首页 > 最新文献

Nature metabolism最新文献

英文 中文
Obesity impairs gut repair via AFABP-mediated iron overload in intestinal stem cells 肥胖通过肠道干细胞中afabp介导的铁超载损害肠道修复
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2026-01-08 DOI: 10.1038/s42255-025-01425-4
Zhiming Liu, Yi Chen, Jinhua Yan, Yu Yuan, Qianyi Wan, Rui Zhao, Fang Fu, Xinxin Fan, Yawen Deng, Xiaoxin Guo, Haiou Chen, Xingzhu Liu, Jinbao Ye, Haiyang Chen
Obesity impairs the function of multiple organs, but its effect on gut regeneration remains poorly defined. Here, we show that adipocyte fatty acid-binding protein (AFABP), an adipokine involved in fatty acid transport, impedes intestinal repair by disrupting iron homeostasis in intestinal stem cells (ISCs). Mechanistically, elevated AFABP secretion in obesity binds to plasma transferrin, leading to iron accumulation in ISCs. This accumulation disrupts peroxisome-mediated ISC differentiation, which is essential for intestinal repair following injury. Notably, AFABP overexpression in adipocytes of lean mice impedes ISC differentiation and gut repair. Conversely, AFABP depletion or the administration of AFABP inhibitors, iron chelators or peroxisome activators effectively mitigates colitis in obese animals. Overall, our findings reveal a mechanistic link between obesity and intestinal repair, and identify the adipose–gut axis as a therapeutic target for obesity-associated intestinal disorders. Elevated adipocyte-derived AFABP in obesity disrupts iron homeostasis in intestinal stem cells (ISCs), which impairs PPARα signalling and blocks ISC differentiation after injury.
肥胖会损害多个器官的功能,但其对肠道再生的影响仍不明确。在这里,我们发现脂肪细胞脂肪酸结合蛋白(AFABP),一种参与脂肪酸运输的脂肪因子,通过破坏肠干细胞(ISCs)中的铁稳态来阻碍肠道修复。机制上,肥胖中AFABP分泌升高与血浆转铁蛋白结合,导致ISCs中的铁积累。这种积累破坏了过氧化物酶体介导的ISC分化,这对于损伤后的肠道修复至关重要。值得注意的是,瘦小鼠脂肪细胞中AFABP的过表达会阻碍ISC分化和肠道修复。相反,AFABP消耗或使用AFABP抑制剂、铁螯合剂或过氧化物酶体激活剂可有效减轻肥胖动物的结肠炎。总的来说,我们的研究结果揭示了肥胖和肠道修复之间的机制联系,并确定了脂肪-肠道轴作为肥胖相关肠道疾病的治疗靶点。
{"title":"Obesity impairs gut repair via AFABP-mediated iron overload in intestinal stem cells","authors":"Zhiming Liu, Yi Chen, Jinhua Yan, Yu Yuan, Qianyi Wan, Rui Zhao, Fang Fu, Xinxin Fan, Yawen Deng, Xiaoxin Guo, Haiou Chen, Xingzhu Liu, Jinbao Ye, Haiyang Chen","doi":"10.1038/s42255-025-01425-4","DOIUrl":"10.1038/s42255-025-01425-4","url":null,"abstract":"Obesity impairs the function of multiple organs, but its effect on gut regeneration remains poorly defined. Here, we show that adipocyte fatty acid-binding protein (AFABP), an adipokine involved in fatty acid transport, impedes intestinal repair by disrupting iron homeostasis in intestinal stem cells (ISCs). Mechanistically, elevated AFABP secretion in obesity binds to plasma transferrin, leading to iron accumulation in ISCs. This accumulation disrupts peroxisome-mediated ISC differentiation, which is essential for intestinal repair following injury. Notably, AFABP overexpression in adipocytes of lean mice impedes ISC differentiation and gut repair. Conversely, AFABP depletion or the administration of AFABP inhibitors, iron chelators or peroxisome activators effectively mitigates colitis in obese animals. Overall, our findings reveal a mechanistic link between obesity and intestinal repair, and identify the adipose–gut axis as a therapeutic target for obesity-associated intestinal disorders. Elevated adipocyte-derived AFABP in obesity disrupts iron homeostasis in intestinal stem cells (ISCs), which impairs PPARα signalling and blocks ISC differentiation after injury.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"8 1","pages":"74-95"},"PeriodicalIF":20.8,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145919977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Career pathways, part 18 职业道路,第18部分。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2026-01-08 DOI: 10.1038/s42255-025-01432-5
Jiyeon Kim, Angelika Harbauer
Integrating work–life balance while pursuing exciting scientific questions and navigating the publishing process as a senior author are challenges that researchers often encounter, particularly in their transition to independence. In this instalment of our Career Pathways series, Jiyeon Kim and Angelika Harbauer reflect on how they have experienced this process.
