首页 > 最新文献

Nature metabolism最新文献

英文 中文
Glycerol-3-phosphate activates ChREBP, FGF21 transcription and lipogenesis in citrin deficiency 甘油-3-磷酸激活ChREBP, FGF21转录和脂肪生成
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-14 DOI: 10.1038/s42255-025-01399-3
Vinod Tiwari, Byungchang Jin, Olivia Sun, Edwin D. J. Lopez Gonzalez, Min-Hsuan Chen, Xiwei Wu, Hardik Shah, Andrew Zhang, Mark A. Herman, Cassandra N. Spracklen, Russell P. Goodman, Charles Brenner
Citrin deficiency (CD) is caused by the inactivation of SLC25A13, a mitochondrial membrane protein required to move electrons from cytosolic NADH to the mitochondrial matrix in hepatocytes. People with CD do not like sweets. Here we show that SLC25A13 loss causes the accumulation of glycerol-3-phosphate (G3P), which activates the carbohydrate response element-binding protein (ChREBP) to transcribe FGF21, which acts in the brain to restrain intake of sweets and alcohol and to transcribe key genes driving lipogenesis. Mouse and human data suggest that G3P–ChREBP is a mechanistic component of the Randle Cycle that contributes to metabolic-dysfunction-associated steatotic liver disease and forms part of a system that communicates metabolic states from the liver to the brain in a manner that alters food and alcohol choices. The data provide a framework for understanding FGF21 induction in varied conditions, suggest ways to develop FGF21-inducing drugs and suggest potential drug candidates for lean metabolic-dysfunction-associated steatotic liver disease and support of urea cycle function in CD. In a mouse model of the rare disease citrin deficiency, the authors discovered that the accumulation of glycerol-3-phosphate leads to ChREBP activation and FGF21 induction. The study identifies glycerol-3-phosphate as a ChREBP-activating ligand, which could resolve paradoxes of FGF21 expression and clarify the logic of lipogenic transcription.
Citrin缺乏症(CD)是由SLC25A13失活引起的,SLC25A13是一种线粒体膜蛋白,需要将电子从细胞质NADH转移到肝细胞的线粒体基质中。乳糜泻患者不喜欢甜食。本研究表明,SLC25A13缺失导致甘油-3-磷酸(G3P)积累,G3P激活碳水化合物反应元件结合蛋白(ChREBP)转录FGF21, FGF21在大脑中抑制糖和酒精的摄入,并转录驱动脂肪生成的关键基因。小鼠和人类数据表明,G3P-ChREBP是Randle循环的一个机制组成部分,有助于代谢功能障碍相关的脂肪变性肝病,并形成一个系统的一部分,该系统以改变食物和酒精选择的方式将代谢状态从肝脏传递到大脑。这些数据为理解FGF21在不同条件下的诱导提供了一个框架,为开发FGF21诱导药物提供了方法,并为瘦代谢功能障碍相关的脂肪变性肝病和支持CD中的尿素循环功能提供了潜在的候选药物。在罕见疾病柠檬素缺乏症的小鼠模型中,作者发现甘油-3-磷酸的积累导致ChREBP激活和FGF21诱导。该研究确定甘油-3-磷酸是一个激活chrebp的配体,这可以解决FGF21表达的悖论,并阐明脂肪生成转录的逻辑。
{"title":"Glycerol-3-phosphate activates ChREBP, FGF21 transcription and lipogenesis in citrin deficiency","authors":"Vinod Tiwari, Byungchang Jin, Olivia Sun, Edwin D. J. Lopez Gonzalez, Min-Hsuan Chen, Xiwei Wu, Hardik Shah, Andrew Zhang, Mark A. Herman, Cassandra N. Spracklen, Russell P. Goodman, Charles Brenner","doi":"10.1038/s42255-025-01399-3","DOIUrl":"10.1038/s42255-025-01399-3","url":null,"abstract":"Citrin deficiency (CD) is caused by the inactivation of SLC25A13, a mitochondrial membrane protein required to move electrons from cytosolic NADH to the mitochondrial matrix in hepatocytes. People with CD do not like sweets. Here we show that SLC25A13 loss causes the accumulation of glycerol-3-phosphate (G3P), which activates the carbohydrate response element-binding protein (ChREBP) to transcribe FGF21, which acts in the brain to restrain intake of sweets and alcohol and to transcribe key genes driving lipogenesis. Mouse and human data suggest that G3P–ChREBP is a mechanistic component of the Randle Cycle that contributes to metabolic-dysfunction-associated steatotic liver disease and forms part of a system that communicates metabolic states from the liver to the brain in a manner that alters food and alcohol choices. The data provide a framework for understanding FGF21 induction in varied conditions, suggest ways to develop FGF21-inducing drugs and suggest potential drug candidates for lean metabolic-dysfunction-associated steatotic liver disease and support of urea cycle function in CD. In a mouse model of the rare disease citrin deficiency, the authors discovered that the accumulation of glycerol-3-phosphate leads to ChREBP activation and FGF21 induction. The study identifies glycerol-3-phosphate as a ChREBP-activating ligand, which could resolve paradoxes of FGF21 expression and clarify the logic of lipogenic transcription.