首页 > 最新文献

Nature metabolism最新文献

英文 中文
Dietary restriction reprograms CD8+ T cell fate to enhance anti-tumour immunity and immunotherapy responses 饮食限制重编程CD8+ T细胞命运以增强抗肿瘤免疫和免疫治疗反应
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-09 DOI: 10.1038/s42255-025-01415-6
Brandon M. Oswald, Lisa M. DeCamp, Joseph Longo, Michael S. Dahabieh, Nicholas Bunda, Benjamin K. Johnson, McLane J. Watson, Shixin Ma, Samuel E. J. Preston, Ryan D. Sheldon, Michael P. Vincent, Abigail E. Ellis, Molly T. Soper-Hopper, Christine Isaguirre, Dahlya Kamarudin, Hui Shen, Kelsey S. Williams, Peter A. Crawford, Susan Kaech, H. Josh Jang, Evan C. Lien, Connie M. Krawczyk, Russell G. Jones
Reducing calorie intake through dietary restriction (DR) slows tumour growth in mammals, yet the underlying mechanisms are poorly defined. Here, we show that DR enhances anti-tumour immunity by optimizing CD8+ T cell function within the tumour microenvironment (TME). Using syngeneic xenograft tumour models, we found that DR induces a profound reprogramming of CD8+ T cell fate in the TME, favouring the expansion of effector T cell subsets with enhanced metabolic capacity and cytotoxic potential, while limiting the accumulation of terminally exhausted T cells. This metabolic reprogramming is driven by enhanced ketone body oxidation, particularly β-hydroxybutyrate (βOHB), which is elevated in both the circulation and tumour tissues of DR-fed mice. βOHB fuels T cell oxidative metabolism under DR, increasing mitochondrial membrane potential and tricarboxylic acid cycle-dependent pathways critical for T cell effector function, including acetyl-CoA production. By contrast, T cells deficient for ketone body oxidation exhibit reduced mitochondrial function, increased exhaustion and fail to control tumour growth under DR conditions. Importantly, DR synergizes with anti-PD1 immunotherapy, further augmenting anti-tumour T cell responses and limiting tumour progression. Our findings reveal that T cell metabolic reprogramming is central to the anti-tumour effects of DR, highlighting nutritional control of CD8+ T cell fate as a key driver of anti-tumour immunity. Dietary restriction promotes the expansion of effector T cells via ketone bodies, which enhances anti-tumour immunity and synergizes with immunotherapy in mice.
在哺乳动物中,通过限制饮食来减少卡路里的摄入(DR)可以减缓肿瘤的生长,但其潜在机制尚不明确。在这里,我们发现DR通过优化肿瘤微环境(TME)内CD8+ T细胞的功能来增强抗肿瘤免疫。通过使用同种异种移植肿瘤模型,我们发现DR诱导了TME中CD8+ T细胞命运的深刻重编程,有利于具有增强代谢能力和细胞毒性潜能的效应T细胞亚群的扩增,同时限制了终耗竭T细胞的积累。这种代谢重编程是由酮体氧化增强驱动的,特别是β-羟基丁酸(βOHB),它在dr喂养小鼠的循环和肿瘤组织中都升高。βOHB在DR下促进T细胞氧化代谢,增加线粒体膜电位和三羧酸循环依赖通路,这些通路对T细胞效应物功能至关重要,包括乙酰辅酶a的产生。相比之下,缺乏酮体氧化的T细胞在DR条件下表现出线粒体功能降低,耗竭增加,无法控制肿瘤生长。重要的是,DR与抗pd1免疫疗法协同作用,进一步增强抗肿瘤T细胞反应并限制肿瘤进展。我们的研究结果表明,T细胞代谢重编程是DR抗肿瘤作用的核心,强调CD8+ T细胞命运的营养控制是抗肿瘤免疫的关键驱动因素。
{"title":"Dietary restriction reprograms CD8+ T cell fate to enhance anti-tumour immunity and immunotherapy responses","authors":"Brandon M. Oswald, Lisa M. DeCamp, Joseph Longo, Michael S. Dahabieh, Nicholas Bunda, Benjamin K. Johnson, McLane J. Watson, Shixin Ma, Samuel E. J. Preston, Ryan D. Sheldon, Michael P. Vincent, Abigail E. Ellis, Molly T. Soper-Hopper, Christine Isaguirre, Dahlya Kamarudin, Hui Shen, Kelsey S. Williams, Peter A. Crawford, Susan Kaech, H. Josh Jang, Evan C. Lien, Connie M. Krawczyk, Russell G. Jones","doi":"10.1038/s42255-025-01415-6","DOIUrl":"10.1038/s42255-025-01415-6","url":null,"abstract":"Reducing calorie intake through dietary restriction (DR) slows tumour growth in mammals, yet the underlying mechanisms are poorly defined. Here, we show that DR enhances anti-tumour immunity by optimizing CD8+ T cell function within the tumour microenvironment (TME). Using syngeneic xenograft tumour models, we found that DR induces a profound reprogramming of CD8+ T cell fate in the TME, favouring the expansion of effector T cell subsets with enhanced metabolic capacity and cytotoxic potential, while limiting the accumulation of terminally exhausted T cells. This metabolic reprogramming is driven by enhanced ketone body oxidation, particularly β-hydroxybutyrate (βOHB), which is elevated in both the circulation and tumour tissues of DR-fed mice. βOHB fuels T cell oxidative metabolism under DR, increasing mitochondrial membrane potential and tricarboxylic acid cycle-dependent pathways critical for T cell effector function, including acetyl-CoA production. By contrast, T cells deficient for ketone body oxidation exhibit reduced mitochondrial function, increased exhaustion and fail to control tumour growth under DR conditions. Importantly, DR synergizes with anti-PD1 immunotherapy, further augmenting anti-tumour T cell responses and limiting tumour progression. Our findings reveal that T cell metabolic reprogramming is central to the anti-tumour effects of DR, highlighting nutritional control of CD8+ T cell fate as a key driver of anti-tumour immunity. Dietary restriction promotes the expansion of effector T cells via ketone bodies, which enhances anti-tumour immunity and synergizes with immunotherapy in mice.