首页 > 最新文献

Nature metabolism最新文献

英文 中文
The neuron–astrocyte metabolic unit as a cornerstone of brain energy metabolism in health and disease 在健康和疾病中,神经元-星形胶质细胞代谢单位是大脑能量代谢的基石
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-10-30 DOI: 10.1038/s42255-025-01404-9
Juan P. Bolaños, Pierre J. Magistretti
Over the past years, substantial advances have deepened our understanding of the cellular and molecular drivers of brain energy metabolism. Enabled by transformative technologies offering cellular-level resolution, these insights have revealed a highly regulated and dynamic metabolic interplay among brain cell types, particularly between neurons and astrocytes. In this Review, we shed light on the intricate ways in which neurons and astrocytes operate as a metabolically coupled unit, optimized to sustain the energetic demands of neurotransmission while ensuring neuroprotection. We highlight intercellular cooperation as a key determinant of brain function and provide examples of how disruption of the neuron–astrocyte metabolic unit contributes to numerous diseases of the nervous system, underscoring the critical importance of continued fundamental research to dissect the regulatory principles and vulnerabilities of this intercellular metabolic axis and identify potential therapeutic targets. Bolaños and Magistretti illustrate how intercellular metabolic cooperation underpins brain function and provide examples of how disruption of the neuron–astrocyte metabolic unit contributes to diseases of the nervous system.
在过去的几年里,实质性的进展加深了我们对大脑能量代谢的细胞和分子驱动的理解。通过提供细胞水平分辨率的变革性技术,这些见解揭示了脑细胞类型之间,特别是神经元和星形胶质细胞之间高度调控和动态的代谢相互作用。在这篇综述中,我们揭示了神经元和星形胶质细胞作为一个代谢耦合单元的复杂方式,优化以维持神经传递的能量需求,同时确保神经保护。我们强调细胞间合作是脑功能的关键决定因素,并提供了神经元-星形胶质细胞代谢单位的破坏如何导致许多神经系统疾病的例子,强调了继续进行基础研究以解剖细胞间代谢轴的调节原理和脆弱性并确定潜在治疗靶点的重要性。Bolaños和Magistretti阐明了细胞间代谢合作如何支撑大脑功能,并提供了神经元-星形胶质细胞代谢单位的破坏如何导致神经系统疾病的例子。
{"title":"The neuron–astrocyte metabolic unit as a cornerstone of brain energy metabolism in health and disease","authors":"Juan P. Bolaños, Pierre J. Magistretti","doi":"10.1038/s42255-025-01404-9","DOIUrl":"10.1038/s42255-025-01404-9","url":null,"abstract":"Over the past years, substantial advances have deepened our understanding of the cellular and molecular drivers of brain energy metabolism. Enabled by transformative technologies offering cellular-level resolution, these insights have revealed a highly regulated and dynamic metabolic interplay among brain cell types, particularly between neurons and astrocytes. In this Review, we shed light on the intricate ways in which neurons and astrocytes operate as a metabolically coupled unit, optimized to sustain the energetic demands of neurotransmission while ensuring neuroprotection. We highlight intercellular cooperation as a key determinant of brain function and provide examples of how disruption of the neuron–astrocyte metabolic unit contributes to numerous diseases of the nervous system, underscoring the critical importance of continued fundamental research to dissect the regulatory principles and vulnerabilities of this intercellular metabolic axis and identify potential therapeutic targets. Bolaños and Magistretti illustrate how intercellular metabolic cooperation underpins brain function and provide examples of how disruption of the neuron–astrocyte metabolic unit contributes to diseases of the nervous system.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2414-2423"},"PeriodicalIF":20.8,"publicationDate":"2025-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145396873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sweet signals for myelin: glucose sensing redirected to regeneration 髓磷脂的甜蜜信号:葡萄糖传感重定向到再生。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-10-22 DOI: 10.1038/s42255-025-01392-w
Andrew R. Tee
Oligodendrocyte progenitor cells harness aldolase C–TRPV–AMPK signalling in a bespoke way to sense glucose availability and prioritize energy towards remyelination.