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 11","pages":"2284-2299"},"PeriodicalIF":20.8,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01399-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145509020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uridine-sensitized screening identifies demethoxy-coenzyme Q and NUDT5 as regulators of nucleotide synthesis 尿嘧啶敏化筛选鉴定脱氧氧基辅酶Q和NUDT5作为核苷酸合成的调节因子
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-13 DOI: 10.1038/s42255-025-01419-2
Abigail Strefeler, Zakery N. Baker, Sylvain Chollet, Mads M. Foged, Rachel M. Guerra, Julijana Ivanisevic, Hector Gallart-Ayala, David J. Pagliarini, Alexis A. Jourdain
Rapidly proliferating cells require large amounts of nucleotides, making nucleotide metabolism a widely exploited therapeutic target against cancer, autoinflammatory disorders and viral infections. However, regulation of nucleotide metabolism remains incompletely understood. Here, we reveal regulators of de novo pyrimidine synthesis. Using uridine-sensitized CRISPR-Cas9 screening, we show that coenzyme Q (CoQ) is dispensable for pyrimidine synthesis, in the presence of the demethoxy-CoQ intermediate as alternative electron acceptor. We further report that the ADP-ribose pyrophosphatase NUDT5 directly binds PPAT, the rate-limiting enzyme in purine synthesis, which inhibits its activity and preserves the phosphoribosyl pyrophosphate (PRPP) pool. In the absence of NUDT5, hyperactive purine synthesis exhausts the PRPP pool at the expense of pyrimidine synthesis, which promotes resistance to purine and pyrimidine nucleobase analogues. Of note, the interaction between NUDT5 and PPAT is disrupted by PRPP, highlighting an intricate allosteric regulation. Overall, our findings reveal a fundamental mechanism of nucleotide balance and position NUDT5 as a regulator of nucleobase analogue metabolism. A uridine-sensitized CRISPR-Cas9 screening identifies demethoxy-CoQ as an alternative electron acceptor in the absence of CoQ, and NUDT5 as a regulator of de novo pyrimidine synthesis via its interaction with PPAT.
快速增殖的细胞需要大量的核苷酸,这使得核苷酸代谢成为治疗癌症、自身炎症性疾病和病毒感染的广泛靶点。然而,对核苷酸代谢的调控仍不完全了解。在这里,我们揭示了重新合成嘧啶的调节因子。利用尿嘧啶致敏CRISPR-Cas9筛选,我们发现辅酶Q (CoQ)在嘧啶合成中是必不可少的,在脱氧辅酶Q中间体作为替代电子受体存在的情况下。我们进一步报道adp核糖焦磷酸酶NUDT5直接结合嘌呤合成限速酶PPAT,抑制其活性并保留磷酸核糖焦磷酸(PRPP)库。在缺少NUDT5的情况下,过度活跃的嘌呤合成以牺牲嘧啶合成为代价耗尽PRPP库,从而促进对嘌呤和嘧啶核碱基类似物的抗性。值得注意的是,NUDT5和PPAT之间的相互作用被PRPP破坏,突出了复杂的变构调节。总之,我们的研究结果揭示了核苷酸平衡的基本机制,并将NUDT5定位为核碱基类似物代谢的调节剂。
{"title":"Uridine-sensitized screening identifies demethoxy-coenzyme Q and NUDT5 as regulators of nucleotide synthesis","authors":"Abigail Strefeler, Zakery N. Baker, Sylvain Chollet, Mads M. Foged, Rachel M. Guerra, Julijana Ivanisevic, Hector Gallart-Ayala, David J. Pagliarini, Alexis A. Jourdain","doi":"10.1038/s42255-025-01419-2","DOIUrl":"10.1038/s42255-025-01419-2","url":null,"abstract":"Rapidly proliferating cells require large amounts of nucleotides, making nucleotide metabolism a widely exploited therapeutic target against cancer, autoinflammatory disorders and viral infections. However, regulation of nucleotide metabolism remains incompletely understood. Here, we reveal regulators of de novo pyrimidine synthesis. Using uridine-sensitized CRISPR-Cas9 screening, we show that coenzyme Q (CoQ) is dispensable for pyrimidine synthesis, in the presence of the demethoxy-CoQ intermediate as alternative electron acceptor. We further report that the ADP-ribose pyrophosphatase NUDT5 directly binds PPAT, the rate-limiting enzyme in purine synthesis, which inhibits its activity and preserves the phosphoribosyl pyrophosphate (PRPP) pool. In