首页 > 最新文献

Nature metabolism最新文献

英文 中文
Molecular connectomics reveals a glucagon-like peptide 1-sensitive neural circuit for satiety 分子连接组学揭示了胰高血糖素样肽1对饱腹感敏感的神经回路
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-12-03 DOI: 10.1038/s42255-024-01168-8
Addison N. Webster, Jordan J. Becker, Chia Li, Dana C. Schwalbe, Damien Kerspern, Eva O. Karolczak, Catherine B. Bundon, Roberta A. Onoharigho, Maisie Crook, Maira Jalil, Elizabeth N. Godschall, Emily G. Dame, Adam Dawer, Dylan Matthew Belmont-Rausch, Tune H. Pers, Andrew Lutas, Naomi Habib, Ali D. Güler, Michael J. Krashes, John N. Campbell
Liraglutide and other glucagon-like peptide 1 receptor agonists (GLP-1RAs) are effective weight loss drugs, but how they suppress appetite remains unclear. One potential mechanism is by activating neurons that inhibit the hunger-promoting Agouti-related peptide (AgRP) neurons of the arcuate hypothalamus (Arc). To identify these afferents, we developed a method combining rabies-based connectomics with single-nucleus transcriptomics. Here, we identify at least 21 afferent subtypes of AgRP neurons in the mouse mediobasal and paraventricular hypothalamus, which are predicted by our method. Among these are thyrotropin-releasing hormone (TRH)+ Arc (TRHArc) neurons, inhibitory neurons that express the Glp1r gene and are activated by the GLP-1RA liraglutide. Activating TRHArc neurons inhibits AgRP neurons and feeding, probably in an AgRP neuron-dependent manner. Silencing TRHArc neurons causes overeating and weight gain and attenuates liraglutide’s effect on body weight. Our results demonstrate a widely applicable method for molecular connectomics, comprehensively identify local inputs to AgRP neurons and reveal a circuit through which GLP-1RAs suppress appetite. Combining rabies-based connectomics with single-nucleus transcriptomics, the authors identify a neural circuit through which GLP-1 receptor agonists suppress appetite in mice.
利拉鲁肽和其他胰高血糖素样肽1受体激动剂(GLP-1RAs)是有效的减肥药,但它们如何抑制食欲仍不清楚。一种可能的机制是通过激活抑制弓形下丘脑(Arc)中促进饥饿的agouti相关肽(AgRP)神经元的神经元。为了识别这些事件,我们开发了一种结合基于狂犬病的连接组学和单核转录组学的方法。在这里,我们确定了小鼠中基底和室旁下丘脑中至少21种AgRP神经元的传入亚型,并通过我们的方法进行了预测。其中包括促甲状腺激素释放激素(TRH)+ Arc (TRHArc)神经元,表达Glp1r基因并被GLP-1RA利拉鲁肽激活的抑制性神经元。激活TRHArc神经元抑制AgRP神经元和摄食,可能以AgRP神经元依赖的方式。沉默TRHArc神经元会导致暴饮暴食和体重增加,并减弱利拉鲁肽对体重的影响。我们的研究结果展示了一种广泛适用的分子连接组学方法,全面识别AgRP神经元的局部输入,并揭示了GLP-1RAs抑制食欲的电路。
{"title":"Molecular connectomics reveals a glucagon-like peptide 1-sensitive neural circuit for satiety","authors":"Addison N. Webster, Jordan J. Becker, Chia Li, Dana C. Schwalbe, Damien Kerspern, Eva O. Karolczak, Catherine B. Bundon, Roberta A. Onoharigho, Maisie Crook, Maira Jalil, Elizabeth N. Godschall, Emily G. Dame, Adam Dawer, Dylan Matthew Belmont-Rausch, Tune H. Pers, Andrew Lutas, Naomi Habib, Ali D. Güler, Michael J. Krashes, John N. Campbell","doi":"10.1038/s42255-024-01168-8","DOIUrl":"10.1038/s42255-024-01168-8","url":null,"abstract":"Liraglutide and other glucagon-like peptide 1 receptor agonists (GLP-1RAs) are effective weight loss drugs, but how they suppress appetite remains unclear. One potential mechanism is by activating neurons that inhibit the hunger-promoting Agouti-related peptide (AgRP) neurons of the arcuate hypothalamus (Arc). To identify these afferents, we developed a method combining rabies-based connectomics with single-nucleus transcriptomics. Here, we identify at least 21 afferent subtypes of AgRP neurons in the mouse mediobasal and paraventricular hypothalamus, which are predicted by our method. Among these are thyrotropin-releasing hormone (TRH)+ Arc (TRHArc) neurons, inhibitory neurons that express the Glp1r gene and are activated by the GLP-1RA liraglutide. Activating TRHArc neurons inhibits AgRP neurons and feeding, probably in an AgRP neuron-dependent manner. Silencing TRHArc neurons causes overeating and weight gain and attenuates liraglutide’s effect on body weight. Our results demonstrate a widely applicable method for molecular connectomics, comprehensively identify local inputs to AgRP neurons and reveal a circuit through which GLP-1RAs suppress appetite. Combining rabies-based connectomics with single-nucleus transcriptomics, the authors identify a neural circuit through which GLP-1 receptor agonists suppress appetite in mice.