兼顾工作与生活的平衡,同时追求令人兴奋的科学问题,并以资深作者的身份驾驭出版过程,这些都是研究人员经常遇到的挑战,尤其是在他们向独立过渡的过程中。在我们的职业道路系列的这一期中,Jiyeon Kim和Angelika Harbauer回顾了她们是如何经历这个过程的。
{"title":"Career pathways, part 18","authors":"Jiyeon Kim, Angelika Harbauer","doi":"10.1038/s42255-025-01432-5","DOIUrl":"10.1038/s42255-025-01432-5","url":null,"abstract":"Integrating work–life balance while pursuing exciting scientific questions and navigating the publishing process as a senior author are challenges that researchers often encounter, particularly in their transition to independence. In this instalment of our Career Pathways series, Jiyeon Kim and Angelika Harbauer reflect on how they have experienced this process.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"8 1","pages":"1-3"},"PeriodicalIF":20.8,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145934404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut mucosal mycobiome profiling in Crohn’s disease uncovers an AMP-mediated anti-inflammatory effect of Cladosporium sphaerospermum 克罗恩病的肠道黏膜菌群分析揭示了球形枝孢杆菌amp介导的抗炎作用
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2026-01-07 DOI: 10.1038/s42255-025-01420-9
Ziyu Huang, Yunyun Liu, Yushan Wu, Feng Zhang, Leyi Yu, Shanshan Gao, Weijie Wen, Guannan Wang, Runping Su, Pei Xia, Qiming Zhou, Yiran Bie, Peishan Hu, Elke Burgermeister, Ping Lan, Xiaojian Wu, Hu Zhang, Fen Zhang, Emad M. El-Omar, Tao Zuo
{"title":"Gut mucosal mycobiome profiling in Crohn’s disease uncovers an AMP-mediated anti-inflammatory effect of Cladosporium sphaerospermum","authors":"Ziyu Huang, Yunyun Liu, Yushan Wu, Feng Zhang, Leyi Yu, Shanshan Gao, Weijie Wen, Guannan Wang, Runping Su, Pei Xia, Qiming Zhou, Yiran Bie, Peishan Hu, Elke Burgermeister, Ping Lan, Xiaojian Wu, Hu Zhang, Fen Zhang, Emad M. El-Omar, Tao Zuo","doi":"10.1038/s42255-025-01420-9","DOIUrl":"https://doi.org/10.1038/s42255-025-01420-9","url":null,"abstract":"","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"391 1","pages":""},"PeriodicalIF":20.8,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145907987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A sex-specific brake on liver oestrogen signalling 肝脏雌激素信号的性别特异性抑制
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2026-01-05 DOI: 10.1038/s42255-025-01427-2
Pamela Kakimoto, Natalie Krahmer
Sex profoundly shapes liver metabolism, with oestrogens conferring protection against metabolic liver disease. In this study, Yang, Wang and colleagues identify the orphan G protein-coupled receptor GPR110 as a liver-specific brake on oestrogen signalling, bridging GPCR and nuclear receptor pathways, thus pointing to GPR110 as a target for sex-specific therapy in liver disease.
性对肝脏代谢有着深远的影响,雌激素可以保护肝脏免受代谢性肝病的侵害。在这项研究中,Yang、Wang和同事发现孤儿G蛋白偶联受体GPR110作为雌激素信号的肝脏特异性抑制,桥接GPCR和核受体途径,从而指出GPR110作为肝脏疾病性别特异性治疗的靶点。
{"title":"A sex-specific brake on liver oestrogen signalling","authors":"Pamela Kakimoto, Natalie Krahmer","doi":"10.1038/s42255-025-01427-2","DOIUrl":"10.1038/s42255-025-01427-2","url":null,"abstract":"Sex profoundly shapes liver metabolism, with oestrogens conferring protection against metabolic liver disease. In this study, Yang, Wang and colleagues identify the orphan G protein-coupled receptor GPR110 as a liver-specific brake on oestrogen signalling, bridging GPCR and nuclear receptor pathways, thus pointing to GPR110 as a target for sex-specific therapy in liver disease.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"8 1","pages":"8-9"},"PeriodicalIF":20.8,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145902654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatic GPR110 contributes to sex disparity in the development of MASH through oestrogen receptor α-dependent signalling 肝脏GPR110通过雌激素受体α依赖性信号传导参与MASH发育中的性别差异
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2026-01-05 DOI: 10.1038/s42255-025-01436-1
Fang Yang, Wei Wang, Feng Qiu, Rui Qing, Qingying Gao, Xingqun Yan, Donghai Wu, Hannah Xiaoyan Hui, Rui Dang, Guozhi Jiang, Liyuan Han, Chunhao Long, Shuang Hua, Yixuan Zhang, Siwei Ji, Lu Xu, Chen Zhou, Daiqiang Xu, Alessandro Cherubini, Luca Valenti, Ping Gu, Shufei Zang, Weimin Jiang, Zhe Huang
Metabolic dysfunction-associated steatohepatitis (MASH) is an important phase in the progression of metabolic dysfunction-associated steatotic liver disease to end-stage liver diseases, posing an increasing threat to public health worldwide with limited treatment options. Here we show that GPR110 is a liver-selective G-protein-coupled receptor closely associated with MASH in a sex-specific manner. Hepatocyte-specific Gpr110 knockout protects against MASH in female, but not male mice. The GPR110 variant rs937057 T > C is associated with a higher prevalence of metabolic dysfunction-associated steatotic liver disease in women. The improved liver phenotypes in female mice are abrogated by knocking down the expression of hepatic oestrogen receptor alpha (Esr1). Mechanistically, GPR110 couples to Gαs and activates protein kinase A, thereby inducing phosphorylation of NFAT2, which inhibits its nuclear translocation and transcriptional activity, leading to suppressed Esr1 transcription in hepatocytes. Taken together, these results demonstrate a sex-specific role of GPR110 in MASH by regulating hepatic oestrogen sensitivity, suggesting inhibition of GPR110 as a potential sex-specific therapy for MASH. Hepatocyte-specific GPR110 mediates metabolic dysfunction-associated steatohepatitis progression by regulating hepatic oestrogen sensitivity in a sex-specific manner, specifically in female mice.
