device's electronic transport properties. The device's sensitivity spreads from 9.0 up to 27.0% when probed at different gate voltage values. Overall, the proposed device seems to be sensitive and selective to be considered as a promising single-molecule herbicide sensor.

不断增长的世界人口和气候变化是越来越多地追求更高效和环境安全的粮食生产的关键驱动因素。在这种情况下,除草剂的大规模使用要求开发新技术来控制和监测这些化合物的应用,因为它们存在一些环境和健康相关问题。在这些问题的推动下,本研究探索了一种混合石墨烯/氮化硼纳米孔来检测/识别除草剂分子(草甘膦、AMPA、Diuron和2,4- d)。基于二维材料的固态纳米孔作为具有单分子分辨率的新一代传感器已被广泛探索。本研究结合密度泛函理论(DFT)和非平衡格林函数(NEGF)方法来评估每种除草剂与纳米孔的相互作用以及其相互作用如何调节装置的电子输运性质。在不同的栅极电压值下探测,器件的灵敏度从9.0到27.0%不等。总的来说,所提出的装置似乎具有敏感性和选择性,被认为是一种有前途的单分子除草剂传感器。
{"title":"Computational simulation of graphene/h-BN nanopores for single-molecule herbicide sensing.","authors":"Wanderla Luis Scopel, Fábio A L de Souza, Sávio Bastos de Souza, Rodrigo Amorim, Ralph H Scheicher","doi":"10.1088/1361-6528/adac67","DOIUrl":"https://doi.org/10.1088/1361-6528/adac67","url":null,"abstract":"<p><p>The growing world population and climate change are key drivers for the increasing pursuit of more efficient and environmentally-safe food production. In this scenario, the large scale use of herbicides demands the development new technologies to control&#xD;and monitor the application of these compounds, due to their several environmental and health-related problems. Motivated by all these issues, in this work, a hybrid graphene/boron nitride nanopore is explore to detect/identify herbicide molecules (Glyphosate, AMPA, Diuron, and 2,4-D). Solid-state nanopores based on 2D materials have been widely explored as novel generation sensors capable of single-molecule resolution. The present investigation combines the density functional theory (DFT) and non-equilibrium Green's function (NEGF) method to assess the interaction of each herbicide with the nanopore and how its interaction modulates the device's electronic&#xD;transport properties. The device's sensitivity spreads from 9.0 up to 27.0% when probed at different gate voltage values. Overall, the proposed device seems to be sensitive and selective to be considered as a promising single-molecule herbicide sensor.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nanotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1