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"6 12","pages":"2354-2373"},"PeriodicalIF":18.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: PNPO–PLP axis senses prolonged hypoxia in macrophages by regulating lysosomal activity 作者更正:PNPO-PLP轴通过调节溶酶体活性感知巨噬细胞中长期缺氧状态
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-26 DOI: 10.1038/s42255-024-01183-9
Hiroki Sekine, Haruna Takeda, Norihiko Takeda, Akihiro Kishino, Hayato Anzawa, Takayuki Isagawa, Nao Ohta, Shohei Murakami, Hideya Iwaki, Nobufumi Kato, Shu Kimura, Zun Liu, Koichiro Kato, Fumiki Katsuoka, Masayuki Yamamoto, Fumihito Miura, Takashi Ito, Masatomo Takahashi, Yoshihiro Izumi, Hiroyuki Fujita, Hitoshi Yamagata, Takeshi Bamba, Takaaki Akaike, Norio Suzuki, Kengo Kinoshita, Hozumi Motohashi
{"title":"Author Correction: PNPO–PLP axis senses prolonged hypoxia in macrophages by regulating lysosomal activity","authors":"Hiroki Sekine, Haruna Takeda, Norihiko Takeda, Akihiro Kishino, Hayato Anzawa, Takayuki Isagawa, Nao Ohta, Shohei Murakami, Hideya Iwaki, Nobufumi Kato, Shu Kimura, Zun Liu, Koichiro Kato, Fumiki Katsuoka, Masayuki Yamamoto, Fumihito Miura, Takashi Ito, Masatomo Takahashi, Yoshihiro Izumi, Hiroyuki Fujita, Hitoshi Yamagata, Takeshi Bamba, Takaaki Akaike, Norio Suzuki, Kengo Kinoshita, Hozumi Motohashi","doi":"10.1038/s42255-024-01183-9","DOIUrl":"10.1038/s42255-024-01183-9","url":null,"abstract":"","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"6 12","pages":"2391-2391"},"PeriodicalIF":18.9,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42255-024-01183-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142730725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glucose limitation protects cancer cells from apoptosis induced by pyrimidine restriction and replication inhibition 葡萄糖限制可保护癌细胞免受嘧啶限制和复制抑制诱导的细胞凋亡的影响
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-26 DOI: 10.1038/s42255-024-01166-w
Minwoo Nam, Wenxin Xia, Abdul Hannan Mir, Alexandra Jerrett, Jessica B. Spinelli, Tony T. Huang, Richard Possemato
Cancer cells often experience nutrient-limiting conditions because of their robust proliferation and inadequate tumour vasculature, which results in metabolic adaptation to sustain proliferation. Most cancer cells rapidly consume glucose, which is severely reduced in the nutrient-scarce tumour microenvironment. In CRISPR-based genetic screens to identify metabolic pathways influenced by glucose restriction, we find that tumour-relevant glucose concentrations (low glucose) protect cancer cells from inhibition of de novo pyrimidine biosynthesis, a pathway that is frequently targeted by chemotherapy. We identify two mechanisms to explain this result, which is observed broadly across cancer types. First, low glucose limits uridine-5-diphosphate-glucose synthesis, preserving pyrimidine nucleotide availability and thereby prolonging the time to replication fork stalling. Second, low glucose directly modulates apoptosis downstream of replication fork stalling by suppressing BAK activation and subsequent cytochrome c release, key events that activate caspase-9-dependent mitochondrial apoptosis. These results indicate that the low glucose levels frequently observed in tumours may limit the efficacy of specific chemotherapeutic agents, highlighting the importance of considering the effects of the tumour nutrient environment on cancer therapy. Nam et al. show that limited glucose availability similar to the tumour microenvironment confers resistance against chemotherapeutic drugs that target DNA synthesis.