代谢功能障碍相关脂肪性肝炎(MASH)是代谢功能障碍相关脂肪性肝病向终末期肝病发展的一个重要阶段,在治疗选择有限的情况下,对全球公众健康构成越来越大的威胁。在这里,我们发现GPR110是一种肝脏选择性g蛋白偶联受体,以性别特异性的方式与MASH密切相关。肝细胞特异性Gpr110敲除对雌性小鼠的MASH有保护作用,但对雄性小鼠没有作用。GPR110变异rs937057 T >; C与女性代谢功能障碍相关的脂肪变性肝病的较高患病率相关。雌性小鼠肝脏表型的改善是通过降低肝脏雌激素受体α (Esr1)的表达而消除的。在机制上,GPR110与Gαs结合,激活蛋白激酶A,从而诱导NFAT2磷酸化,抑制其核易位和转录活性,导致肝细胞Esr1转录受到抑制。综上所述,这些结果表明GPR110通过调节肝脏雌激素敏感性在MASH中具有性别特异性作用,表明抑制GPR110可能是一种潜在的性别特异性治疗MASH的方法。肝细胞特异性GPR110通过以性别特异性方式调节肝脏雌激素敏感性介导代谢功能障碍相关的脂肪性肝炎进展,特别是在雌性小鼠中。
{"title":"Hepatic GPR110 contributes to sex disparity in the development of MASH through oestrogen receptor α-dependent signalling","authors":"Fang Yang, Wei Wang, Feng Qiu, Rui Qing, Qingying Gao, Xingqun Yan, Donghai Wu, Hannah Xiaoyan Hui, Rui Dang, Guozhi Jiang, Liyuan Han, Chunhao Long, Shuang Hua, Yixuan Zhang, Siwei Ji, Lu Xu, Chen Zhou, Daiqiang Xu, Alessandro Cherubini, Luca Valenti, Ping Gu, Shufei Zang, Weimin Jiang, Zhe Huang","doi":"10.1038/s42255-025-01436-1","DOIUrl":"10.1038/s42255-025-01436-1","url":null,"abstract":"Metabolic dysfunction-associated steatohepatitis (MASH) is an important phase in the progression of metabolic dysfunction-associated steatotic liver disease to end-stage liver diseases, posing an increasing threat to public health worldwide with limited treatment options. Here we show that GPR110 is a liver-selective G-protein-coupled receptor closely associated with MASH in a sex-specific manner. Hepatocyte-specific Gpr110 knockout protects against MASH in female, but not male mice. The GPR110 variant rs937057 T > C is associated with a higher prevalence of metabolic dysfunction-associated steatotic liver disease in women. The improved liver phenotypes in female mice are abrogated by knocking down the expression of hepatic oestrogen receptor alpha (Esr1). Mechanistically, GPR110 couples to Gαs and activates protein kinase A, thereby inducing phosphorylation of NFAT2, which inhibits its nuclear translocation and transcriptional activity, leading to suppressed Esr1 transcription in hepatocytes. Taken together, these results demonstrate a sex-specific role of GPR110 in MASH by regulating hepatic oestrogen sensitivity, suggesting inhibition of GPR110 as a potential sex-specific therapy for MASH. Hepatocyte-specific GPR110 mediates metabolic dysfunction-associated steatohepatitis progression by regulating hepatic oestrogen sensitivity in a sex-specific manner, specifically in female mice.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"8 1","pages":"116-138"},"PeriodicalIF":20.8,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145902653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell perturbations decipher ribosomal stress-surveillance regulators in type 2 diabetes 单细胞扰动破译核糖体应激监测调节在2型糖尿病。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2026-01-02 DOI: 10.1038/s42255-025-01407-6
Jingminjie Nan, Xianglong He, Xiaoping Liu, Jianrong Ran, Jiahuan Chen, Pengxiao Li, Dongxue Liu, Yanan Sun, Aijing Shan, Xiuli Jiang, Jing Xie, Weiqing Wang, Guang Ning, Yanan Cao
Systemic characterization of genes and pathways underlying the genetic architecture of type 2 diabetes (T2D) requires scalable functional genomics approaches. Molecular readouts from CRISPR perturbations can effectively uncover the mechanistic effects of underexplored genes. Here we performed single-cell RNA sequencing on pooled CRISPR screens (Perturb-seq) of 61 T2D-associated genes and 40 ribosome-associated quality control (RQC) genes in human pancreatic β cells (EndoC-βH1) for investigations of insulin production and T2D pathology. We identified 21 functional genes, including the uncharacterized KLHL42 and ZZEF1. Findings from global and β cell-specific knockout male mice, islet organoids and human islets reveal that ZZEF1 is a regulator of insulin synthesis and β cell stress through ribosomal stress-surveillance pathways in working and stress status-defined β cell subtypes. ZZEF1 deficiency impairs β cell function by inhibiting the RQC sensor EDF1, which could be improved by azoramide and ISRIB treatments. These Perturb-seq analyses and identification of functional RQC-related genes can provide potential therapeutic targets for T2D. The authors use Perturb-seq analysis in human pancreatic islet beta cells, as well as in vivo and in vitro analyses, to identify potential therapeutic targets for type 2 diabetes, including ZZEF1, which regulates insulin synthesis and cellular stress in islet β cells.