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2489-2509"},"PeriodicalIF":20.8,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01415-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145705133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of IRAK4 by microbial trimethylamine blunts metabolic inflammation and ameliorates glycemic control 微生物三甲胺抑制IRAK4可减弱代谢性炎症并改善血糖控制。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-08 DOI: 10.1038/s42255-025-01413-8
Julien Chilloux, Francois Brial, Amandine Everard, David Smyth, Petros Andrikopoulos, Liyong Zhang, Hubert Plovier, Antonis Myridakis, Lesley Hoyles, José Maria Moreno-Navarrete, Jèssica Latorre Luque, Viviana Casagrande, Rossella Menghini, Blerina Ahmetaj-Shala, Christine Blancher, Laura Martinez-Gili, Selin Gencer, Jane F. Fearnside, Richard H. Barton, Ana Luisa Neves, Alice R. Rothwell, Christelle Gérard, Sophie Calderari, Mark J. Williamson, Julian E. Fuchs, Lata Govada, Claire L. Boulangé, Saroor Patel, James Scott, Mark Thursz, Naomi Chayen, Robert C. Glen, Nigel J. Gooderham, Jeremy K. Nicholson, Massimo Federici, José Manuel Fernández-Real, Dominique Gauguier, Peter P. Liu, Patrice D. Cani, Marc-Emmanuel Dumas
The global type 2 diabetes epidemic is a major health crisis. Although the microbiome has roles in the onset of insulin resistance (IR), low-grade inflammation and diabetes, the microbial compounds controlling these processes remain to be discovered. Here, we show that the microbial metabolite trimethylamine (TMA) decouples inflammation and IR from diet-induced obesity by inhibiting interleukin-1 receptor-associated kinase 4 (IRAK4), a central kinase in the Toll-like receptor pathway sensing danger signals. TMA blunts TLR4 signalling in primary human hepatocytes and peripheral blood monocytic cells and rescues mouse survival after lipopolysaccharide-induced septic shock. Genetic deletion and chemical inhibition of IRAK4 result in metabolic and immune improvements in high-fat diets. Remarkably, our results suggest that TMA—unlike its liver co-metabolite trimethylamine N-oxide, which is associated with cardiovascular disease—improves immune tone and glycemic control in diet-induced obesity. Altogether, this study supports the emerging role of the kinome in the microbial–mammalian chemical crosstalk. The microbial metabolite trimethylamine (TMA), the precursor of TMAO, which is associated with adverse cardiometabolic outcomes, is shown to have beneficial metabolic and anti-inflammatory effects in the host in the context of obesity.
全球2型糖尿病的流行是一个重大的健康危机。虽然微生物组在胰岛素抵抗(IR)、低度炎症和糖尿病的发病中起作用,但控制这些过程的微生物化合物仍有待发现。在这里,我们发现微生物代谢物三甲胺(TMA)通过抑制白细胞介素-1受体相关激酶4 (IRAK4)来解除炎症和IR与饮食诱导的肥胖的关系,IRAK4是toll样受体途径中感知危险信号的中心激酶。TMA可减弱原代人肝细胞和外周血单核细胞中的TLR4信号,并可在脂多糖诱导的脓毒性休克后挽救小鼠的生存。遗传缺失和化学抑制IRAK4导致高脂肪饮食中代谢和免疫的改善。值得注意的是,我们的研究结果表明,tma与其肝脏共代谢物三甲胺n -氧化物(与心血管疾病相关)不同,可改善饮食性肥胖患者的免疫体质和血糖控制。总之,这项研究支持了kinome在微生物-哺乳动物化学串扰中的新兴作用。
{"title":"Inhibition of IRAK4 by microbial trimethylamine blunts metabolic inflammation and ameliorates glycemic control","authors":"Julien Chilloux, Francois Brial, Amandine Everard, David Smyth, Petros Andrikopoulos, Liyong Zhang, Hubert Plovier, Antonis Myridakis, Lesley Hoyles, José Maria Moreno-Navarrete, Jèssica Latorre Luque, Viviana Casagrande, Rossella Menghini, Blerina Ahmetaj-Shala, Christine Blancher, Laura Martinez-Gili, Selin Gencer, Jane F. Fearnside, Richard H. Barton, Ana Luisa Neves, Alice R. Rothwell, Christelle Gérard, Sophie Calderari, Mark J. Williamson, Julian E. Fuchs, Lata Govada, Claire L. Boulangé, Saroor Patel, James Scott, Mark Thursz, Naomi Chayen, Robert C. Glen, Nigel J. Gooderham, Jeremy K. Nicholson, Massimo Federici, José Manuel Fernández-Real, Dominique Gauguier, Peter P. Liu, Patrice D. Cani, Marc-Emmanuel Dumas","doi":"10.1038/s42255-025-01413-8","DOIUrl":"10.1038/s42255-025-01413-8","url":null,"abstract":"The global type 2 diabetes epidemic is a major health crisis. Although the microbiome has roles in the onset of insulin resistance (IR), low-grade inflammation and diabetes, the microbial compounds controlling these processes remain to be discovered. Here, we show that the microbial metabolite trimethylamine (TMA) decouples inflammation and IR from