癌细胞由于增殖旺盛和肿瘤血管不足,往往会经历营养限制条件,从而产生新陈代谢适应以维持增殖。大多数癌细胞会迅速消耗葡萄糖,而在营养匮乏的肿瘤微环境中,葡萄糖会严重减少。通过基于 CRISPR 的基因筛选来确定受葡萄糖限制影响的代谢途径,我们发现与肿瘤相关的葡萄糖浓度(低糖)能保护癌细胞免受新嘧啶生物合成的抑制,而新嘧啶生物合成是化疗经常针对的途径。我们确定了两种机制来解释这一结果,并在各种癌症类型中广泛观察到这一结果。首先,低血糖限制了尿苷-5-二磷酸-葡萄糖的合成,保持了嘧啶核苷酸的可用性,从而延长了复制叉停滞的时间。其次,低糖通过抑制 BAK 激活和随后的细胞色素 c 释放(激活 caspase-9 依赖性线粒体凋亡的关键事件),直接调节复制叉失速下游的细胞凋亡。这些结果表明,在肿瘤中经常观察到的低血糖水平可能会限制特定化疗药物的疗效,突出了考虑肿瘤营养环境对癌症治疗影响的重要性。
{"title":"Glucose limitation protects cancer cells from apoptosis induced by pyrimidine restriction and replication inhibition","authors":"Minwoo Nam, Wenxin Xia, Abdul Hannan Mir, Alexandra Jerrett, Jessica B. Spinelli, Tony T. Huang, Richard Possemato","doi":"10.1038/s42255-024-01166-w","DOIUrl":"10.1038/s42255-024-01166-w","url":null,"abstract":"Cancer cells often experience nutrient-limiting conditions because of their robust proliferation and inadequate tumour vasculature, which results in metabolic adaptation to sustain proliferation. Most cancer cells rapidly consume glucose, which is severely reduced in the nutrient-scarce tumour microenvironment. In CRISPR-based genetic screens to identify metabolic pathways influenced by glucose restriction, we find that tumour-relevant glucose concentrations (low glucose) protect cancer cells from inhibition of de novo pyrimidine biosynthesis, a pathway that is frequently targeted by chemotherapy. We identify two mechanisms to explain this result, which is observed broadly across cancer types. First, low glucose limits uridine-5-diphosphate-glucose synthesis, preserving pyrimidine nucleotide availability and thereby prolonging the time to replication fork stalling. Second, low glucose directly modulates apoptosis downstream of replication fork stalling by suppressing BAK activation and subsequent cytochrome c release, key events that activate caspase-9-dependent mitochondrial apoptosis. These results indicate that the low glucose levels frequently observed in tumours may limit the efficacy of specific chemotherapeutic agents, highlighting the importance of considering the effects of the tumour nutrient environment on cancer therapy. Nam et al. show that limited glucose availability similar to the tumour microenvironment confers resistance against chemotherapeutic drugs that target DNA synthesis.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"6 12","pages":"2338-2353"},"PeriodicalIF":18.9,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142712795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microviridae bacteriophages influence behavioural hallmarks of food addiction via tryptophan and tyrosine signalling pathways 微小病毒科噬菌体通过色氨酸和酪氨酸信号通路影响食物成瘾的行为特征
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-25 DOI: 10.1038/s42255-024-01157-x
Anna Castells-Nobau, Irene Puig, Anna Motger-Albertí, Lisset de la Vega-Correa, Marisel Rosell-Díaz, María Arnoriaga-Rodríguez, Anira Escrichs, Josep Garre-Olmo, Josep Puig, Rafael Ramos, Lluís Ramió-Torrentà, Vicente Pérez-Brocal, Andrés Moya, Reinald Pamplona, Mariona Jové, Joaquim Sol, Elena Martin-Garcia, Manuel Martinez-Garcia, Gustavo Deco, Rafael Maldonado, José Manuel Fernández-Real, Jordi Mayneris-Perxachs
Food addiction contributes to the obesity pandemic, but the connection between how the gut microbiome is linked to food addiction remains largely unclear. Here we show that Microviridae bacteriophages, particularly Gokushovirus WZ-2015a, are associated with food addiction and obesity across multiple human cohorts. Further analyses reveal that food addiction and Gokushovirus are linked to serotonin and dopamine metabolism. Mice receiving faecal microbiota and viral transplantation from human donors with the highest Gokushovirus load exhibit increased food addiction along with changes in tryptophan, serotonin and dopamine metabolism in different regions of the brain, together with alterations in dopamine receptors. Mechanistically, targeted tryptophan analysis shows lower anthranilic acid (AA) concentrations associated with Gokushovirus. AA supplementation in mice decreases food addiction and alters pathways related to the cycle of neurotransmitter synthesis release. In Drosophila, AA regulates feeding behaviour and addiction-like ethanol preference. In summary, this study proposes that bacteriophages in the gut microbiome contribute to regulating food addiction by modulating tryptophan and tyrosine metabolism. Castells-Nobau et al. provide insight into how bacteriophages in the gut microbiome contribute to regulating food addiction by modulating tryptophan and tyrosine metabolism in the host.