2型糖尿病(T2D)遗传结构的基因和通路的系统表征需要可扩展的功能基因组学方法。来自CRISPR扰动的分子读数可以有效地揭示未被探索的基因的机制作用。在这里,我们对人胰腺β细胞(EndoC-βH1)中的61个T2D相关基因和40个核糖体相关质量控制(RQC)基因进行了单细胞RNA测序(Perturb-seq),以研究胰岛素产生和T2D病理。我们鉴定了21个功能基因,包括未鉴定的KLHL42和ZZEF1。来自全球和β细胞特异性敲除雄性小鼠、胰岛类器官和人类胰岛的研究结果表明,ZZEF1在工作和应激状态定义的β细胞亚型中通过核糖体应激监测途径调节胰岛素合成和β细胞应激。ZZEF1缺乏通过抑制RQC传感器EDF1而损害β细胞功能,这可以通过azoramide和ISRIB处理来改善。这些Perturb-seq分析和功能rqc相关基因的鉴定可以为T2D提供潜在的治疗靶点。
{"title":"Single-cell perturbations decipher ribosomal stress-surveillance regulators in type 2 diabetes","authors":"Jingminjie Nan, Xianglong He, Xiaoping Liu, Jianrong Ran, Jiahuan Chen, Pengxiao Li, Dongxue Liu, Yanan Sun, Aijing Shan, Xiuli Jiang, Jing Xie, Weiqing Wang, Guang Ning, Yanan Cao","doi":"10.1038/s42255-025-01407-6","DOIUrl":"10.1038/s42255-025-01407-6","url":null,"abstract":"Systemic characterization of genes and pathways underlying the genetic architecture of type 2 diabetes (T2D) requires scalable functional genomics approaches. Molecular readouts from CRISPR perturbations can effectively uncover the mechanistic effects of underexplored genes. Here we performed single-cell RNA sequencing on pooled CRISPR screens (Perturb-seq) of 61 T2D-associated genes and 40 ribosome-associated quality control (RQC) genes in human pancreatic β cells (EndoC-βH1) for investigations of insulin production and T2D pathology. We identified 21 functional genes, including the uncharacterized KLHL42 and ZZEF1. Findings from global and β cell-specific knockout male mice, islet organoids and human islets reveal that ZZEF1 is a regulator of insulin synthesis and β cell stress through ribosomal stress-surveillance pathways in working and stress status-defined β cell subtypes. ZZEF1 deficiency impairs β cell function by inhibiting the RQC sensor EDF1, which could be improved by azoramide and ISRIB treatments. These Perturb-seq analyses and identification of functional RQC-related genes can provide potential therapeutic targets for T2D. The authors use Perturb-seq analysis in human pancreatic islet beta cells, as well as in vivo and in vitro analyses, to identify potential therapeutic targets for type 2 diabetes, including ZZEF1, which regulates insulin synthesis and cellular stress in islet β cells.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"8 1","pages":"139-158"},"PeriodicalIF":20.8,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145892764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuronal fatty acid oxidation fuels memory after intensive learning in Drosophila 果蝇强化学习后神经元脂肪酸氧化促进记忆
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-10 DOI: 10.1038/s42255-025-01416-5
Alice Pavlowsky, Bryon Silva, Ruchira Basu, Amandine Correia Delecourt, David Geny, Lydia Danglot, Pierre-Yves Plaçais, Thomas Preat
Metabolic flexibility allows cells to adapt to different fuel sources, which is particularly important for cells with high metabolic demands1–3. In contrast, neurons, which are major energy consumers, are considered to rely essentially on glucose and its derivatives to support their metabolism. Here, using Drosophila melanogaster, we show that memory formed after intensive massed training is dependent on mitochondrial fatty acid (FA) β-oxidation to produce ATP in neurons of the mushroom body (MB), a major integrative centre in insect brains. We identify cortex glia as the provider of lipids to sustain the usage of FAs for this type of memory. Furthermore, we demonstrate that massed training is associated with mitochondria network remodelling in the soma of MB neurons, resulting in increased mitochondrial size. Artificially increasing mitochondria size in adult MB neurons increases ATP production in their soma and, at the behavioural level, strikingly results in improved memory performance after massed training. These findings challenge the prevailing view that neurons are unable to use FAs for energy production, revealing, on the contrary, that in vivo neuronal FA oxidation has an essential role in cognitive function, including memory formation. Neurons are shown to use fatty acid β-oxidation as a fuel source for memory formation upon intensive learning in Drosophila, challenging the view that neurons are unable to use fatty acids for energy production.