diet-induced obesity by inhibiting interleukin-1 receptor-associated kinase 4 (IRAK4), a central kinase in the Toll-like receptor pathway sensing danger signals. TMA blunts TLR4 signalling in primary human hepatocytes and peripheral blood monocytic cells and rescues mouse survival after lipopolysaccharide-induced septic shock. Genetic deletion and chemical inhibition of IRAK4 result in metabolic and immune improvements in high-fat diets. Remarkably, our results suggest that TMA—unlike its liver co-metabolite trimethylamine N-oxide, which is associated with cardiovascular disease—improves immune tone and glycemic control in diet-induced obesity. Altogether, this study supports the emerging role of the kinome in the microbial–mammalian chemical crosstalk. The microbial metabolite trimethylamine (TMA), the precursor of TMAO, which is associated with adverse cardiometabolic outcomes, is shown to have beneficial metabolic and anti-inflammatory effects in the host in the context of obesity.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2531-2547"},"PeriodicalIF":20.8,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01413-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145708752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathway coessentiality mapping reveals complex II is required for de novo purine biosynthesis in acute myeloid leukaemia 通路共本质映射显示复合体II是急性髓性白血病从头嘌呤生物合成所必需的
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-05 DOI: 10.1038/s42255-025-01410-x
Amy E. Stewart, Derek K. Zachman, Pol Castellano-Escuder, Lois M. Kelly, Ben Zolyomi, Michael D. I. Aiduk, Christopher D. Delaney, Ian C. Lock, Claudie Bosc, John Bradley, Shane T. Killarney, J. Darren Stuart, Paul A. Grimsrud, Olga R. Ilkayeva, Christopher B. Newgard, Navdeep S. Chandel, Alexandre Puissant, Kris C. Wood, Matthew D. Hirschey
Understanding how cellular pathways interact is crucial for treating complex diseases like cancer. Individual gene–gene interaction studies have provided valuable insights, but may miss pathways working together. Here we develop a multi-gene approach to pathway mapping which reveals that acute myeloid leukaemia (AML) depends on an unexpected link between complex II and purine metabolism. Through stable-isotope metabolomic tracing, we show that complex II directly supports de novo purine biosynthesis and that exogenous purines rescue AML cells from complex II inhibition. The mechanism involves a metabolic circuit where glutamine provides nitrogen to build the purine ring, producing glutamate that complex II metabolizes to sustain purine synthesis. This connection translates into a metabolic vulnerability whereby increasing intracellular glutamate levels suppresses purine production and sensitizes AML cells to complex II inhibition. In a syngeneic AML mouse model, targeting complex II leads to rapid disease regression and extends survival. In individuals with AML, higher complex II gene expression correlates with resistance to BCL-2 inhibition and worse survival. These findings establish complex II as a central regulator of de novo purine biosynthesis and a promising therapeutic target in AML. A machine-learning-based computational approach to probe pathway coessentiality reveals that complex II of the electron transport chain regulates de novo purine synthesis, and can be targeted to treat acute myeloid leukaemia.
了解细胞通路如何相互作用对于治疗癌症等复杂疾病至关重要。个体基因-基因相互作用的研究提供了有价值的见解,但可能会错过共同工作的途径。在这里,我们开发了一种多基因通路定位方法,揭示了急性髓性白血病(AML)依赖于复合物II和嘌呤代谢之间意想不到的联系。通过稳定同位素代谢组学追踪,我们发现复合物II直接支持新的嘌呤生物合成,外源嘌呤可以拯救AML细胞免受复合物II的抑制。其机制涉及一个代谢回路,其中谷氨酰胺提供氮来构建嘌呤环,产生谷氨酸,复合物II代谢维持嘌呤合成。这种联系转化为一种代谢脆弱性,即细胞内谷氨酸水平的增加抑制嘌呤的产生,并使AML细胞对复合物II的抑制敏感。在同基因AML小鼠模型中,靶向复合物II可导致疾病快速消退并延长生存期。在AML患者中,较高的complex II基因表达与BCL-2抑制的耐药性和较差的生存率相关。这些发现确立了复合物II作为新生嘌呤生物合成的中心调节因子和AML的一个有希望的治疗靶点。
{"title":"Pathway coessentiality mapping reveals complex II is required for de novo purine biosynthesis in acute myeloid leukaemia","authors":"Amy E. Stewart, Derek K. Zachman, Pol Castellano-Escuder, Lois M. Kelly, Ben Zolyomi, Michael D. I. Aiduk, Christopher D. Delaney, Ian C. Lock, Claudie Bosc, John Bradley, Shane T. Killarney, J. Darren Stuart, Paul A. Grimsrud, Olga R. Ilkayeva, Christopher B. Newgard, Navdeep S. Chandel, Alexandre Puissant, Kris C. Wood, Matthew D. Hirschey","doi":"10.1038/s42255-025-01410-x","DOIUrl":"10.1038/s42255-025-01410-x","url":null,"abstract":"Understanding how cellular pathways interact is crucial for treating complex diseases like cancer. Individual gene–gene interaction studies have provided valuable insights, but may miss pathways working together. Here we develop a multi-gene