食物上瘾是肥胖症流行的原因之一,但肠道微生物组与食物上瘾之间的联系在很大程度上仍不清楚。在这里,我们发现微小病毒科噬菌体,尤其是Gokushovirus WZ-2015a,在多个人类队列中与食物成瘾和肥胖有关。进一步的分析表明,食物成瘾和 Gokushovirus 与血清素和多巴胺代谢有关。接受粪便微生物群和病毒移植的小鼠来自戈库舒病毒载量最高的人类捐献者,表现出食物成瘾性增加,同时大脑不同区域的色氨酸、血清素和多巴胺代谢发生变化,多巴胺受体也发生变化。从机理上讲,有针对性的色氨酸分析表明,与戈库什病毒有关的蚁酸(AA)浓度较低。在小鼠体内补充 AA 会降低食物成瘾性,并改变与神经递质合成释放周期相关的途径。在果蝇中,AA 可调节摄食行为和类似上瘾的乙醇偏好。总之,本研究提出,肠道微生物组中的噬菌体通过调节色氨酸和酪氨酸代谢,有助于调节食物成瘾。
{"title":"Microviridae bacteriophages influence behavioural hallmarks of food addiction via tryptophan and tyrosine signalling pathways","authors":"Anna Castells-Nobau, Irene Puig, Anna Motger-Albertí, Lisset de la Vega-Correa, Marisel Rosell-Díaz, María Arnoriaga-Rodríguez, Anira Escrichs, Josep Garre-Olmo, Josep Puig, Rafael Ramos, Lluís Ramió-Torrentà, Vicente Pérez-Brocal, Andrés Moya, Reinald Pamplona, Mariona Jové, Joaquim Sol, Elena Martin-Garcia, Manuel Martinez-Garcia, Gustavo Deco, Rafael Maldonado, José Manuel Fernández-Real, Jordi Mayneris-Perxachs","doi":"10.1038/s42255-024-01157-x","DOIUrl":"10.1038/s42255-024-01157-x","url":null,"abstract":"Food addiction contributes to the obesity pandemic, but the connection between how the gut microbiome is linked to food addiction remains largely unclear. Here we show that Microviridae bacteriophages, particularly Gokushovirus WZ-2015a, are associated with food addiction and obesity across multiple human cohorts. Further analyses reveal that food addiction and Gokushovirus are linked to serotonin and dopamine metabolism. Mice receiving faecal microbiota and viral transplantation from human donors with the highest Gokushovirus load exhibit increased food addiction along with changes in tryptophan, serotonin and dopamine metabolism in different regions of the brain, together with alterations in dopamine receptors. Mechanistically, targeted tryptophan analysis shows lower anthranilic acid (AA) concentrations associated with Gokushovirus. AA supplementation in mice decreases food addiction and alters pathways related to the cycle of neurotransmitter synthesis release. In Drosophila, AA regulates feeding behaviour and addiction-like ethanol preference. In summary, this study proposes that bacteriophages in the gut microbiome contribute to regulating food addiction by modulating tryptophan and tyrosine metabolism. Castells-Nobau et al. provide insight into how bacteriophages in the gut microbiome contribute to regulating food addiction by modulating tryptophan and tyrosine metabolism in the host.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"6 11","pages":"2157-2186"},"PeriodicalIF":18.9,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inceptor binds to and directs insulin towards lysosomal degradation in β cells 受体与β细胞中的胰岛素结合并引导胰岛素进入溶酶体降解
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-25 DOI: 10.1038/s42255-024-01164-y
Johanna Siehler, Sara Bilekova, Prisca Chapouton, Alessandro Dema, Pascal Albanese, Sem Tamara, Chirag Jain, Michael Sterr, Stephen J. Enos, Chunguang Chen, Chetna Malhotra, Adrian Villalba, Leopold Schomann, Sreya Bhattacharya, Jin Feng, Melis Akgün Canan, Federico Ribaudo,  Ansarullah, Ingo Burtscher, Christin Ahlbrecht, Oliver Plettenburg, Thomas Kurth, Raphael Scharfmann, Stephan Speier, Richard A. Scheltema, Heiko Lickert
Blunted first-phase insulin secretion and insulin deficiency are indicators of β cell dysfunction and diabetes manifestation. Therefore, insights into molecular mechanisms that regulate insulin homeostasis might provide entry sites to replenish insulin content and restore β cell function. Here, we identify the insulin inhibitory receptor (inceptor; encoded by the gene IIR/ELAPOR1) as an insulin-binding receptor that regulates insulin stores by lysosomal degradation. Using human induced pluripotent stem cell (SC)-derived islets, we show that IIR knockout (KO) results in enhanced SC β cell differentiation and survival. Strikingly, extended in vitro culture of IIR KO SC β cells leads to greatly increased insulin content and glucose-stimulated insulin secretion (GSIS). We find that inceptor localizes to clathrin-coated vesicles close to the plasma membrane and in the trans-Golgi network as well as in secretory granules, where it acts as a sorting receptor to direct proinsulin and insulin towards lysosomal degradation. Targeting inceptor using a monoclonal antibody increases proinsulin and insulin content and improves SC β cell GSIS. Altogether, our findings reveal the basic mechanisms of β cell insulin turnover and identify inceptor as an insulin degradation receptor. The insulin inhibitory receptor (inceptor) is found to bind to insulin and to regulate insulin stores by directing proinsulin and insulin towards lysosomal degradation.