少突胶质细胞祖细胞利用醛缩酶C-TRPV-AMPK信号以定制的方式感知葡萄糖的可用性并优先考虑髓鞘再生的能量。
{"title":"Sweet signals for myelin: glucose sensing redirected to regeneration","authors":"Andrew R. Tee","doi":"10.1038/s42255-025-01392-w","DOIUrl":"10.1038/s42255-025-01392-w","url":null,"abstract":"Oligodendrocyte progenitor cells harness aldolase C–TRPV–AMPK signalling in a bespoke way to sense glucose availability and prioritize energy towards remyelination.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 11","pages":"2189-2191"},"PeriodicalIF":20.8,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145339425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oligodendrocyte precursor cell-specific blocking of low-glucose-induced activation of AMPK ensures myelination and remyelination 少突胶质前体细胞特异性阻断低糖诱导的AMPK激活,确保髓鞘形成和再髓鞘形成。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-10-22 DOI: 10.1038/s42255-025-01386-8
Yuxia Sun, Wei-Wei Zhang, Lu Men, Jianfeng Wu, Luming Yao, Xi Huang, Yaying Wu, Cixiong Zhang, Ying Chen, David Carling, Chen-Song Zhang, Sheng-Cai Lin
It has been shown that in most cells, low glucose leads to activation of AMP-activated protein kinase (AMPK) via the lysosomal glucose-sensing pathway, where glycolytic aldolase acts as the glucose sensor. Here, we show that ALDOC (aldolase C), the predominant isozyme of aldolase in mouse and rat oligodendrocyte precursor cells (OPCs), is acetylated at lysine 14, making the lysosomal glucose-sensing AMPK pathway unable to operate. We find that the blockage of AMPK activation is required for the proper proliferation and differentiation of OPCs into mature oligodendrocytes for myelination during development and for remyelination in areas of demyelination where the local glucose levels are low. Therefore, the acetylation of aldolase acts as a checkpoint for AMPK activation in response to low glucose to ensure the proliferation and differentiation of OPCs for myelination, and remyelination of demyelinated neurons. Inhibition of AMPK activation under low glucose conditions in oligodendrocyte precursor cells is shown to be important for myelination during development and remyelination in neuronal disorders.
研究表明,在大多数细胞中,低糖通过溶酶体葡萄糖感应途径导致amp激活的蛋白激酶(AMPK)的激活,其中糖酵解醛缩酶作为葡萄糖传感器。在这里,我们发现ALDOC(醛缩酶C)是小鼠和大鼠少突胶质前体细胞(OPCs)中醛缩酶的主要同工酶,在赖氨酸14位点乙酰化,使溶酶体葡萄糖感应AMPK途径无法运作。我们发现,阻断AMPK激活是OPCs正常增殖和分化为成熟少突胶质细胞的必要条件,在发育过程中形成髓鞘,在局部葡萄糖水平低的脱髓鞘区域重新形成髓鞘。因此,醛缩酶的乙酰化作为AMPK在低糖反应中激活的一个检查点,以确保OPCs在髓鞘形成和脱髓鞘神经元的再髓鞘形成中的增殖和分化。
{"title":"Oligodendrocyte precursor cell-specific blocking of low-glucose-induced activation of AMPK ensures myelination and remyelination","authors":"Yuxia Sun, Wei-Wei Zhang, Lu Men, Jianfeng Wu, Luming Yao, Xi Huang, Yaying Wu, Cixiong Zhang, Ying Chen, David Carling, Chen-Song Zhang, Sheng-Cai Lin","doi":"10.1038/s42255-025-01386-8","DOIUrl":"10.1038/s42255-025-01386-8","url":null,"abstract":"It has been shown that in most cells, low glucose leads to activation of AMP-activated protein kinase (AMPK) via the lysosomal glucose-sensing pathway, where glycolytic aldolase acts as the glucose sensor. Here, we show that ALDOC (aldolase C), the predominant isozyme of aldolase in mouse and rat oligodendrocyte precursor cells (OPCs), is acetylated at lysine 14, making the lysosomal glucose-sensing