代谢灵活性允许细胞适应不同的燃料来源,这对具有高代谢需求的细胞尤为重要1,2,3。相反,神经元作为主要的能量消耗者,被认为主要依赖于葡萄糖及其衍生物来支持其代谢。在这里,我们利用黑腹果蝇,证明了强化训练后形成的记忆依赖于线粒体脂肪酸(FA) β-氧化,从而在蘑菇体(MB)的神经元中产生ATP,蘑菇体是昆虫大脑的主要整合中心。我们认为皮层胶质细胞是脂质的提供者,以维持这种类型的记忆中FAs的使用。此外,我们证明了大规模训练与MB神经元体中的线粒体网络重塑有关,导致线粒体大小增加。人为地增加成年MB神经元的线粒体大小可以增加其体细胞中ATP的产生,并且在行为水平上显著地改善了大规模训练后的记忆表现。这些发现挑战了神经元不能使用FA产生能量的主流观点,相反,揭示了体内神经元FA氧化在认知功能,包括记忆形成中具有重要作用。
{"title":"Neuronal fatty acid oxidation fuels memory after intensive learning in Drosophila","authors":"Alice Pavlowsky, Bryon Silva, Ruchira Basu, Amandine Correia Delecourt, David Geny, Lydia Danglot, Pierre-Yves Plaçais, Thomas Preat","doi":"10.1038/s42255-025-01416-5","DOIUrl":"10.1038/s42255-025-01416-5","url":null,"abstract":"Metabolic flexibility allows cells to adapt to different fuel sources, which is particularly important for cells with high metabolic demands1–3. In contrast, neurons, which are major energy consumers, are considered to rely essentially on glucose and its derivatives to support their metabolism. Here, using Drosophila melanogaster, we show that memory formed after intensive massed training is dependent on mitochondrial fatty acid (FA) β-oxidation to produce ATP in neurons of the mushroom body (MB), a major integrative centre in insect brains. We identify cortex glia as the provider of lipids to sustain the usage of FAs for this type of memory. Furthermore, we demonstrate that massed training is associated with mitochondria network remodelling in the soma of MB neurons, resulting in increased mitochondrial size. Artificially increasing mitochondria size in adult MB neurons increases ATP production in their soma and, at the behavioural level, strikingly results in improved memory performance after massed training. These findings challenge the prevailing view that neurons are unable to use FAs for energy production, revealing, on the contrary, that in vivo neuronal FA oxidation has an essential role in cognitive function, including memory formation. Neurons are shown to use fatty acid β-oxidation as a fuel source for memory formation upon intensive learning in Drosophila, challenging the view that neurons are unable to use fatty acids for energy production.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2438-2450"},"PeriodicalIF":20.8,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01416-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145711560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dietary restriction reprograms CD8+ T cell fate to enhance anti-tumour immunity and immunotherapy responses 饮食限制重编程CD8+ T细胞命运以增强抗肿瘤免疫和免疫治疗反应
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-09 DOI: 10.1038/s42255-025-01415-6
Brandon M. Oswald, Lisa M. DeCamp, Joseph Longo, Michael S. Dahabieh, Nicholas Bunda, Benjamin K. Johnson, McLane J. Watson, Shixin Ma, Samuel E. J. Preston, Ryan D. Sheldon, Michael P. Vincent, Abigail E. Ellis, Molly T. Soper-Hopper, Christine Isaguirre, Dahlya Kamarudin, Hui Shen, Kelsey S. Williams, Peter A. Crawford, Susan Kaech, H. Josh Jang, Evan C. Lien, Connie M. Krawczyk, Russell G. Jones
Reducing calorie intake through dietary restriction (DR) slows tumour growth in mammals, yet the underlying mechanisms are poorly defined. Here, we show that DR enhances anti-tumour immunity by optimizing CD8+ T cell function within the tumour microenvironment (TME). Using syngeneic xenograft tumour models, we found that DR induces a profound reprogramming of CD8+ T cell fate in the TME, favouring the expansion of effector T cell subsets with enhanced metabolic capacity and cytotoxic potential, while limiting the accumulation of terminally exhausted T cells. This metabolic reprogramming is driven by enhanced ketone body oxidation, particularly β-hydroxybutyrate (βOHB), which is elevated in both the circulation and tumour tissues of DR-fed mice. βOHB fuels T cell oxidative metabolism under DR, increasing mitochondrial membrane potential and tricarboxylic acid cycle-dependent pathways critical for T cell effector function, including acetyl-CoA production. By contrast, T cells deficient for ketone body oxidation exhibit reduced mitochondrial function, increased exhaustion and fail to control tumour growth under DR conditions. Importantly, DR synergizes with anti-PD1 immunotherapy, further augmenting anti-tumour T cell responses and limiting tumour progression. Our findings reveal that T cell metabolic reprogramming is central to the anti-tumour effects of DR, highlighting nutritional control of CD8+ T cell fate as a key driver of anti-tumour immunity. Dietary restriction promotes the expansion of effector T cells via ketone bodies, which enhances anti-tumour immunity and synergizes with immunotherapy in mice.