第一阶段胰岛素分泌减弱和胰岛素缺乏是β细胞功能障碍和糖尿病表现的指标。因此,了解调节胰岛素平衡的分子机制可能为补充胰岛素含量和恢复β细胞功能提供切入点。在这里,我们发现胰岛素抑制受体(inceptor;由基因 IIR/ELAPOR1 编码)是一种通过溶酶体降解调节胰岛素储存的胰岛素结合受体。我们利用人类诱导多能干细胞(SC)衍生的胰岛研究表明,IIR基因敲除(KO)可增强SCβ细胞的分化和存活。令人震惊的是,延长体外培养 IIR KO SC β 细胞的时间会导致胰岛素含量和葡萄糖刺激胰岛素分泌(GSIS)大大增加。我们发现,受体定位于接近质膜的凝集素包被囊泡和跨高尔基网络以及分泌颗粒中,它在其中充当分选受体,引导原胰岛素和胰岛素进入溶酶体降解。使用单克隆抗体靶向胰岛素受体可增加原胰岛素和胰岛素含量,改善SC β细胞的GSIS。总之,我们的研究结果揭示了β细胞胰岛素周转的基本机制,并确定受体是一种胰岛素降解受体。
{"title":"Inceptor binds to and directs insulin towards lysosomal degradation in β cells","authors":"Johanna Siehler, Sara Bilekova, Prisca Chapouton, Alessandro Dema, Pascal Albanese, Sem Tamara, Chirag Jain, Michael Sterr, Stephen J. Enos, Chunguang Chen, Chetna Malhotra, Adrian Villalba, Leopold Schomann, Sreya Bhattacharya, Jin Feng, Melis Akgün Canan, Federico Ribaudo,  Ansarullah, Ingo Burtscher, Christin Ahlbrecht, Oliver Plettenburg, Thomas Kurth, Raphael Scharfmann, Stephan Speier, Richard A. Scheltema, Heiko Lickert","doi":"10.1038/s42255-024-01164-y","DOIUrl":"10.1038/s42255-024-01164-y","url":null,"abstract":"Blunted first-phase insulin secretion and insulin deficiency are indicators of β cell dysfunction and diabetes manifestation. Therefore, insights into molecular mechanisms that regulate insulin homeostasis might provide entry sites to replenish insulin content and restore β cell function. Here, we identify the insulin inhibitory receptor (inceptor; encoded by the gene IIR/ELAPOR1) as an insulin-binding receptor that regulates insulin stores by lysosomal degradation. Using human induced pluripotent stem cell (SC)-derived islets, we show that IIR knockout (KO) results in enhanced SC β cell differentiation and survival. Strikingly, extended in vitro culture of IIR KO SC β cells leads to greatly increased insulin content and glucose-stimulated insulin secretion (GSIS). We find that inceptor localizes to clathrin-coated vesicles close to the plasma membrane and in the trans-Golgi network as well as in secretory granules, where it acts as a sorting receptor to direct proinsulin and insulin towards lysosomal degradation. Targeting inceptor using a monoclonal antibody increases proinsulin and insulin content and improves SC β cell GSIS. Altogether, our findings reveal the basic mechanisms of β cell insulin turnover and identify inceptor as an insulin degradation receptor. The insulin inhibitory receptor (inceptor) is found to bind to insulin and to regulate insulin stores by directing proinsulin and insulin towards lysosomal degradation.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"6 12","pages":"2374-2390"},"PeriodicalIF":18.9,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42255-024-01164-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathogenic role of acyl coenzyme A binding protein (ACBP) in Cushing’s syndrome 酰基辅酶 A 结合蛋白(ACBP)在库欣综合征中的致病作用
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-22 DOI: 10.1038/s42255-024-01170-0
Hui Pan, Ai-Ling Tian, Hui Chen, Yifan Xia, Allan Sauvat, Stephanie Moriceau, Flavia Lambertucci, Omar Motiño, Liwei Zhao, Peng Liu, Misha Mao, Sijing Li, Shuai Zhang, Adrien Joseph, Sylvère Durand, Fanny Aprahamian, Zeyu Luo, Yang Ou, Zhe Shen, Enfu Xue, Yuhong Pan, Vincent Carbonnier, Gautier Stoll, Sabrina Forveille, Marion Leduc, Giulia Cerrato, Alexandra Cerone, Maria Chiara Maiuri, Frederic Castinetti, Thierry Brue, Hongsheng Wang, Yuting Ma, Isabelle Martins, Oliver Kepp, Guido Kroemer
Cushing’s syndrome is caused by an elevation of endogenous or pharmacologically administered glucocorticoids. Acyl coenzyme A binding protein (ACBP, encoded by the gene diazepam binding inhibitor, Dbi) stimulates food intake and lipo-anabolic reactions. Here we found that plasma ACBP/DBI concentrations were elevated in patients and mice with Cushing’s syndrome. We used several methods for ACBP/DBI inhibition in mice, namely, (1) induction of ACBP/DBI autoantibodies, (2) injection of a neutralizing monoclonal antibody, (3) body-wide or hepatocyte-specific knockout of the Dbi gene, (4) mutation of the ACBP/DBI receptor Gabrg2 and (5) injections of triiodothyronine or (6) the thyroid hormone receptor-β agonist resmetirom to block Dbi transcription. These six approaches abolished manifestations of Cushing’s syndrome such as increased food intake, weight gain, excessive adiposity, liver damage, hypertriglyceridaemia and type 2 diabetes. In conclusion, it appears that ACBP/DBI constitutes an actionable target that is causally involved in the development of Cushing’s syndrome. The authors highlight the role of acyl coenzyme A binding protein (encoded by DBI) in Cushing’s syndrome by using six different inhibition methods and mapping the physiological effects.