the absence of NUDT5, hyperactive purine synthesis exhausts the PRPP pool at the expense of pyrimidine synthesis, which promotes resistance to purine and pyrimidine nucleobase analogues. Of note, the interaction between NUDT5 and PPAT is disrupted by PRPP, highlighting an intricate allosteric regulation. Overall, our findings reveal a fundamental mechanism of nucleotide balance and position NUDT5 as a regulator of nucleobase analogue metabolism. A uridine-sensitized CRISPR-Cas9 screening identifies demethoxy-CoQ as an alternative electron acceptor in the absence of CoQ, and NUDT5 as a regulator of de novo pyrimidine synthesis via its interaction with PPAT.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 11","pages":"2221-2235"},"PeriodicalIF":20.8,"publicationDate":"2025-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01419-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145498181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impaired cAMP–PKA–CREB1 signalling drives mitochondrial dysfunction in skeletal muscle during cancer cachexia 受损的cAMP-PKA-CREB1信号驱动癌症恶病质期间骨骼肌线粒体功能障碍
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-12 DOI: 10.1038/s42255-025-01397-5
Elia Angelino, Lorenza Bodo, Roberta Sartori, Valeria Malacarne, Beatrice D’Anna, Nicolò Formaggio, Suvham Barua, Tommaso Raiteri, Andrea Lauria, Simone Reano, Alessandra Murabito, Monica Nicolau, Fabiana Ferrero, Camilla Pezzini, Giulia Rossino, Francesco Favero, Michele Valmasoni, Nicoletta Filigheddu, Alessio Menga, Davide Corà, Emilio Hirsch, Salvatore Oliviero, Vittorio Sartorelli, Valentina Proserpio, Alessandra Ghigo, Marco Sandri, Paolo E. Porporato, Daniela Talarico, Giuseppina Caretti, Andrea Graziani
Skeletal muscle wasting is a defining feature of cancer cachexia, a multifactorial syndrome that drastically compromises patient quality of life and treatment outcomes. Mitochondrial dysfunction is a major contributor to skeletal muscle wasting in cancer cachexia, yet the upstream molecular drivers remain elusive. Here we show that cancer impairs the activity of cAMP-dependent protein kinase A (PKA) and of its transcriptional effector CREB1 in skeletal muscle, ultimately contributing to the downregulation of a core transcriptional network that supports mitochondrial integrity and function. The restoration of cAMP–PKA–CREB1 signalling through pharmacological inhibition of the cAMP-hydrolysing phosphodiesterase 4 (PDE4) rescues the expression of mitochondrial-related genes, improves mitochondrial function and mitigates skeletal muscle wasting in male mice. Altogether, our data identify tumour-induced suppression of the cAMP–PKA–CREB1 axis as a central mechanism contributing to mitochondrial dysfunction in skeletal muscle during cancer cachexia. Furthermore, these findings highlight PDE4, particularly the PDE4D isoform, as a potential therapeutic target to preserve muscle mitochondrial function and counteract muscle wasting in cancer cachexia. Tumour-induced dysregulation of cAMP–PKA–CREB1 signalling in skeletal muscle is shown to be a driver of mitochondrial dysfunction, contributing to cancer cachexia in mice.
骨骼肌萎缩是癌症恶病质的一个决定性特征,这是一种多因素综合征,严重影响患者的生活质量和治疗结果。线粒体功能障碍是癌症恶病质中骨骼肌萎缩的主要因素,但上游分子驱动因素尚不明确。本研究表明,癌症损害骨骼肌中camp依赖性蛋白激酶A (PKA)及其转录效应物CREB1的活性,最终导致支持线粒体完整性和功能的核心转录网络下调。通过药理学抑制camp -水解磷酸二酯酶4 (PDE4)恢复cAMP-PKA-CREB1信号通路,可以挽救线粒体相关基因的表达,改善线粒体功能,减轻雄性小鼠骨骼肌萎缩。总之,我们的数据确定肿瘤诱导的cAMP-PKA-CREB1轴的抑制是癌症恶病质期间骨骼肌线粒体功能障碍的主要机制。此外,这些发现强调了PDE4,特别是PDE4D异构体,作为一个潜在的治疗靶点,可以保护肌肉线粒体功能,抵消癌症恶病质中的肌肉萎缩。肿瘤诱导的骨骼肌cAMP-PKA-CREB1信号失调被证明是线粒体功能障碍的驱动因素,导致小鼠癌症恶病质。