approach to pathway mapping which reveals that acute myeloid leukaemia (AML) depends on an unexpected link between complex II and purine metabolism. Through stable-isotope metabolomic tracing, we show that complex II directly supports de novo purine biosynthesis and that exogenous purines rescue AML cells from complex II inhibition. The mechanism involves a metabolic circuit where glutamine provides nitrogen to build the purine ring, producing glutamate that complex II metabolizes to sustain purine synthesis. This connection translates into a metabolic vulnerability whereby increasing intracellular glutamate levels suppresses purine production and sensitizes AML cells to complex II inhibition. In a syngeneic AML mouse model, targeting complex II leads to rapid disease regression and extends survival. In individuals with AML, higher complex II gene expression correlates with resistance to BCL-2 inhibition and worse survival. These findings establish complex II as a central regulator of de novo purine biosynthesis and a promising therapeutic target in AML. A machine-learning-based computational approach to probe pathway coessentiality reveals that complex II of the electron transport chain regulates de novo purine synthesis, and can be targeted to treat acute myeloid leukaemia.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2474-2488"},"PeriodicalIF":20.8,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01410-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Age-related decline of chaperone-mediated autophagy in skeletal muscle leads to progressive myopathy 骨骼肌中伴侣介导的自噬的年龄相关性下降导致进行性肌病。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-03 DOI: 10.1038/s42255-025-01412-9
Olaya Santiago-Fernández, Luisa Coletto, Inmaculada Tasset, Susmita Kaushik, Axel R. Concepcion, Rizwan Qaisar, Adrián Macho-González, Kristen Lindenau, Antonio Diaz, Rabia R. Khawaja, Stefano Donega, Nirad Banskota, Ceereena Ubaida-Mohien, Gavin Pharaoh, Bumsoo Ahn, Lisa M. Hartnell, Ignacio Ramírez-Pardo, Bhakti Chavda, Aiara Gazteluiturri, Michael Kinter, Luigi Ferrucci, Julie A. Reisz, Angelo D’Alessandro, Holly Van Remmen, Pura Muñoz-Cánoves, Stefan Feske, Ana Maria Cuervo
Chaperone-mediated autophagy (CMA) contributes to proteostasis maintenance by selectively degrading a subset of proteins in lysosomes. CMA declines with age in most tissues, including skeletal muscle. However, the role of CMA in skeletal muscle and the consequences of its decline remain poorly understood. Here we demonstrate that CMA regulates skeletal muscle function. We show that CMA is upregulated in skeletal muscle in response to starvation, exercise and tissue repair, but declines in ageing and obesity. Using a muscle-specific CMA-deficient mouse model, we show that CMA loss leads to progressive myopathy, including reduced muscle force and degenerative myofibre features. Comparative proteomic analyses reveal CMA-dependent changes in the mitochondrial proteome and identify the sarcoplasmic–endoplasmic reticulum Ca2+-ATPase (SERCA) as a CMA substrate. Impaired SERCA turnover in CMA-deficient skeletal muscle is associated with defective calcium (Ca2+) storage and dysregulated Ca2+ dynamics. We confirm that CMA is also downregulated with age in human skeletal muscle. Remarkably, genetic upregulation of CMA activity in old mice partially ameliorates skeletal muscle ageing phenotypes. Together, our work highlights the contribution of CMA to skeletal muscle homoeostasis and myofibre integrity. Chaperone-mediated autophagy declines with age in skeletal muscle of humans and mice, leading to muscle dysfunction characterized by impaired calcium homoeostasis and mitochondrial function.
伴侣介导的自噬(CMA)通过选择性地降解溶酶体中的一组蛋白质来维持蛋白质稳态。在包括骨骼肌在内的大多数组织中,CMA随年龄增长而下降。然而,CMA在骨骼肌中的作用及其下降的后果仍然知之甚少。在这里,我们证明CMA调节骨骼肌功能。我们发现骨骼肌中的CMA在饥饿、运动和组织修复的反应中上调,但在衰老和肥胖中下降。使用肌肉特异性CMA缺陷小鼠模型,我们发现CMA缺失导致进行性肌病,包括肌肉力量减少和肌纤维变性特征。比较蛋白质组学分析揭示了线粒体蛋白质组的CMA依赖性变化,并确定肌浆-内质网Ca2+- atp酶(SERCA)是CMA底物。cma缺陷骨骼肌中SERCA转换受损与钙(Ca2+)储存缺陷和Ca2+动力学失调有关。我们证实,CMA在人类骨骼肌中也随着年龄的增长而下调。值得注意的是,老年小鼠CMA活性的基因上调部分改善了骨骼肌老化表型。总之,我们的工作强调了CMA对骨骼肌平衡和肌纤维完整性的贡献。