AMPK pathway unable to operate. We find that the blockage of AMPK activation is required for the proper proliferation and differentiation of OPCs into mature oligodendrocytes for myelination during development and for remyelination in areas of demyelination where the local glucose levels are low. Therefore, the acetylation of aldolase acts as a checkpoint for AMPK activation in response to low glucose to ensure the proliferation and differentiation of OPCs for myelination, and remyelination of demyelinated neurons. Inhibition of AMPK activation under low glucose conditions in oligodendrocyte precursor cells is shown to be important for myelination during development and remyelination in neuronal disorders.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 11","pages":"2324-2345"},"PeriodicalIF":20.8,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01386-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145339424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial metabolite indole-3-propionic acid drives mitochondrial respiration in CD4+ T cells to confer protection against intestinal inflammation 微生物代谢物吲哚-3-丙酸驱动CD4+ T细胞的线粒体呼吸,以保护机体免受肠道炎症。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-10-21 DOI: 10.1038/s42255-025-01396-6
Qing Li, Rodrigo de Oliveira Formiga, Virginie Puchois, Laura Creusot, Ahmad Haidar Ahmad, Salomé Amouyal, Márcio Augusto Campos-Ribeiro, Yining Zhao, Danielle M. M. Harris, Frederic Lasserre, Sandrine Ellero-Simatos, Hervé Guillou, Zhan Huang, Loic Brot, Yuhang Hu, Loic Chollet, Camille Danne, Cyril Scandola, Tatiana Ledent, Guillaume Chevreux, Rafael J. Argüello, Marcelo De Carvalho Bittencourt, Jessica Bettinger, Maud D’Aveni-Piney, David Moulin, Stefan Schreiber, Konrad Aden, Nathalie Rolhion, Marie-Laure Michel, Timothy Wai, Harry Sokol
The gut microbiota and its metabolites critically regulate immune cell phenotype, function and energy metabolism. We screened a collection of gut microbiota-related metabolites to identify modulators of mitochondrial metabolism in T cells. Here we show that indole-3-propionic acid (IPA) stimulates mitochondrial respiration of CD4+ T cells by increasing fatty acid oxidation (FAO) and amino acid oxidation (AAO), while inhibiting glycolytic capacity. IPA also impacts CD4+ T cell behaviour by inhibiting their differentiation to type 1 and type 17 helper T cell phenotypes. Mechanistically, the metabolic and immune effects of IPA are mediated by peroxisome proliferator-activated receptor-β/δ. The administration of IPA rescues mitochondria respiration in mice with gut bacteria depletion or colitis by enhancing FAO and AAO in colonic CD4+ T cells. Adoptive transfer experiments show that IPA acts on CD4+ T cells to exert its protective effect against inflammation. Collectively, our study reveals that the anti-inflammatory effects of IPA are mediated by metabolic reprogramming of CD4+ T cells toward the enhancement of mitochondrial respiration. The gut microbiota-derived metabolite indole-3-propionic acid (IPA) is found to enhance mitochondrial fatty acid and amino acid oxidation in CD4+ T cells. In mice, IPA-mediated metabolic reprogramming of CD4+ T cells exerts anti-inflammatory effects and protects against colitis.