{"title":"Impaired cAMP–PKA–CREB1 signalling drives mitochondrial dysfunction in skeletal muscle during cancer cachexia","authors":"Elia Angelino, Lorenza Bodo, Roberta Sartori, Valeria Malacarne, Beatrice D’Anna, Nicolò Formaggio, Suvham Barua, Tommaso Raiteri, Andrea Lauria, Simone Reano, Alessandra Murabito, Monica Nicolau, Fabiana Ferrero, Camilla Pezzini, Giulia Rossino, Francesco Favero, Michele Valmasoni, Nicoletta Filigheddu, Alessio Menga, Davide Corà, Emilio Hirsch, Salvatore Oliviero, Vittorio Sartorelli, Valentina Proserpio, Alessandra Ghigo, Marco Sandri, Paolo E. Porporato, Daniela Talarico, Giuseppina Caretti, Andrea Graziani","doi":"10.1038/s42255-025-01397-5","DOIUrl":"10.1038/s42255-025-01397-5","url":null,"abstract":"Skeletal muscle wasting is a defining feature of cancer cachexia, a multifactorial syndrome that drastically compromises patient quality of life and treatment outcomes. Mitochondrial dysfunction is a major contributor to skeletal muscle wasting in cancer cachexia, yet the upstream molecular drivers remain elusive. Here we show that cancer impairs the activity of cAMP-dependent protein kinase A (PKA) and of its transcriptional effector CREB1 in skeletal muscle, ultimately contributing to the downregulation of a core transcriptional network that supports mitochondrial integrity and function. The restoration of cAMP–PKA–CREB1 signalling through pharmacological inhibition of the cAMP-hydrolysing phosphodiesterase 4 (PDE4) rescues the expression of mitochondrial-related genes, improves mitochondrial function and mitigates skeletal muscle wasting in male mice. Altogether, our data identify tumour-induced suppression of the cAMP–PKA–CREB1 axis as a central mechanism contributing to mitochondrial dysfunction in skeletal muscle during cancer cachexia. Furthermore, these findings highlight PDE4, particularly the PDE4D isoform, as a potential therapeutic target to preserve muscle mitochondrial function and counteract muscle wasting in cancer cachexia. Tumour-induced dysregulation of cAMP–PKA–CREB1 signalling in skeletal muscle is shown to be a driver of mitochondrial dysfunction, contributing to cancer cachexia in mice.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2548-2570"},"PeriodicalIF":20.8,"publicationDate":"2025-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01397-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145492615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reawakening cAMP signalling in cancer cachexia 在癌症恶病质中重新唤醒cAMP信号
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-12 DOI: 10.1038/s42255-025-01417-4
Honglei Ji, Maria Rohm
The question of why muscle wasting persists in cancer cachexia despite adequate nutrition has long since intrigued researchers. Here, the authors identify PDE4D-mediated suppression of cAMP–PKA–CREB1 signalling as a driver of mitochondrial dysfunction and show that PDE4D inhibition preserves muscle bioenergetics and mass in cancer cachexia.
为什么肌肉萎缩在癌症恶病质中持续存在,尽管营养充足,长期以来一直引起研究人员的兴趣。在这里,作者发现PDE4D介导的cAMP-PKA-CREB1信号抑制是线粒体功能障碍的驱动因素,并表明PDE4D抑制在癌症恶病质中保留了肌肉的生物能量和质量。
{"title":"Reawakening cAMP signalling in cancer cachexia","authors":"Honglei Ji, Maria Rohm","doi":"10.1038/s42255-025-01417-4","DOIUrl":"10.1038/s42255-025-01417-4","url":null,"abstract":"The question of why muscle wasting persists in cancer cachexia despite adequate nutrition has long since intrigued researchers. Here, the authors identify PDE4D-mediated suppression of cAMP–PKA–CREB1 signalling as a driver of mitochondrial dysfunction and show that PDE4D inhibition preserves muscle bioenergetics and mass in cancer cachexia.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2388-2389"},"PeriodicalIF":20.8,"publicationDate":"2025-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145492616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Firewater, fructose and appetite 火水、果糖和食欲
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-10 DOI: 10.1038/s42255-025-01369-9
Emma L. Shepherd, Patricia F. Lalor
A new study in mice links ethanol consumption to endogenous fructose generation via hepatic aldose reductase, which enhances alcohol-seeking behaviour and liver damage. Inhibition of ketohexokinase reduced these effects, highlighting potential targets for managing alcohol use disorders.