{"title":"Age-related decline of chaperone-mediated autophagy in skeletal muscle leads to progressive myopathy","authors":"Olaya Santiago-Fernández, Luisa Coletto, Inmaculada Tasset, Susmita Kaushik, Axel R. Concepcion, Rizwan Qaisar, Adrián Macho-González, Kristen Lindenau, Antonio Diaz, Rabia R. Khawaja, Stefano Donega, Nirad Banskota, Ceereena Ubaida-Mohien, Gavin Pharaoh, Bumsoo Ahn, Lisa M. Hartnell, Ignacio Ramírez-Pardo, Bhakti Chavda, Aiara Gazteluiturri, Michael Kinter, Luigi Ferrucci, Julie A. Reisz, Angelo D’Alessandro, Holly Van Remmen, Pura Muñoz-Cánoves, Stefan Feske, Ana Maria Cuervo","doi":"10.1038/s42255-025-01412-9","DOIUrl":"10.1038/s42255-025-01412-9","url":null,"abstract":"Chaperone-mediated autophagy (CMA) contributes to proteostasis maintenance by selectively degrading a subset of proteins in lysosomes. CMA declines with age in most tissues, including skeletal muscle. However, the role of CMA in skeletal muscle and the consequences of its decline remain poorly understood. Here we demonstrate that CMA regulates skeletal muscle function. We show that CMA is upregulated in skeletal muscle in response to starvation, exercise and tissue repair, but declines in ageing and obesity. Using a muscle-specific CMA-deficient mouse model, we show that CMA loss leads to progressive myopathy, including reduced muscle force and degenerative myofibre features. Comparative proteomic analyses reveal CMA-dependent changes in the mitochondrial proteome and identify the sarcoplasmic–endoplasmic reticulum Ca2+-ATPase (SERCA) as a CMA substrate. Impaired SERCA turnover in CMA-deficient skeletal muscle is associated with defective calcium (Ca2+) storage and dysregulated Ca2+ dynamics. We confirm that CMA is also downregulated with age in human skeletal muscle. Remarkably, genetic upregulation of CMA activity in old mice partially ameliorates skeletal muscle ageing phenotypes. Together, our work highlights the contribution of CMA to skeletal muscle homoeostasis and myofibre integrity. Chaperone-mediated autophagy declines with age in skeletal muscle of humans and mice, leading to muscle dysfunction characterized by impaired calcium homoeostasis and mitochondrial function.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2589-2611"},"PeriodicalIF":20.8,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01412-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dedicated recycling bin keeps muscle healthy 专用的回收箱使肌肉保持健康。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-03 DOI: 10.1038/s42255-025-01418-3
Vittorio Sartorelli
Two studies in Nature Metabolism reveal a critical role of chaperone-mediated autophagy in maintaining homeostasis and promoting regeneration of skeletal muscle.
Nature Metabolism上的两项研究揭示了伴侣介导的自噬在维持体内平衡和促进骨骼肌再生中的关键作用。
{"title":"A dedicated recycling bin keeps muscle healthy","authors":"Vittorio Sartorelli","doi":"10.1038/s42255-025-01418-3","DOIUrl":"10.1038/s42255-025-01418-3","url":null,"abstract":"Two studies in Nature Metabolism reveal a critical role of chaperone-mediated autophagy in maintaining homeostasis and promoting regeneration of skeletal muscle.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2390-2392"},"PeriodicalIF":20.8,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chaperone-mediated autophagy sustains muscle stem cell regenerative functions but declines with age 伴侣介导的自噬维持肌肉干细胞的再生功能,但随着年龄的增长而下降。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-03 DOI: 10.1038/s42255-025-01411-w
Ignacio Ramírez-Pardo, Silvia Campanario, Bhakti Chavda, Olaya Santiago-Fernández, Marta Flández, Mercedes Grima-Terrén, Andrés Cisneros, Aina Calls-Cobos, Daniel N. Itzhak, Bryan Ngo, Sudha Janaki-Raman, Edward D. Kantz, Laura Ortet, Antonio Diaz, Kristen Lindenau, Julio Doménech-Fernández, Mari Carmen Gómez-Cabrera, Emilio Camafeita, Jesús Vázquez, Marta Martinez-Vicente, Antonio L. Serrano, Eusebio Perdiguero, Joan Isern, Ana Maria Cuervo, Pura Muñoz-Cánoves
Proteostasis supports stemness, and its loss correlates with the functional decline of diverse stem cell types. Chaperone-mediated autophagy (CMA) is a selective autophagy pathway implicated in proteostasis, but whether it plays a role in muscle stem cell (MuSC) function is unclear. Here we show that CMA is necessary for MuSC regenerative capacity throughout life. Genetic loss of CMA in young MuSCs, or failure of CMA in aged MuSCs, causes proliferative impairment resulting in defective skeletal muscle regeneration. Using comparative proteomics to identify CMA substrates, we find that actin cytoskeleton organization and glycolytic metabolism are key processes altered in aged murine and human MuSCs. CMA reactivation and glycolysis enhancement restore the proliferative capacity of aged mouse and human MuSCs, and improve their regenerative ability. Overall, our results show that CMA is a decisive stem cell-fate regulator, with implications in fostering muscle regeneration in old age. Age-related decline of chaperone-mediated autophagy blunts the regenerative capacity of muscle stem cells, partly due to impaired glycolytic shift required for normal stem cell expansion.