肠道菌群及其代谢产物对免疫细胞的表型、功能和能量代谢具有重要的调节作用。我们筛选了一系列与肠道微生物群相关的代谢物,以鉴定T细胞中线粒体代谢的调节剂。本研究表明,吲哚-3-丙酸(IPA)通过增加脂肪酸氧化(FAO)和氨基酸氧化(AAO)来刺激CD4+ T细胞的线粒体呼吸,同时抑制糖酵解能力。IPA还通过抑制CD4+ T细胞向1型和17型辅助性T细胞表型的分化来影响其行为。机制上,IPA的代谢和免疫作用是由过氧化物酶体增殖物激活受体-β/δ介导的。IPA通过增强结肠CD4+ T细胞中的FAO和AAO来挽救肠道细菌耗尽或结肠炎小鼠的线粒体呼吸。过继性转移实验表明,IPA作用于CD4+ T细胞,发挥其抗炎症的保护作用。总的来说,我们的研究表明,IPA的抗炎作用是通过CD4+ T细胞的代谢重编程介导的,从而增强线粒体呼吸。
{"title":"Microbial metabolite indole-3-propionic acid drives mitochondrial respiration in CD4+ T cells to confer protection against intestinal inflammation","authors":"Qing Li, Rodrigo de Oliveira Formiga, Virginie Puchois, Laura Creusot, Ahmad Haidar Ahmad, Salomé Amouyal, Márcio Augusto Campos-Ribeiro, Yining Zhao, Danielle M. M. Harris, Frederic Lasserre, Sandrine Ellero-Simatos, Hervé Guillou, Zhan Huang, Loic Brot, Yuhang Hu, Loic Chollet, Camille Danne, Cyril Scandola, Tatiana Ledent, Guillaume Chevreux, Rafael J. Argüello, Marcelo De Carvalho Bittencourt, Jessica Bettinger, Maud D’Aveni-Piney, David Moulin, Stefan Schreiber, Konrad Aden, Nathalie Rolhion, Marie-Laure Michel, Timothy Wai, Harry Sokol","doi":"10.1038/s42255-025-01396-6","DOIUrl":"10.1038/s42255-025-01396-6","url":null,"abstract":"The gut microbiota and its metabolites critically regulate immune cell phenotype, function and energy metabolism. We screened a collection of gut microbiota-related metabolites to identify modulators of mitochondrial metabolism in T cells. Here we show that indole-3-propionic acid (IPA) stimulates mitochondrial respiration of CD4+ T cells by increasing fatty acid oxidation (FAO) and amino acid oxidation (AAO), while inhibiting glycolytic capacity. IPA also impacts CD4+ T cell behaviour by inhibiting their differentiation to type 1 and type 17 helper T cell phenotypes. Mechanistically, the metabolic and immune effects of IPA are mediated by peroxisome proliferator-activated receptor-β/δ. The administration of IPA rescues mitochondria respiration in mice with gut bacteria depletion or colitis by enhancing FAO and AAO in colonic CD4+ T cells. Adoptive transfer experiments show that IPA acts on CD4+ T cells to exert its protective effect against inflammation. Collectively, our study reveals that the anti-inflammatory effects of IPA are mediated by metabolic reprogramming of CD4+ T cells toward the enhancement of mitochondrial respiration. The gut microbiota-derived metabolite indole-3-propionic acid (IPA) is found to enhance mitochondrial fatty acid and amino acid oxidation in CD4+ T cells. In mice, IPA-mediated metabolic reprogramming of CD4+ T cells exerts anti-inflammatory effects and protects against colitis.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2510-2530"},"PeriodicalIF":20.8,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01396-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145338529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IPA brews metabolic balance in gut immunity IPA促进肠道免疫代谢平衡。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-10-21 DOI: 10.1038/s42255-025-01401-y
Jacy Scott, Chaoran Li
Microbiota-derived metabolites shape intestinal health by modulating T cell metabolism. Li et al. show that indole-3-propionic acid (IPA) promotes mitochondrial respiration to suppress pro-inflammatory T cell differentiation, thereby alleviating inflammatory bowel disease in humans and mice.
微生物衍生的代谢物通过调节T细胞代谢来塑造肠道健康。Li等人发现吲哚-3-丙酸(IPA)促进线粒体呼吸抑制促炎T细胞分化,从而减轻人和小鼠的炎症性肠病。
{"title":"IPA brews metabolic balance in gut immunity","authors":"Jacy Scott, Chaoran Li","doi":"10.1038/s42255-025-01401-y","DOIUrl":"10.1038/s42255-025-01401-y","url":null,"abstract":"Microbiota-derived metabolites shape intestinal health by modulating T cell metabolism. Li et al. show that indole-3-propionic acid (IPA) promotes mitochondrial respiration to suppress pro-inflammatory T cell differentiation, thereby alleviating inflammatory bowel disease in humans and mice.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2385-2387"},"PeriodicalIF":20.8,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145338532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A lactate–acetate interaction between macrophages and cancer cells drives metastasis 巨噬细胞和癌细胞之间的乳酸-乙酸相互作用驱动转移。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-10-20 DOI: 10.1038/s42255-025-01398-4
Cancer cells often increase their uptake of acetate for acetyl-coenzyme A biosynthesis, a mechanism that facilitates cancer metastasis. We found that, in hepatocellular carcinoma, cancer cells induce acetate secretion from tumour-associated macrophages, driven by a cell–cell metabolic interaction involving lactate, the lipid peroxidation–aldehyde dehydrogenase 2 pathway and acetate.