一项在小鼠身上进行的新研究将乙醇消耗与通过肝醛糖还原酶产生的内源性果糖联系起来,醛糖还原酶会增强寻求酒精的行为和肝损伤。抑制酮己糖激酶减少了这些影响,突出了治疗酒精使用障碍的潜在目标。
{"title":"Firewater, fructose and appetite","authors":"Emma L. Shepherd, Patricia F. Lalor","doi":"10.1038/s42255-025-01369-9","DOIUrl":"10.1038/s42255-025-01369-9","url":null,"abstract":"A new study in mice links ethanol consumption to endogenous fructose generation via hepatic aldose reductase, which enhances alcohol-seeking behaviour and liver damage. Inhibition of ketohexokinase reduced these effects, highlighting potential targets for managing alcohol use disorders.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 11","pages":"2187-2188"},"PeriodicalIF":20.8,"publicationDate":"2025-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145478128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a common ketohexokinase-dependent link driving alcohol intake and alcohol-associated liver disease in mice 小鼠中驱动酒精摄入和酒精相关肝病的常见酮己糖激酶依赖性链接的鉴定
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-10 DOI: 10.1038/s42255-025-01402-x
Ana Andres-Hernando, David J. Orlicky, Gabriela E. Garcia, Esteban C. Loetz, Richard Montoya, Vijay Kumar, Devin P. Effinger, Masanari Kuwabara, So Young Bae, Laura Lorenzo-Rebenaque, Elena Fauste, Richard L. Bell, Nicholas Grahame, Suthat Liangpunsakul, Hahn Kim, Sundeep Dugar, Paul Maffuid, Takahiko Nakagawa, Michael F. Wempe, J. Mark Petrash, Dean R. Tolan, Sondra T. Bland, Richard J. Johnson, Miguel A. Lanaspa
Alcohol and sugar share reinforcing properties and both contribute to liver disease progression, ultimately leading to cirrhosis. Emerging evidence suggests that ethanol activates the aldose reductase pathway, resulting in endogenous fructose production. Here we investigated whether alcohol preference and alcohol-associated liver disease (ALD) are mediated through fructose metabolism by ketohexokinase (KHK)-A/C. Using global, conditional and tissue-specific KHK-A/C knockout mice, we assessed ethanol intake, reinforcement behaviours and liver injury. Ethanol consumption increased portal vein osmolality and activated the polyol pathway in the liver and intestine, leading to fructose production metabolized by KHK-A/C. Mice lacking KHK-A/C showed reduced ethanol preference across multiple paradigms, including two-bottle choice, conditioned place preference and operant self-administration, alongside decreased ∆FosB expression in the nucleus accumbens. Both genetic deletion and pharmacologic inhibition of KHK-A/C suppressed ethanol intake. Hepatocyte-specific KHK-A/C knockout mice displayed partially reduced alcohol consumption, potentially linked to altered aldehyde dehydrogenase expression, while intestinal KHK-A/C deletion restored glucagon-like peptide-1 levels—a hormone known to suppress alcohol intake. Under ethanol pair-matched conditions, global and liver-specific KHK-A/C knockout mice were protected from ALD, with marked reductions in hepatic steatosis, inflammation and fibrosis. These findings identify ethanol-induced fructose metabolism as a key driver of excessive alcohol consumption and ALD pathogenesis. Given that ALD and metabolic dysfunction-associated steatotic liver disease share fructose-dependent mechanisms, targeting fructose metabolism may offer a novel therapeutic approach for treating alcohol use disorder and related liver injury. Ethanol-induced fructose metabolism, mediated by KHK-A/C, drives excessive alcohol consumption and pathogenesis of alcoholic liver disease.
酒精和糖具有增强作用,两者都有助于肝脏疾病的进展,最终导致肝硬化。新出现的证据表明,乙醇激活醛糖还原酶途径,导致内源性果糖的产生。在这里,我们研究了酒精偏好和酒精相关性肝病(ALD)是否通过酮己糖激酶(KHK)-A/C的果糖代谢介导。我们使用全局的、条件的和组织特异性的KHK-A/C敲除小鼠,评估了乙醇摄入量、强化行为和肝损伤。乙醇的消耗增加了门静脉渗透压,激活了肝脏和肠道中的多元醇途径,导致果糖的产生被KHK-A/C代谢。缺乏KHK-A/C的小鼠在两瓶选择、条件位置偏好和操作性自我给药等多个模式下的乙醇偏好降低,伏隔核中∆FosB表达降低。KHK-A/C基因缺失和药物抑制均抑制乙醇摄入。肝细胞特异性KHK-A/C敲除小鼠显示出部分酒精消耗减少,这可能与醛脱氢酶表达改变有关,而肠道KHK-A/C缺失恢复了胰高血糖素样肽-1水平——一种已知抑制酒精摄入的激素。在乙醇配对条件下,全局和肝脏特异性KHK-A/C基因敲除小鼠免受ALD的影响,肝脏脂肪变性、炎症和纤维化明显减少。这些发现确定了乙醇诱导的果糖代谢是过量饮酒和ALD发病机制的关键驱动因素。鉴于ALD和代谢功能障碍相关的脂肪变性肝病共享果糖依赖机制,靶向果糖代谢可能为治疗酒精使用障碍和相关肝损伤提供一种新的治疗方法。
{"title":"Identification of a common ketohexokinase-dependent link driving alcohol intake and alcohol-associated liver disease in mice","authors":"Ana Andres-Hernando, David J. Orlicky, Gabriela E. Garcia, Esteban C. Loetz, Richard Montoya, Vijay Kumar, Devin P. Effinger, Masanari Kuwabara, So Young Bae, Laura Lorenzo-Rebenaque, Elena Fauste, Richard L. Bell, Nicholas Grahame, Suthat Liangpunsakul, Hahn Kim, Sundeep Dugar, Paul Maffuid, Takahiko Nakagawa, Michael F. Wempe, J. Mark Petrash, Dean R. Tolan, Sondra T. Bland, Richard J. Johnson, Miguel A. Lanaspa","doi":"10.1038/s42255-025-01402-x","DOIUrl":"10.1038/s42255-025-01402-x","url":null,"abstract":"Alcohol and sugar share reinforcing properties and both contribute to liver disease progression, ultimately leading to cirrhosis. Emerging evidence suggests that ethanol activates the aldose reductase pathway, resulting in endogenous fructose production. Here we investigated whether alcohol preference and alcohol-associated liver disease (ALD) are mediated through fructose metabolism by ketohexokinase (KHK)-A/C. Using global, conditional and