在哺乳动物中,通过限制饮食来减少卡路里的摄入(DR)可以减缓肿瘤的生长,但其潜在机制尚不明确。在这里,我们发现DR通过优化肿瘤微环境(TME)内CD8+ T细胞的功能来增强抗肿瘤免疫。通过使用同种异种移植肿瘤模型,我们发现DR诱导了TME中CD8+ T细胞命运的深刻重编程,有利于具有增强代谢能力和细胞毒性潜能的效应T细胞亚群的扩增,同时限制了终耗竭T细胞的积累。这种代谢重编程是由酮体氧化增强驱动的,特别是β-羟基丁酸(βOHB),它在dr喂养小鼠的循环和肿瘤组织中都升高。βOHB在DR下促进T细胞氧化代谢,增加线粒体膜电位和三羧酸循环依赖通路,这些通路对T细胞效应物功能至关重要,包括乙酰辅酶a的产生。相比之下,缺乏酮体氧化的T细胞在DR条件下表现出线粒体功能降低,耗竭增加,无法控制肿瘤生长。重要的是,DR与抗pd1免疫疗法协同作用,进一步增强抗肿瘤T细胞反应并限制肿瘤进展。我们的研究结果表明,T细胞代谢重编程是DR抗肿瘤作用的核心,强调CD8+ T细胞命运的营养控制是抗肿瘤免疫的关键驱动因素。
{"title":"Dietary restriction reprograms CD8+ T cell fate to enhance anti-tumour immunity and immunotherapy responses","authors":"Brandon M. Oswald, Lisa M. DeCamp, Joseph Longo, Michael S. Dahabieh, Nicholas Bunda, Benjamin K. Johnson, McLane J. Watson, Shixin Ma, Samuel E. J. Preston, Ryan D. Sheldon, Michael P. Vincent, Abigail E. Ellis, Molly T. Soper-Hopper, Christine Isaguirre, Dahlya Kamarudin, Hui Shen, Kelsey S. Williams, Peter A. Crawford, Susan Kaech, H. Josh Jang, Evan C. Lien, Connie M. Krawczyk, Russell G. Jones","doi":"10.1038/s42255-025-01415-6","DOIUrl":"10.1038/s42255-025-01415-6","url":null,"abstract":"Reducing calorie intake through dietary restriction (DR) slows tumour growth in mammals, yet the underlying mechanisms are poorly defined. Here, we show that DR enhances anti-tumour immunity by optimizing CD8+ T cell function within the tumour microenvironment (TME). Using syngeneic xenograft tumour models, we found that DR induces a profound reprogramming of CD8+ T cell fate in the TME, favouring the expansion of effector T cell subsets with enhanced metabolic capacity and cytotoxic potential, while limiting the accumulation of terminally exhausted T cells. This metabolic reprogramming is driven by enhanced ketone body oxidation, particularly β-hydroxybutyrate (βOHB), which is elevated in both the circulation and tumour tissues of DR-fed mice. βOHB fuels T cell oxidative metabolism under DR, increasing mitochondrial membrane potential and tricarboxylic acid cycle-dependent pathways critical for T cell effector function, including acetyl-CoA production. By contrast, T cells deficient for ketone body oxidation exhibit reduced mitochondrial function, increased exhaustion and fail to control tumour growth under DR conditions. Importantly, DR synergizes with anti-PD1 immunotherapy, further augmenting anti-tumour T cell responses and limiting tumour progression. Our findings reveal that T cell metabolic reprogramming is central to the anti-tumour effects of DR, highlighting nutritional control of CD8+ T cell fate as a key driver of anti-tumour immunity. Dietary restriction promotes the expansion of effector T cells via ketone bodies, which enhances anti-tumour immunity and synergizes with immunotherapy in mice.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2489-2509"},"PeriodicalIF":20.8,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01415-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145705133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of IRAK4 by microbial trimethylamine blunts metabolic inflammation and ameliorates glycemic control 微生物三甲胺抑制IRAK4可减弱代谢性炎症并改善血糖控制。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-08 DOI: 10.1038/s42255-025-01413-8
Julien Chilloux, Francois Brial, Amandine Everard, David Smyth, Petros Andrikopoulos, Liyong Zhang, Hubert Plovier, Antonis Myridakis, Lesley Hoyles, José Maria Moreno-Navarrete, Jèssica Latorre Luque, Viviana Casagrande, Rossella Menghini, Blerina Ahmetaj-Shala, Christine Blancher, Laura Martinez-Gili, Selin Gencer, Jane F. Fearnside, Richard H. Barton, Ana Luisa Neves, Alice R. Rothwell, Christelle Gérard, Sophie Calderari, Mark J. Williamson, Julian E. Fuchs, Lata Govada, Claire L. Boulangé, Saroor Patel, James Scott, Mark Thursz, Naomi Chayen, Robert C. Glen, Nigel J. Gooderham, Jeremy K. Nicholson, Massimo Federici, José Manuel Fernández-Real, Dominique Gauguier, Peter P. Liu, Patrice D. Cani, Marc-Emmanuel Dumas
The global type 2 diabetes epidemic is a major health crisis. Although the microbiome has roles in the onset of insulin resistance (IR), low-grade inflammation and diabetes, the microbial compounds controlling these processes remain to be discovered. Here, we show that the microbial metabolite trimethylamine (TMA) decouples inflammation and IR from diet-induced obesity by inhibiting interleukin-1 receptor-associated kinase 4 (IRAK4), a central kinase in the Toll-like receptor pathway sensing danger signals. TMA blunts TLR4 signalling in primary human hepatocytes and peripheral blood monocytic cells and rescues mouse survival after lipopolysaccharide-induced septic shock. Genetic deletion and chemical inhibition of IRAK4 result in metabolic and immune improvements in high-fat diets. Remarkably, our results suggest that TMA—unlike its liver co-metabolite trimethylamine N-oxide, which is associated with cardiovascular disease—improves immune tone and glycemic control in diet-induced obesity. Altogether, this study supports the emerging role of the kinome in the microbial–mammalian chemical crosstalk. The microbial metabolite trimethylamine (TMA), the precursor of TMAO, which is associated with adverse cardiometabolic outcomes, is shown to have beneficial metabolic and anti-inflammatory effects in the host in the context of obesity.