库欣综合征是由内源性或药物性糖皮质激素升高引起的。酰基辅酶 A 结合蛋白(ACBP,由地西泮结合抑制剂 Dbi 基因编码)可刺激食物摄入和脂肪代谢反应。在这里,我们发现库欣综合征患者和小鼠的血浆 ACBP/DBI 浓度升高。我们采用了多种方法抑制小鼠的 ACBP/DBI,即:(1)诱导 ACBP/DBI 自身抗体;(2)注射中和单克隆抗体;(3)全身或肝细胞特异性敲除 Dbi 基因;(4)ACBP/DBI 受体 Gabrg2 突变;(5)注射三碘甲状腺原氨酸或(6)甲状腺激素受体-β激动剂 resmetirom 以阻断 Dbi 转录。这六种方法都消除了库欣综合征的表现,如食物摄入量增加、体重增加、过度肥胖、肝损伤、高甘油三酯血症和 2 型糖尿病。总之,ACBP/DBI 似乎是一个可操作的靶点,与库欣综合征的发展有因果关系。
{"title":"Pathogenic role of acyl coenzyme A binding protein (ACBP) in Cushing’s syndrome","authors":"Hui Pan, Ai-Ling Tian, Hui Chen, Yifan Xia, Allan Sauvat, Stephanie Moriceau, Flavia Lambertucci, Omar Motiño, Liwei Zhao, Peng Liu, Misha Mao, Sijing Li, Shuai Zhang, Adrien Joseph, Sylvère Durand, Fanny Aprahamian, Zeyu Luo, Yang Ou, Zhe Shen, Enfu Xue, Yuhong Pan, Vincent Carbonnier, Gautier Stoll, Sabrina Forveille, Marion Leduc, Giulia Cerrato, Alexandra Cerone, Maria Chiara Maiuri, Frederic Castinetti, Thierry Brue, Hongsheng Wang, Yuting Ma, Isabelle Martins, Oliver Kepp, Guido Kroemer","doi":"10.1038/s42255-024-01170-0","DOIUrl":"10.1038/s42255-024-01170-0","url":null,"abstract":"Cushing’s syndrome is caused by an elevation of endogenous or pharmacologically administered glucocorticoids. Acyl coenzyme A binding protein (ACBP, encoded by the gene diazepam binding inhibitor, Dbi) stimulates food intake and lipo-anabolic reactions. Here we found that plasma ACBP/DBI concentrations were elevated in patients and mice with Cushing’s syndrome. We used several methods for ACBP/DBI inhibition in mice, namely, (1) induction of ACBP/DBI autoantibodies, (2) injection of a neutralizing monoclonal antibody, (3) body-wide or hepatocyte-specific knockout of the Dbi gene, (4) mutation of the ACBP/DBI receptor Gabrg2 and (5) injections of triiodothyronine or (6) the thyroid hormone receptor-β agonist resmetirom to block Dbi transcription. These six approaches abolished manifestations of Cushing’s syndrome such as increased food intake, weight gain, excessive adiposity, liver damage, hypertriglyceridaemia and type 2 diabetes. In conclusion, it appears that ACBP/DBI constitutes an actionable target that is causally involved in the development of Cushing’s syndrome. The authors highlight the role of acyl coenzyme A binding protein (encoded by DBI) in Cushing’s syndrome by using six different inhibition methods and mapping the physiological effects.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"6 12","pages":"2281-2299"},"PeriodicalIF":18.9,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42255-024-01170-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ACBP orchestrates the metabolic phenotype in Cushing’s syndrome ACBP 协调库欣综合征的代谢表型
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-22 DOI: 10.1038/s42255-024-01169-7
Mhairi Paul, Mark Nixon
Cushing’s syndrome, a condition of chronic glucocorticoid excess, disrupts metabolic homeostasis, driving fat redistribution and promoting insulin resistance. New research uses a series of elegant approaches to reveal acyl-CoA-binding protein (ACBP) as a mediator of the metabolic disturbances associated with elevated glucocorticoid levels in mice.
库欣综合征是一种糖皮质激素长期过量的病症,会破坏代谢平衡,导致脂肪重新分布并促进胰岛素抵抗。新研究采用一系列优雅的方法揭示了酰基-CoA结合蛋白(ACBP)是小鼠糖皮质激素水平升高引起代谢紊乱的介质。
{"title":"ACBP orchestrates the metabolic phenotype in Cushing’s syndrome","authors":"Mhairi Paul, Mark Nixon","doi":"10.1038/s42255-024-01169-7","DOIUrl":"10.1038/s42255-024-01169-7","url":null,"abstract":"Cushing’s syndrome, a condition of chronic glucocorticoid excess, disrupts metabolic homeostasis, driving fat redistribution and promoting insulin resistance. New research uses a series of elegant approaches to reveal acyl-CoA-binding protein (ACBP) as a mediator of the metabolic disturbances associated with elevated glucocorticoid levels in mice.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"6 12","pages":"2220-2221"},"PeriodicalIF":18.9,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cancer cachexia: multilevel metabolic dysfunction 癌症恶病质:多层次代谢功能障碍
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-22 DOI: 10.1038/s42255-024-01167-9
Mauricio Berriel Diaz, Maria Rohm, Stephan Herzig
Cancer cachexia is a complex metabolic disorder marked by unintentional body weight loss or ‘wasting’ of body mass, driven by multiple aetiological factors operating at various levels. It is associated with many malignancies and significantly contributes to cancer-related morbidity and mortality. With emerging recognition of cancer as a systemic disease, there is increasing awareness that understanding and treatment of cancer cachexia may represent a crucial cornerstone for improved management of cancer. Here, we describe the metabolic changes contributing to body wasting in cachexia and explain how the entangled action of both tumour-derived and host-amplified processes induces these metabolic changes. We discuss energy homeostasis and possible ways that the presence of a tumour interferes with or hijacks physiological energy conservation pathways. In that context, we highlight the role played by metabolic cross-talk mechanisms in cachexia pathogenesis. Lastly, we elaborate on the challenges and opportunities in the treatment of this devastating paraneoplastic phenomenon that arise from the complex and multifaceted metabolic cross-talk mechanisms and provide a status on current and emerging therapeutic approaches. In this Review, the authors highlight cancer cachexia as a complex and multifactorial disorder, and discuss the underlying host-driven and tumour-driven metabolic changes, therapeutic opportunities and the pertinent challenges in the treatment of cancer cachexia.