蛋白质平衡支持干细胞的干性,它的丧失与多种干细胞类型的功能下降有关。伴侣介导的自噬(CMA)是一种选择性自噬途径,与蛋白质稳态有关,但它是否在肌肉干细胞(MuSC)功能中起作用尚不清楚。在这里,我们表明CMA是整个生命中MuSC再生能力所必需的。年轻肌细胞中CMA的遗传缺失,或老年肌细胞中CMA的失效,会导致增殖性损伤,导致骨骼肌再生缺陷。使用比较蛋白质组学鉴定CMA底物,我们发现肌动蛋白细胞骨架组织和糖酵解代谢是衰老小鼠和人类musc改变的关键过程。CMA再激活和糖酵解增强可恢复老年小鼠和人MuSCs的增殖能力,提高其再生能力。总的来说,我们的研究结果表明,CMA是一个决定性的干细胞命运调节剂,具有促进老年肌肉再生的意义。
{"title":"Chaperone-mediated autophagy sustains muscle stem cell regenerative functions but declines with age","authors":"Ignacio Ramírez-Pardo, Silvia Campanario, Bhakti Chavda, Olaya Santiago-Fernández, Marta Flández, Mercedes Grima-Terrén, Andrés Cisneros, Aina Calls-Cobos, Daniel N. Itzhak, Bryan Ngo, Sudha Janaki-Raman, Edward D. Kantz, Laura Ortet, Antonio Diaz, Kristen Lindenau, Julio Doménech-Fernández, Mari Carmen Gómez-Cabrera, Emilio Camafeita, Jesús Vázquez, Marta Martinez-Vicente, Antonio L. Serrano, Eusebio Perdiguero, Joan Isern, Ana Maria Cuervo, Pura Muñoz-Cánoves","doi":"10.1038/s42255-025-01411-w","DOIUrl":"10.1038/s42255-025-01411-w","url":null,"abstract":"Proteostasis supports stemness, and its loss correlates with the functional decline of diverse stem cell types. Chaperone-mediated autophagy (CMA) is a selective autophagy pathway implicated in proteostasis, but whether it plays a role in muscle stem cell (MuSC) function is unclear. Here we show that CMA is necessary for MuSC regenerative capacity throughout life. Genetic loss of CMA in young MuSCs, or failure of CMA in aged MuSCs, causes proliferative impairment resulting in defective skeletal muscle regeneration. Using comparative proteomics to identify CMA substrates, we find that actin cytoskeleton organization and glycolytic metabolism are key processes altered in aged murine and human MuSCs. CMA reactivation and glycolysis enhancement restore the proliferative capacity of aged mouse and human MuSCs, and improve their regenerative ability. Overall, our results show that CMA is a decisive stem cell-fate regulator, with implications in fostering muscle regeneration in old age. Age-related decline of chaperone-mediated autophagy blunts the regenerative capacity of muscle stem cells, partly due to impaired glycolytic shift required for normal stem cell expansion.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2571-2588"},"PeriodicalIF":20.8,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fat sensory cues in early life program central response to food and obesity 早期生活中的脂肪感官提示程序对食物和肥胖的中枢反应。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-01 DOI: 10.1038/s42255-025-01405-8
Laura Casanueva Reimon, Ayden Gouveia, André Carvalho, Joscha N. Schmehr, Mouna El Mehdi, Rolando D. Moreira-Soto, Carlos G. Ardanaz, Janice Bulk, Lionel Rigoux, Paul Klemm, Anna Lena Cremer, Frederik Dethloff, Yvonne Hinze, Heiko Backes, Patrick Giavalisco, Sophie M. Steculorum
Maternal obesity predisposes offspring to metabolic diseases. Here, we show that non-nutritive sensory components of a high-fat diet (HFD), beyond its hypercaloric, obesogenic effects, are sufficient to alter metabolic health in the offspring. To dissociate the caloric and sensory components of HFD, we fed dams a bacon-flavoured diet, isonutritional to a normal chow diet but enriched with fat-related odours. Offspring exposed to these fat-related odours during development display metabolic inflexibility and increased adiposity when fed HFD in adulthood independently of maternal metabolic health. Developmental exposure to fat-related odours shifts mesolimbic dopaminergic circuits and Agouti-related peptide (AgRP) hunger neurons’ responses to phenocopy those of obese mice, including a desensitization of AgRP neurons to dietary fat. While neither neonatal optogenetic activation of sensory circuits nor passive exposure to fat-related odours is sufficient to alter metabolic responses to HFD, coupling optogenetic stimulation of sensory circuits with caloric intake exacerbates obesity. Collectively, we report that fat-related sensory cues during development act as signals that can prime central responses to food cues and whole-body metabolism regulation. Non-nutritive sensory components of high-fat diet, such as bacon flavour, are sufficient to impair metabolic health in offspring in mice.
母亲肥胖使后代易患代谢性疾病。在这里,我们表明,高脂肪饮食(HFD)的非营养感官成分,除了其高热量,致肥效应,足以改变后代的代谢健康。为了分离HFD的热量和感官成分,我们给它们喂食了培根味的食物,与正常的食物营养相同,但富含脂肪相关的气味。在发育过程中暴露于这些脂肪相关气味的后代在成年后独立于母体代谢健康而喂食HFD时表现出代谢不灵活性和肥胖增加。发育过程中暴露于脂肪相关气味会改变肥胖小鼠的中脑边缘多巴胺能回路和agouti相关肽(AgRP)饥饿神经元对肥胖小鼠的表型反应,包括AgRP神经元对饮食脂肪的脱敏。虽然新生儿光遗传激活感觉回路和被动暴露于脂肪相关气味都不足以改变对HFD的代谢反应,但光遗传刺激感觉回路与热量摄入的耦合会加剧肥胖。总的来说,我们报告了发育过程中与脂肪相关的感官信号作为信号,可以启动对食物线索和全身代谢调节的中枢反应。
{"title":"Fat sensory cues in early life program central response to food and obesity","authors":"Laura Casanueva Reimon, Ayden Gouveia, André Carvalho, Joscha N. Schmehr, Mouna El Mehdi, Rolando D. Moreira-Soto, Carlos G. Ardanaz, Janice Bulk, Lionel Rigoux, Paul Klemm, Anna Lena Cremer, Frederik Dethloff, Yvonne Hinze, Heiko Backes, Patrick Giavalisco, Sophie M. Steculorum","doi":"10.1038/s42255-025-01405-8","DOIUrl":"10.1038/s42255-025-01405-8","url":null,"abstract":"Maternal obesity predisposes offspring to metabolic diseases. Here, we show that non-nutritive sensory components of a high-fat diet (HFD), beyond its hypercaloric, obesogenic effects, are sufficient to alter metabolic health in the offspring. To dissociate the caloric and sensory components of HFD, we fed dams a bacon-flavoured diet, isonutritional to a normal chow diet but enriched with fat-related odours. Offspring exposed to these fat-related odours during development display metabolic inflexibility and increased adiposity when fed HFD in adulthood independently of maternal metabolic health. Developmental exposure to fat-related odours shifts mesolimbic dopaminergic circuits and Agouti-related peptide (AgRP) hunger neurons’ responses to phenocopy those of obese mice, including a desensitization of AgRP neurons to dietary fat. While neither neonatal optogenetic activation of sensory circuits nor passive exposure to fat-related odours is sufficient to alter metabolic responses to HFD, coupling optogenetic stimulation of sensory circuits with caloric intake exacerbates obesity. Collectively, we report that fat-related sensory cues during development act as signals that can prime central responses to food cues and whole-body metabolism regulation. Non-nutritive sensory components of high-fat diet, such as bacon flavour, are sufficient to impair metabolic health in offspring in mice.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2451-2473"},"PeriodicalIF":20.8,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01405-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145655252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial NAD+ drives liver regeneration 线粒体NAD+驱动肝脏再生
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-24 DOI: 10.1038/s42255-025-01414-7
We show that the size of the mitochondrial NAD+ pool in hepatocytes is regulated by SLC25A51 expression in vivo. We further find that selectively increasing mitochondrial NAD+ is sufficient to improve liver regeneration after partial hepatectomy, equivalent to the effect of systemic high-dose NAD+ precursor supplementation.