癌细胞经常增加对醋酸酯的摄取,用于乙酰辅酶A的生物合成,这是促进癌症转移的一种机制。我们发现,在肝细胞癌中,癌细胞诱导肿瘤相关巨噬细胞分泌乙酸,这是由细胞间代谢相互作用驱动的,包括乳酸、脂质过氧化-醛脱氢酶2途径和乙酸。
{"title":"A lactate–acetate interaction between macrophages and cancer cells drives metastasis","authors":"","doi":"10.1038/s42255-025-01398-4","DOIUrl":"10.1038/s42255-025-01398-4","url":null,"abstract":"Cancer cells often increase their uptake of acetate for acetyl-coenzyme A biosynthesis, a mechanism that facilitates cancer metastasis. We found that, in hepatocellular carcinoma, cancer cells induce acetate secretion from tumour-associated macrophages, driven by a cell–cell metabolic interaction involving lactate, the lipid peroxidation–aldehyde dehydrogenase 2 pathway and acetate.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 11","pages":"2195-2196"},"PeriodicalIF":20.8,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145331579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumour-associated macrophages serve as an acetate reservoir to drive hepatocellular carcinoma metastasis 肿瘤相关巨噬细胞作为醋酸盐储存库驱动肝细胞癌转移。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-10-20 DOI: 10.1038/s42255-025-01393-9
Li Shen, Shenghao Wang, Chao Gao, Qin Li, Shuya Feng, Weiyan Sun, Xu Liu, Yiyi Ba, Yihui Chu, Yu Zhou, Junjie Pan, Hao Xu, Xu Zhang, Wenwei Zhu, Lunxiu Qin, Ming Lu
Increased acetyl-coenzyme A (acetyl-CoA) generation facilitates cancer metastasis and represents a critical metabolic characteristic of metastatic cancers. To maintain high acetyl-CoA levels, cancer cells often enhance the uptake of acetate for acetyl-CoA biosynthesis. However, the microenvironmental source of acetate remains largely unknown. Here we demonstrate that acetate is secreted by tumour-associated macrophages (TAMs) and taken up by hepatocellular carcinoma (HCC) cells to support acetate accumulation. Mechanistically, HCC cell-derived lactate activates the lipid peroxidation–aldehyde dehydrogenase 2 (ALDH2) pathway in TAMs, which promotes the TAMs’ acetate production and secretion. Inhibition of ALDH2 or of lipid peroxidation in TAMs abrogates acetate-induced migration of HCC cells in vitro. In an orthotopic HCC model involving male mice, genetic ablation of ALDH2 in TAMs reduces HCC cell acetate levels and HCC lung metastases. Collectively, our findings reveal a metabolic interaction between HCC cells and TAMs—involving lactate, lipid peroxidation and acetate—and position TAMs as an acetate reservoir that drives HCC metastasis. Acetate accumulation and metastasis of hepatocarcinoma cells is driven by a metabolic interaction involving HCC-derived lactate and acetate secretion from tumour-associated macrophages.