癌症恶病质是一种复杂的新陈代谢紊乱,其特征是身体重量无意中减轻或体质 "消瘦",由多种致病因素在不同程度上造成。癌症恶病质与许多恶性肿瘤有关,是导致癌症相关发病率和死亡率的重要因素。随着人们逐渐认识到癌症是一种全身性疾病,人们越来越意识到,了解和治疗癌症恶病质可能是改善癌症管理的重要基石。在这里,我们描述了导致恶病质中身体消瘦的代谢变化,并解释了肿瘤衍生过程和宿主增强过程的纠缠作用是如何诱发这些代谢变化的。我们讨论了能量平衡以及肿瘤的存在干扰或劫持生理能量守恒途径的可能方式。在此背景下,我们强调了代谢交叉对话机制在恶病质发病机制中的作用。最后,我们阐述了治疗这一毁灭性副肿瘤现象的挑战和机遇,这些挑战和机遇源于复杂和多方面的代谢交叉对话机制,并提供了当前和新兴治疗方法的现状。
{"title":"Cancer cachexia: multilevel metabolic dysfunction","authors":"Mauricio Berriel Diaz, Maria Rohm, Stephan Herzig","doi":"10.1038/s42255-024-01167-9","DOIUrl":"10.1038/s42255-024-01167-9","url":null,"abstract":"Cancer cachexia is a complex metabolic disorder marked by unintentional body weight loss or ‘wasting’ of body mass, driven by multiple aetiological factors operating at various levels. It is associated with many malignancies and significantly contributes to cancer-related morbidity and mortality. With emerging recognition of cancer as a systemic disease, there is increasing awareness that understanding and treatment of cancer cachexia may represent a crucial cornerstone for improved management of cancer. Here, we describe the metabolic changes contributing to body wasting in cachexia and explain how the entangled action of both tumour-derived and host-amplified processes induces these metabolic changes. We discuss energy homeostasis and possible ways that the presence of a tumour interferes with or hijacks physiological energy conservation pathways. In that context, we highlight the role played by metabolic cross-talk mechanisms in cachexia pathogenesis. Lastly, we elaborate on the challenges and opportunities in the treatment of this devastating paraneoplastic phenomenon that arise from the complex and multifaceted metabolic cross-talk mechanisms and provide a status on current and emerging therapeutic approaches. In this Review, the authors highlight cancer cachexia as a complex and multifactorial disorder, and discuss the underlying host-driven and tumour-driven metabolic changes, therapeutic opportunities and the pertinent challenges in the treatment of cancer cachexia.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"6 12","pages":"2222-2245"},"PeriodicalIF":18.9,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryptic phosphoribosylase activity of NAMPT restricts the virion incorporation of viral proteins NAMPT 的隐性磷酸核糖酶活性限制了病毒蛋白在病毒中的结合
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-21 DOI: 10.1038/s42255-024-01162-0
Shu Feng, Na Xie, Yongzhen Liu, Chao Qin, Ali Can Savas, Ting-Yu Wang, Shutong Li, Youliang Rao, Alexandra Shambayate, Tsui-Fen Chou, Charles Brenner, Canhua Huang, Pinghui Feng
As obligate intracellular pathogens, viruses activate host metabolic enzymes to supply intermediates that support progeny production. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of salvage nicotinamide adenine dinucleotide (NAD+) synthesis, is an interferon-inducible protein that inhibits the replication of several RNA and DNA viruses through unknown mechanisms. Here, we show that NAMPT restricts herpes simplex virus type 1 (HSV-1) replication by impeding the virion incorporation of viral proteins owing to its phosphoribosyl-hydrolase (phosphoribosylase) activity, which is independent of the role of NAMPT in NAD+ synthesis. Proteomics analysis of HSV-1-infected cells identifies phosphoribosylated viral structural proteins, particularly glycoproteins and tegument proteins, which are de-phosphoribosylated by NAMPT in vitro and in cells. Chimeric and recombinant HSV-1 carrying phosphoribosylation-resistant mutations show that phosphoribosylation promotes the incorporation of structural proteins into HSV-1 virions and subsequent virus entry. Loss of NAMPT renders mice highly susceptible to HSV-1 infection. Our work describes an additional enzymatic activity of a metabolic enzyme in viral infection and host defence, offering a system to interrogate the roles of protein phosphoribosylation in metazoans. The NAD+ synthesis enzyme NAMPT is shown to possess additional enzymatic activity as a phosphoribosylase, which restricts the virion incorporation of viral proteins and underpins its antiviral effect