tissue-specific KHK-A/C knockout mice, we assessed ethanol intake, reinforcement behaviours and liver injury. Ethanol consumption increased portal vein osmolality and activated the polyol pathway in the liver and intestine, leading to fructose production metabolized by KHK-A/C. Mice lacking KHK-A/C showed reduced ethanol preference across multiple paradigms, including two-bottle choice, conditioned place preference and operant self-administration, alongside decreased ∆FosB expression in the nucleus accumbens. Both genetic deletion and pharmacologic inhibition of KHK-A/C suppressed ethanol intake. Hepatocyte-specific KHK-A/C knockout mice displayed partially reduced alcohol consumption, potentially linked to altered aldehyde dehydrogenase expression, while intestinal KHK-A/C deletion restored glucagon-like peptide-1 levels—a hormone known to suppress alcohol intake. Under ethanol pair-matched conditions, global and liver-specific KHK-A/C knockout mice were protected from ALD, with marked reductions in hepatic steatosis, inflammation and fibrosis. These findings identify ethanol-induced fructose metabolism as a key driver of excessive alcohol consumption and ALD pathogenesis. Given that ALD and metabolic dysfunction-associated steatotic liver disease share fructose-dependent mechanisms, targeting fructose metabolism may offer a novel therapeutic approach for treating alcohol use disorder and related liver injury. Ethanol-induced fructose metabolism, mediated by KHK-A/C, drives excessive alcohol consumption and pathogenesis of alcoholic liver disease.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 11","pages":"2250-2267"},"PeriodicalIF":20.8,"publicationDate":"2025-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01402-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145478127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maternal type 1 diabetes might protect offspring through epigenetic modifications 母亲的1型糖尿病可能通过表观遗传修饰来保护后代
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-06 DOI: 10.1038/s42255-025-01406-7
Children born to mothers with type 1 diabetes (T1D) are less likely to develop T1D than those with an affected father or sibling. We identified modifications of DNA methylation at multiple T1D risk genes in blood samples from children exposed to maternal T1D. These changes were linked to decreased islet autoimmunity risk.
母亲患有1型糖尿病(T1D)的孩子比父亲或兄弟姐妹患有1型糖尿病的孩子患T1D的可能性要小。我们在暴露于母体T1D的儿童血液样本中发现了多个T1D风险基因的DNA甲基化修饰。这些变化与胰岛自身免疫风险降低有关。
{"title":"Maternal type 1 diabetes might protect offspring through epigenetic modifications","authors":"","doi":"10.1038/s42255-025-01406-7","DOIUrl":"10.1038/s42255-025-01406-7","url":null,"abstract":"Children born to mothers with type 1 diabetes (T1D) are less likely to develop T1D than those with an affected father or sibling. We identified modifications of DNA methylation at multiple T1D risk genes in blood samples from children exposed to maternal T1D. These changes were linked to decreased islet autoimmunity risk.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 11","pages":"2197-2198"},"PeriodicalIF":20.8,"publicationDate":"2025-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145447660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blood methylome signatures in children exposed to maternal type 1 diabetes are linked to protection against islet autoimmunity 暴露于母亲1型糖尿病的儿童血液甲基组特征与保护免受胰岛自身免疫有关
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-06 DOI: 10.1038/s42255-025-01403-w
Raffael Ott, Jose Zapardiel-Gonzalo, Peter Kreitmaier, Kristina Casteels, Angela Hommel, Olga Kordonouri, Helena Elding Larsson, Agnieszka Szypowska, Manu Vatish, Eleftheria Zeggini, Annette Knopff, Christiane Winkler, Anette-G. Ziegler, Ezio Bonifacio, Sandra Hummel
Exposure to maternal type 1 diabetes (T1D) during pregnancy provides relative protection against T1D in the offspring. This protective effect may be driven by epigenetic mechanisms. Here we conducted an epigenome-wide blood analysis on 790 young children with and 962 children without a T1D-affected mother, and identified differential DNA methylation (q < 0.05) at multiple loci and regions. These included the Homeobox A gene cluster and 15 T1D susceptibility genes. The differential methylation was found in transcriptionally relevant regions associated with immune function, including sites previously linked to T1D-related methylation loci and protein biomarkers. Propensity scores for methylation at T1D susceptibility loci could predict the development of islet autoimmunity in offspring born to mothers without T1D. Together, these findings highlight pathways through which maternal T1D may confer protection against islet autoimmunity in offspring and suggest that environmental factors can influence T1D risk through epigenetic modifications of T1D susceptibility loci. Through an epigenome-wide blood analysis in children of mothers with or without type 1 diabetes, the authors identify epigenetic modifications of type 1 diabetes susceptibility loci through which maternal type 1 diabetes may protect from islet autoimmunity in offspring.