我们发现肝细胞线粒体NAD+池的大小受体内SLC25A51表达的调节。我们进一步发现,选择性地增加线粒体NAD+足以改善部分肝切除术后的肝脏再生,相当于全身高剂量NAD+前体补充的效果。
{"title":"Mitochondrial NAD+ drives liver regeneration","authors":"","doi":"10.1038/s42255-025-01414-7","DOIUrl":"10.1038/s42255-025-01414-7","url":null,"abstract":"We show that the size of the mitochondrial NAD+ pool in hepatocytes is regulated by SLC25A51 expression in vivo. We further find that selectively increasing mitochondrial NAD+ is sufficient to improve liver regeneration after partial hepatectomy, equivalent to the effect of systemic high-dose NAD+ precursor supplementation.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2393-2394"},"PeriodicalIF":20.8,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145582933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The metabolic engine of cognition: microglia–neuron interactions in health, ageing and disease 认知的代谢引擎:小胶质细胞与神经元在健康、衰老和疾病中的相互作用
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-21 DOI: 10.1038/s42255-025-01409-4
Evridiki Asimakidou, Stefano Pluchino, Bianca Ambrogina Silva, Luca Peruzzotti-Jametti
Cognitive impairment is associated with perturbations of fine-tuned neuroimmune interactions. At the molecular level, alterations in cellular metabolism can compromise brain function, driving structural damage and cognitive deficits. In this Review, we focus on the bidirectional interactions between microglia, the brain-resident immune cells and neurons to dissect the metabolic determinants of brain resilience and cognition. We first outline these metabolic pathways during development and adult life. Then, we delineate how these processes are perturbed in ageing, as well as in metabolic, neuroinflammatory and neurodegenerative disorders. By doing so, we provide a mechanistic understanding of the metabolic pathways relevant to cognitive function in health and disease, thus paving the way for novel therapeutic targets based on the emerging field of neuroimmunometabolism. This Review highlights how metabolic interactions between microglia and neurons shape brain health, and how their disruption in ageing and disease contributes to cognitive decline.
认知障碍与微调神经免疫相互作用的扰动有关。在分子水平上,细胞代谢的改变会损害大脑功能,导致结构损伤和认知缺陷。在这篇综述中,我们关注小胶质细胞、脑驻留免疫细胞和神经元之间的双向相互作用,以剖析脑恢复和认知的代谢决定因素。我们首先概述了这些代谢途径在发育和成年生活。然后,我们描述了这些过程如何在衰老,以及代谢,神经炎症和神经退行性疾病中受到干扰。通过这样做,我们提供了与健康和疾病中认知功能相关的代谢途径的机制理解,从而为基于新兴的神经免疫代谢领域的新治疗靶点铺平了道路。这篇综述强调了小胶质细胞和神经元之间的代谢相互作用如何影响大脑健康,以及它们在衰老和疾病中的破坏如何导致认知能力下降。
{"title":"The metabolic engine of cognition: microglia–neuron interactions in health, ageing and disease","authors":"Evridiki Asimakidou, Stefano Pluchino, Bianca Ambrogina Silva, Luca Peruzzotti-Jametti","doi":"10.1038/s42255-025-01409-4","DOIUrl":"10.1038/s42255-025-01409-4","url":null,"abstract":"Cognitive impairment is associated with perturbations of fine-tuned neuroimmune interactions. At the molecular level, alterations in cellular metabolism can compromise brain function, driving structural damage and cognitive deficits. In this Review, we focus on the bidirectional interactions between microglia, the brain-resident immune cells and neurons to dissect the metabolic determinants of brain resilience and cognition. We first outline these metabolic pathways during development and adult life. Then, we delineate how these processes are perturbed in ageing, as well as in metabolic, neuroinflammatory and neurodegenerative disorders. By doing so, we provide a mechanistic understanding of the metabolic pathways relevant to cognitive function in health and disease, thus paving the way for novel therapeutic targets based on the emerging field of neuroimmunometabolism. This Review highlights how metabolic interactions between microglia and neurons shape brain health, and how their disruption in ageing and disease contributes to cognitive decline.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2395-2413"},"PeriodicalIF":20.8,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145559900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatocyte mitochondrial NAD+ content is limiting for liver regeneration 肝细胞线粒体NAD+含量限制肝脏再生
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-20 DOI: 10.1038/s42255-025-01408-5