作为强制性细胞内病原体,病毒会激活宿主的代谢酶,以提供支持后代产生的中间产物。烟酰胺磷酸核糖转移酶(NAMPT)是烟酰胺腺嘌呤二核苷酸(NAD+)合成的限速酶,它是一种干扰素诱导蛋白,能通过未知机制抑制多种 RNA 和 DNA 病毒的复制。在这里,我们发现 NAMPT 通过其磷酸核糖水解酶(phosphoribosyl-hydrolase)活性阻碍病毒蛋白在病毒中的结合,从而限制了单纯疱疹病毒 1 型(HSV-1)的复制,而这与 NAMPT 在 NAD+ 合成中的作用无关。对 HSV-1 感染细胞进行的蛋白质组学分析确定了磷酸核糖基化的病毒结构蛋白,特别是糖蛋白和保护膜蛋白,这些蛋白在体外和细胞内被 NAMPT 去磷酸核糖基化。携带磷酸核糖基化抗性突变的嵌合型和重组型 HSV-1 表明,磷酸核糖基化促进了结构蛋白与 HSV-1 病毒的结合以及随后的病毒进入。缺失 NAMPT 会使小鼠极易感染 HSV-1。我们的工作描述了一种代谢酶在病毒感染和宿主防御中的额外酶活性,为研究蛋白质磷酸化在类人猿中的作用提供了一个系统。
{"title":"Cryptic phosphoribosylase activity of NAMPT restricts the virion incorporation of viral proteins","authors":"Shu Feng, Na Xie, Yongzhen Liu, Chao Qin, Ali Can Savas, Ting-Yu Wang, Shutong Li, Youliang Rao, Alexandra Shambayate, Tsui-Fen Chou, Charles Brenner, Canhua Huang, Pinghui Feng","doi":"10.1038/s42255-024-01162-0","DOIUrl":"10.1038/s42255-024-01162-0","url":null,"abstract":"As obligate intracellular pathogens, viruses activate host metabolic enzymes to supply intermediates that support progeny production. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of salvage nicotinamide adenine dinucleotide (NAD+) synthesis, is an interferon-inducible protein that inhibits the replication of several RNA and DNA viruses through unknown mechanisms. Here, we show that NAMPT restricts herpes simplex virus type 1 (HSV-1) replication by impeding the virion incorporation of viral proteins owing to its phosphoribosyl-hydrolase (phosphoribosylase) activity, which is independent of the role of NAMPT in NAD+ synthesis. Proteomics analysis of HSV-1-infected cells identifies phosphoribosylated viral structural proteins, particularly glycoproteins and tegument proteins, which are de-phosphoribosylated by NAMPT in vitro and in cells. Chimeric and recombinant HSV-1 carrying phosphoribosylation-resistant mutations show that phosphoribosylation promotes the incorporation of structural proteins into HSV-1 virions and subsequent virus entry. Loss of NAMPT renders mice highly susceptible to HSV-1 infection. Our work describes an additional enzymatic activity of a metabolic enzyme in viral infection and host defence, offering a system to interrogate the roles of protein phosphoribosylation in metazoans. The NAD+ synthesis enzyme NAMPT is shown to possess additional enzymatic activity as a phosphoribosylase, which restricts the virion incorporation of viral proteins and underpins its antiviral effect","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"6 12","pages":"2300-2318"},"PeriodicalIF":18.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microviridae bacteriophages in the gut microbiome and food addiction in humans 人类肠道微生物群中的微病毒科噬菌体与食物成瘾
IF 18.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-20 DOI: 10.1038/s42255-024-01158-w
Despite their abundance and despite being the most numerous biological entities on Earth, viruses remain one of the least understood components of the human microbiome. In our study, we show how Microviridae bacteriophages in the gut microbiome are associated with food addiction through changes in tryptophan, serotonin and dopamine metabolism.
病毒是地球上数量最多的生物实体,尽管数量巨大,但它们仍然是人类微生物组中最不为人知的组成部分之一。在我们的研究中,我们展示了肠道微生物组中的微小病毒科噬菌体如何通过改变色氨酸、血清素和多巴胺的代谢与食物成瘾有关。
{"title":"Microviridae bacteriophages in the gut microbiome and food addiction in humans","authors":"","doi":"10.1038/s42255-024-01158-w","DOIUrl":"10.1038/s42255-024-01158-w","url":null,"abstract":"Despite their abundance and despite being the most numerous biological entities on Earth, viruses remain one of the least understood components of the human microbiome. In our study, we show how Microviridae bacteriophages in the gut microbiome are associated with food addiction through changes in tryptophan, serotonin and dopamine metabolism.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"6 11","pages":"2035-2036"},"PeriodicalIF":18.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1