在怀孕期间暴露于母体1型糖尿病(T1D)为后代提供了相对的T1D保护。这种保护作用可能是由表观遗传机制驱动的。在这里,我们对790名患有t1d的幼儿和962名未患有t1d的幼儿进行了全表观基因组血液分析,并在多个位点和区域发现了差异DNA甲基化(q < 0.05)。其中包括Homeobox A基因簇和15个T1D易感基因。在与免疫功能相关的转录相关区域发现了差异甲基化,包括先前与t1d相关甲基化位点和蛋白质生物标志物相关的位点。T1D易感位点甲基化倾向评分可以预测无T1D母亲所生后代的胰岛自身免疫的发展。总之,这些发现强调了母体T1D可能赋予后代胰岛自身免疫保护的途径,并表明环境因素可以通过T1D易感位点的表观遗传修饰影响T1D风险。
{"title":"Blood methylome signatures in children exposed to maternal type 1 diabetes are linked to protection against islet autoimmunity","authors":"Raffael Ott,&nbsp;Jose Zapardiel-Gonzalo,&nbsp;Peter Kreitmaier,&nbsp;Kristina Casteels,&nbsp;Angela Hommel,&nbsp;Olga Kordonouri,&nbsp;Helena Elding Larsson,&nbsp;Agnieszka Szypowska,&nbsp;Manu Vatish,&nbsp;Eleftheria Zeggini,&nbsp;Annette Knopff,&nbsp;Christiane Winkler,&nbsp;Anette-G. Ziegler,&nbsp;Ezio Bonifacio,&nbsp;Sandra Hummel","doi":"10.1038/s42255-025-01403-w","DOIUrl":"10.1038/s42255-025-01403-w","url":null,"abstract":"Exposure to maternal type 1 diabetes (T1D) during pregnancy provides relative protection against T1D in the offspring. This protective effect may be driven by epigenetic mechanisms. Here we conducted an epigenome-wide blood analysis on 790 young children with and 962 children without a T1D-affected mother, and identified differential DNA methylation (q &lt; 0.05) at multiple loci and regions. These included the Homeobox A gene cluster and 15 T1D susceptibility genes. The differential methylation was found in transcriptionally relevant regions associated with immune function, including sites previously linked to T1D-related methylation loci and protein biomarkers. Propensity scores for methylation at T1D susceptibility loci could predict the development of islet autoimmunity in offspring born to mothers without T1D. Together, these findings highlight pathways through which maternal T1D may confer protection against islet autoimmunity in offspring and suggest that environmental factors can influence T1D risk through epigenetic modifications of T1D susceptibility loci. Through an epigenome-wide blood analysis in children of mothers with or without type 1 diabetes, the authors identify epigenetic modifications of type 1 diabetes susceptibility loci through which maternal type 1 diabetes may protect from islet autoimmunity in offspring.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 11","pages":"2236-2249"},"PeriodicalIF":20.8,"publicationDate":"2025-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01403-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145447658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial ROS sources steer neuroinflammation 线粒体ROS来源引导神经炎症
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-04 DOI: 10.1038/s42255-025-01391-x
Huajun Pan, Fei Yin
By parsing stimulus-responsive sources of astrocytic reactive oxygen species (ROS), Barnett et al. reveal how mitochondrial complex III-derived signals uniquely shape inflammatory responses and astrocyte–neuron crosstalk, linking mitochondrial redox cues to dementia-related neurodegeneration.