Sarmistha Mukherjee, Ricardo A. Velázquez Aponte, Caroline E. Perry, Won Dong Lee, Kevin A. Janssen, Marc Niere, Gabriel K. Adzika, Mu-Jie Lu, Hsin-Ru Chan, Xiangyu Zou, Beishan Chen, Nicole Bye, Teresa Xiao, Jin-Seon Yook, Oniel Salik, David W. Frederick, Ryan B. Gaspar, Khanh V. Doan, James G. Davis, Joshua D. Rabinowitz, Douglas C. Wallace, Nathaniel W. Snyder, Shingo Kajimura, Xiaolu A. Cambronne, Mathias Ziegler, Joseph A. Baur
Nicotinamide adenine dinucleotide (NAD+) precursor supplementation shows metabolic and functional benefits in rodent models of disease and is being explored as potential therapeutic strategy in humans. However, the wide range of processes that involve NAD+ in every cell and subcellular compartment make it difficult to narrow down the mechanisms of action. Here we show that the rate of liver regeneration is closely associated with the concentration of NAD+ in hepatocyte mitochondria. We find that the mitochondrial NAD+ concentration in hepatocytes of male mice is determined by the expression of the transporter SLC25A51 (MCART1). The heterozygous loss of SLC25A51 modestly decreases mitochondrial NAD+ content in multiple tissues and impairs liver regeneration, whereas the hepatocyte-specific overexpression of SLC25A51 is sufficient to enhance liver regeneration comparably to the effect of systemic NAD+ precursor supplements. This benefit is observed even though NAD+ levels are increased only in mitochondria. Thus, the hepatocyte mitochondrial NAD+ pool is a key determinant of the rate of liver regeneration. Modulating mitochondrial NAD+ levels by changing the expression of the mitochondrial NAD+ transporter, SLC25A51, Mukherjee et al. demonstrate that mitochondrial, rather than cytosolic or nuclear, NAD+ levels are a key determinant of the rate of liver regeneration.
烟酰胺腺嘌呤二核苷酸(NAD +)前体补充在啮齿动物疾病模型中显示出代谢和功能益处,并且正在探索作为人类潜在的治疗策略。然而,涉及NAD +在每个细胞和亚细胞区室的广泛过程使其难以缩小作用机制。在这里,我们发现肝脏再生的速度与肝细胞线粒体中NAD +的浓度密切相关。我们发现雄性小鼠肝细胞线粒体NAD +浓度是由转运体SLC25A51 (MCART1)的表达决定的。SLC25A51的杂合缺失会适度降低多种组织中线粒体NAD +含量并损害肝脏再生,而肝细胞特异性过表达SLC25A51足以增强肝脏再生,其效果与全身补充NAD +前体的效果相当。即使NAD +水平仅在线粒体中增加,也能观察到这种益处。因此,肝细胞线粒体NAD +池是肝脏再生速率的关键决定因素。
{"title":"Hepatocyte mitochondrial NAD+ content is limiting for liver regeneration","authors":"Sarmistha Mukherjee, Ricardo A. Velázquez Aponte, Caroline E. Perry, Won Dong Lee, Kevin A. Janssen, Marc Niere, Gabriel K. Adzika, Mu-Jie Lu, Hsin-Ru Chan, Xiangyu Zou, Beishan Chen, Nicole Bye, Teresa Xiao, Jin-Seon Yook, Oniel Salik, David W. Frederick, Ryan B. Gaspar, Khanh V. Doan, James G. Davis, Joshua D. Rabinowitz, Douglas C. Wallace, Nathaniel W. Snyder, Shingo Kajimura, Xiaolu A. Cambronne, Mathias Ziegler, Joseph A. Baur","doi":"10.1038/s42255-025-01408-5","DOIUrl":"10.1038/s42255-025-01408-5","url":null,"abstract":"Nicotinamide adenine dinucleotide (NAD+) precursor supplementation shows metabolic and functional benefits in rodent models of disease and is being explored as potential therapeutic strategy in humans. However, the wide range of processes that involve NAD+ in every cell and subcellular compartment make it difficult to narrow down the mechanisms of action. Here we show that the rate of liver regeneration is closely associated with the concentration of NAD+ in hepatocyte mitochondria. We find that the mitochondrial NAD+ concentration in hepatocytes of male mice is determined by the expression of the transporter SLC25A51 (MCART1). The heterozygous loss of SLC25A51 modestly decreases mitochondrial NAD+ content in multiple tissues and impairs liver regeneration, whereas the hepatocyte-specific overexpression of SLC25A51 is sufficient to enhance liver regeneration comparably to the effect of systemic NAD+ precursor supplements. This benefit is observed even though NAD+ levels are increased only in mitochondria. Thus, the hepatocyte mitochondrial NAD+ pool is a key determinant of the rate of liver regeneration. Modulating mitochondrial NAD+ levels by changing the expression of the mitochondrial NAD+ transporter, SLC25A51, Mukherjee et al. demonstrate that mitochondrial, rather than cytosolic or nuclear, NAD+ levels are a key determinant of the rate of liver regeneration.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2424-2437"},"PeriodicalIF":20.8,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01408-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145554404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1