全球2型糖尿病的流行是一个重大的健康危机。虽然微生物组在胰岛素抵抗(IR)、低度炎症和糖尿病的发病中起作用,但控制这些过程的微生物化合物仍有待发现。在这里,我们发现微生物代谢物三甲胺(TMA)通过抑制白细胞介素-1受体相关激酶4 (IRAK4)来解除炎症和IR与饮食诱导的肥胖的关系,IRAK4是toll样受体途径中感知危险信号的中心激酶。TMA可减弱原代人肝细胞和外周血单核细胞中的TLR4信号,并可在脂多糖诱导的脓毒性休克后挽救小鼠的生存。遗传缺失和化学抑制IRAK4导致高脂肪饮食中代谢和免疫的改善。值得注意的是,我们的研究结果表明,tma与其肝脏共代谢物三甲胺n -氧化物(与心血管疾病相关)不同,可改善饮食性肥胖患者的免疫体质和血糖控制。总之,这项研究支持了kinome在微生物-哺乳动物化学串扰中的新兴作用。
{"title":"Inhibition of IRAK4 by microbial trimethylamine blunts metabolic inflammation and ameliorates glycemic control","authors":"Julien Chilloux, Francois Brial, Amandine Everard, David Smyth, Petros Andrikopoulos, Liyong Zhang, Hubert Plovier, Antonis Myridakis, Lesley Hoyles, José Maria Moreno-Navarrete, Jèssica Latorre Luque, Viviana Casagrande, Rossella Menghini, Blerina Ahmetaj-Shala, Christine Blancher, Laura Martinez-Gili, Selin Gencer, Jane F. Fearnside, Richard H. Barton, Ana Luisa Neves, Alice R. Rothwell, Christelle Gérard, Sophie Calderari, Mark J. Williamson, Julian E. Fuchs, Lata Govada, Claire L. Boulangé, Saroor Patel, James Scott, Mark Thursz, Naomi Chayen, Robert C. Glen, Nigel J. Gooderham, Jeremy K. Nicholson, Massimo Federici, José Manuel Fernández-Real, Dominique Gauguier, Peter P. Liu, Patrice D. Cani, Marc-Emmanuel Dumas","doi":"10.1038/s42255-025-01413-8","DOIUrl":"10.1038/s42255-025-01413-8","url":null,"abstract":"The global type 2 diabetes epidemic is a major health crisis. Although the microbiome has roles in the onset of insulin resistance (IR), low-grade inflammation and diabetes, the microbial compounds controlling these processes remain to be discovered. Here, we show that the microbial metabolite trimethylamine (TMA) decouples inflammation and IR from diet-induced obesity by inhibiting interleukin-1 receptor-associated kinase 4 (IRAK4), a central kinase in the Toll-like receptor pathway sensing danger signals. TMA blunts TLR4 signalling in primary human hepatocytes and peripheral blood monocytic cells and rescues mouse survival after lipopolysaccharide-induced septic shock. Genetic deletion and chemical inhibition of IRAK4 result in metabolic and immune improvements in high-fat diets. Remarkably, our results suggest that TMA—unlike its liver co-metabolite trimethylamine N-oxide, which is associated with cardiovascular disease—improves immune tone and glycemic control in diet-induced obesity. Altogether, this study supports the emerging role of the kinome in the microbial–mammalian chemical crosstalk. The microbial metabolite trimethylamine (TMA), the precursor of TMAO, which is associated with adverse cardiometabolic outcomes, is shown to have beneficial metabolic and anti-inflammatory effects in the host in the context of obesity.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2531-2547"},"PeriodicalIF":20.8,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01413-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145708752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathway coessentiality mapping reveals complex II is required for de novo purine biosynthesis in acute myeloid leukaemia 通路共本质映射显示复合体II是急性髓性白血病从头嘌呤生物合成所必需的
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-05 DOI: 10.1038/s42255-025-01410-x
Amy E. Stewart, Derek K. Zachman, Pol Castellano-Escuder, Lois M. Kelly, Ben Zolyomi, Michael D. I. Aiduk, Christopher D. Delaney, Ian C. Lock, Claudie Bosc, John Bradley, Shane T. Killarney, J. Darren Stuart, Paul A. Grimsrud, Olga R. Ilkayeva, Christopher B. Newgard, Navdeep S. Chandel, Alexandre Puissant, Kris C. Wood, Matthew D. Hirschey