通过分析星形胶质细胞活性氧(ROS)的刺激响应源,Barnett等人揭示了线粒体复合体iii衍生的信号如何独特地塑造炎症反应和星形胶质细胞-神经元串音,将线粒体氧化还原线索与痴呆相关的神经变性联系起来。
{"title":"Mitochondrial ROS sources steer neuroinflammation","authors":"Huajun Pan,&nbsp;Fei Yin","doi":"10.1038/s42255-025-01391-x","DOIUrl":"10.1038/s42255-025-01391-x","url":null,"abstract":"By parsing stimulus-responsive sources of astrocytic reactive oxygen species (ROS), Barnett et al. reveal how mitochondrial complex III-derived signals uniquely shape inflammatory responses and astrocyte–neuron crosstalk, linking mitochondrial redox cues to dementia-related neurodegeneration.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 11","pages":"2192-2194"},"PeriodicalIF":20.8,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145434668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial complex III-derived ROS amplify immunometabolic changes in astrocytes and promote dementia pathology 线粒体复合物iii衍生的ROS放大星形胶质细胞的免疫代谢变化并促进痴呆病理
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-04 DOI: 10.1038/s42255-025-01390-y
Daniel Barnett, Till S. Zimmer, Caroline Booraem, Fernando Palaguachi, Samantha M. Meadows, Haopeng Xiao, Man Ying Wong, Wenjie Luo, Li Gan, Edward T. Chouchani, Anna G. Orr, Adam L. Orr
Neurodegenerative disorders alter mitochondrial functions, including the production of reactive oxygen species (ROS). Mitochondrial complex III (CIII) generates ROS implicated in redox signalling, but its triggers, temporal dynamics, targets and disease relevance are not clear. Here, using site-selective suppressors and genetic manipulations together with live mitochondrial ROS imaging and multiomic profiling, we show that CIII is a dominant source of ROS production in astrocytes exposed to neuropathology-related stimuli. Astrocytic CIII ROS production is dependent on nuclear factor-κB and the mitochondrial sodium-calcium exchanger (NCLX) and causes oxidation of select cysteines within immune- and metabolism-associated proteins linked to neurological disease. CIII ROS amplify metabolomic and pathology-associated transcriptional changes in astrocytes, with STAT3 activity as a major mediator, and facilitate neuronal toxicity. Therapeutic suppression of CIII ROS in mice decreases dementia-linked tauopathy and neuroimmune cascades and extends lifespan. Our findings establish CIII ROS as an important immunometabolic signal transducer and tractable therapeutic target in neurodegenerative disease. Barnett et al. disentangle the differential contribution of mitochondrial complex I- and complex III-derived ROS to astrocytic function, with CIII-derived ROS being a major driver of neuroinflammatory responses.
神经退行性疾病改变线粒体功能,包括活性氧(ROS)的产生。线粒体复合体III (CIII)产生与氧化还原信号有关的ROS,但其触发因素、时间动态、目标和疾病相关性尚不清楚。在这里,我们使用位点选择性抑制因子和基因操作,结合活线粒体ROS成像和多组学分析,我们表明CIII是暴露于神经病理相关刺激的星形胶质细胞中ROS产生的主要来源。星形胶质细胞CIII ROS的产生依赖于核因子-κ b和线粒体钠钙交换器(NCLX),并导致与神经系统疾病相关的免疫和代谢相关蛋白中某些半胱氨酸的氧化。CIII ROS放大星形胶质细胞代谢组学和病理相关的转录变化,以STAT3活性为主要介质,并促进神经元毒性。治疗性抑制小鼠CIII ROS可减少痴呆相关的牛头病和神经免疫级联反应,延长寿命。我们的研究结果表明,CIII ROS是神经退行性疾病中重要的免疫代谢信号传感器和可处理的治疗靶点。Barnett等人阐明了线粒体复合体I和复合体iii衍生的ROS对星形细胞功能的不同贡献,其中ciii衍生的ROS是神经炎症反应的主要驱动因素。
{"title":"Mitochondrial complex III-derived ROS amplify immunometabolic changes in astrocytes and promote dementia pathology","authors":"Daniel Barnett,&nbsp;Till S. Zimmer,&nbsp;Caroline Booraem,&nbsp;Fernando Palaguachi,&nbsp;Samantha M. Meadows,&nbsp;Haopeng Xiao,&nbsp;Man Ying Wong,&nbsp;Wenjie Luo,&nbsp;Li Gan,&nbsp;Edward T. Chouchani,&nbsp;Anna G. Orr,&nbsp;Adam L. Orr","doi":"10.1038/s42255-025-01390-y","DOIUrl":"10.1038/s42255-025-01390-y","url":null,"abstract":"Neurodegenerative disorders alter mitochondrial functions, including the production of reactive oxygen species (ROS). Mitochondrial complex III (CIII) generates ROS implicated in redox signalling, but its triggers, temporal dynamics, targets and disease relevance are not clear. Here, using site-selective suppressors and genetic manipulations together with live mitochondrial ROS imaging and multiomic profiling, we show that CIII is a dominant source of ROS production in astrocytes exposed to neuropathology-related stimuli. Astrocytic CIII ROS production is dependent on nuclear factor-κB and the mitochondrial sodium-calcium exchanger (NCLX) and causes oxidation of select cysteines within immune- and metabolism-associated proteins linked to neurological disease. CIII ROS amplify metabolomic and pathology-associated transcriptional changes in astrocytes, with STAT3 activity as a major mediator, and facilitate neuronal toxicity. Therapeutic suppression of CIII ROS in mice decreases dementia-linked tauopathy and neuroimmune cascades and extends lifespan. Our findings establish CIII ROS as an important immunometabolic signal transducer and tractable therapeutic target in neurodegenerative disease. Barnett et al. disentangle the differential contribution of mitochondrial complex I- and complex III-derived ROS to astrocytic function, with CIII-derived ROS being a major driver of neuroinflammatory responses.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 11","pages":"2300-2323"},"PeriodicalIF":20.8,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01390-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145434667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1