Understanding how cellular pathways interact is crucial for treating complex diseases like cancer. Individual gene–gene interaction studies have provided valuable insights, but may miss pathways working together. Here we develop a multi-gene approach to pathway mapping which reveals that acute myeloid leukaemia (AML) depends on an unexpected link between complex II and purine metabolism. Through stable-isotope metabolomic tracing, we show that complex II directly supports de novo purine biosynthesis and that exogenous purines rescue AML cells from complex II inhibition. The mechanism involves a metabolic circuit where glutamine provides nitrogen to build the purine ring, producing glutamate that complex II metabolizes to sustain purine synthesis. This connection translates into a metabolic vulnerability whereby increasing intracellular glutamate levels suppresses purine production and sensitizes AML cells to complex II inhibition. In a syngeneic AML mouse model, targeting complex II leads to rapid disease regression and extends survival. In individuals with AML, higher complex II gene expression correlates with resistance to BCL-2 inhibition and worse survival. These findings establish complex II as a central regulator of de novo purine biosynthesis and a promising therapeutic target in AML. A machine-learning-based computational approach to probe pathway coessentiality reveals that complex II of the electron transport chain regulates de novo purine synthesis, and can be targeted to treat acute myeloid leukaemia.
了解细胞通路如何相互作用对于治疗癌症等复杂疾病至关重要。个体基因-基因相互作用的研究提供了有价值的见解,但可能会错过共同工作的途径。在这里,我们开发了一种多基因通路定位方法,揭示了急性髓性白血病(AML)依赖于复合物II和嘌呤代谢之间意想不到的联系。通过稳定同位素代谢组学追踪,我们发现复合物II直接支持新的嘌呤生物合成,外源嘌呤可以拯救AML细胞免受复合物II的抑制。其机制涉及一个代谢回路,其中谷氨酰胺提供氮来构建嘌呤环,产生谷氨酸,复合物II代谢维持嘌呤合成。这种联系转化为一种代谢脆弱性,即细胞内谷氨酸水平的增加抑制嘌呤的产生,并使AML细胞对复合物II的抑制敏感。在同基因AML小鼠模型中,靶向复合物II可导致疾病快速消退并延长生存期。在AML患者中,较高的complex II基因表达与BCL-2抑制的耐药性和较差的生存率相关。这些发现确立了复合物II作为新生嘌呤生物合成的中心调节因子和AML的一个有希望的治疗靶点。
{"title":"Pathway coessentiality mapping reveals complex II is required for de novo purine biosynthesis in acute myeloid leukaemia","authors":"Amy E. Stewart, Derek K. Zachman, Pol Castellano-Escuder, Lois M. Kelly, Ben Zolyomi, Michael D. I. Aiduk, Christopher D. Delaney, Ian C. Lock, Claudie Bosc, John Bradley, Shane T. Killarney, J. Darren Stuart, Paul A. Grimsrud, Olga R. Ilkayeva, Christopher B. Newgard, Navdeep S. Chandel, Alexandre Puissant, Kris C. Wood, Matthew D. Hirschey","doi":"10.1038/s42255-025-01410-x","DOIUrl":"10.1038/s42255-025-01410-x","url":null,"abstract":"Understanding how cellular pathways interact is crucial for treating complex diseases like cancer. Individual gene–gene interaction studies have provided valuable insights, but may miss pathways working together. Here we develop a multi-gene approach to pathway mapping which reveals that acute myeloid leukaemia (AML) depends on an unexpected link between complex II and purine metabolism. Through stable-isotope metabolomic tracing, we show that complex II directly supports de novo purine biosynthesis and that exogenous purines rescue AML cells from complex II inhibition. The mechanism involves a metabolic circuit where glutamine provides nitrogen to build the purine ring, producing glutamate that complex II metabolizes to sustain purine synthesis. This connection translates into a metabolic vulnerability whereby increasing intracellular glutamate levels suppresses purine production and sensitizes AML cells to complex II inhibition. In a syngeneic AML mouse model, targeting complex II leads to rapid disease regression and extends survival. In individuals with AML, higher complex II gene expression correlates with resistance to BCL-2 inhibition and worse survival. These findings establish complex II as a central regulator of de novo purine biosynthesis and a promising therapeutic target in AML. A machine-learning-based computational approach to probe pathway coessentiality reveals that complex II of the electron transport chain regulates de novo purine synthesis, and can be targeted to treat acute myeloid leukaemia.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2474-2488"},"PeriodicalIF":20.8,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01410-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1