乙酰辅酶A (acetyl-CoA)的增加促进了癌症的转移,是转移性癌症的一个关键代谢特征。为了维持较高的乙酰辅酶a水平,癌细胞通常会增加醋酸盐的摄取以进行乙酰辅酶a的生物合成。然而,醋酸盐的微环境来源在很大程度上仍然未知。在这里,我们证明了醋酸盐是由肿瘤相关巨噬细胞(tam)分泌的,并被肝细胞癌(HCC)细胞吸收以支持醋酸盐的积累。机制上,HCC细胞源性乳酸激活tam中的脂质过氧化-醛脱氢酶2 (ALDH2)通路,促进tam的醋酸生成和分泌。在体外实验中,在tam中抑制ALDH2或脂质过氧化可消除醋酸盐诱导的HCC细胞迁移。在雄性小鼠原位肝癌模型中,基因消融TAMs中的ALDH2可降低HCC细胞醋酸水平和HCC肺转移。总的来说,我们的研究结果揭示了HCC细胞与tam之间的代谢相互作用-涉及乳酸,脂质过氧化和醋酸盐-并将tam定位为驱动HCC转移的醋酸盐库。
{"title":"Tumour-associated macrophages serve as an acetate reservoir to drive hepatocellular carcinoma metastasis","authors":"Li Shen, Shenghao Wang, Chao Gao, Qin Li, Shuya Feng, Weiyan Sun, Xu Liu, Yiyi Ba, Yihui Chu, Yu Zhou, Junjie Pan, Hao Xu, Xu Zhang, Wenwei Zhu, Lunxiu Qin, Ming Lu","doi":"10.1038/s42255-025-01393-9","DOIUrl":"10.1038/s42255-025-01393-9","url":null,"abstract":"Increased acetyl-coenzyme A (acetyl-CoA) generation facilitates cancer metastasis and represents a critical metabolic characteristic of metastatic cancers. To maintain high acetyl-CoA levels, cancer cells often enhance the uptake of acetate for acetyl-CoA biosynthesis. However, the microenvironmental source of acetate remains largely unknown. Here we demonstrate that acetate is secreted by tumour-associated macrophages (TAMs) and taken up by hepatocellular carcinoma (HCC) cells to support acetate accumulation. Mechanistically, HCC cell-derived lactate activates the lipid peroxidation–aldehyde dehydrogenase 2 (ALDH2) pathway in TAMs, which promotes the TAMs’ acetate production and secretion. Inhibition of ALDH2 or of lipid peroxidation in TAMs abrogates acetate-induced migration of HCC cells in vitro. In an orthotopic HCC model involving male mice, genetic ablation of ALDH2 in TAMs reduces HCC cell acetate levels and HCC lung metastases. Collectively, our findings reveal a metabolic interaction between HCC cells and TAMs—involving lactate, lipid peroxidation and acetate—and position TAMs as an acetate reservoir that drives HCC metastasis. Acetate accumulation and metastasis of hepatocarcinoma cells is driven by a metabolic interaction involving HCC-derived lactate and acetate secretion from tumour-associated macrophages.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 11","pages":"2268-2283"},"PeriodicalIF":20.8,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145331578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human genetics of steatotic liver disease: insights into insulin resistance and lipid metabolism 脂肪变性肝病的人类遗传学:胰岛素抵抗和脂质代谢。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-10-17 DOI: 10.1038/s42255-025-01394-8
Rosellina M. Mancina, Luca Valenti, Stefano Romeo
Metabolic-dysfunction-associated steatotic liver disease (MASLD, previously known as non-alcoholic fatty liver disease or NAFLD) is a prevalent and heterogeneous condition affecting nearly 30% of the global population. MASLD is defined as excessive hepatic lipid accumulation with at least one feature of insulin resistance, with potential progression to metabolic dysfunction-associated steatohepatitis, cirrhosis and hepatocellular carcinoma. The disease often coexists with insulin resistance and cardiovascular and chronic kidney diseases. Human genetics has shed light on MASLD predisposition and its causal association with type 2 diabetes and insulin resistance, enabling the field to progress towards precision-medicine therapeutics. Convergent selection of somatic mutations in genes involved in glucose and lipid metabolism in cirrhotic livers suggests adaptive responses to gluco-lipotoxicity that influence end-stage liver disease. Recently, two distinct types of MASLD, with specific clinical trajectories, were identified on the basis of partitioned polygenic risk scores. Future studies are needed to integrate this knowledge, enabling earlier detection, risk stratification and targeted therapies. This Review summarizes our current knowledge about the genetic underpinnings of metabolic-dysfunction-associated steatotic liver disease and highlights its causal association with type 2 diabetes and insulin resistance.
代谢功能障碍相关的脂肪变性肝病(MASLD,以前称为非酒精性脂肪性肝病或NAFLD)是一种普遍且异质性的疾病,影响全球近30%的人口。MASLD被定义为肝脏脂质过度积累,至少具有胰岛素抵抗的一个特征,并可能发展为代谢功能障碍相关的脂肪性肝炎、肝硬化和肝细胞癌。该病常与胰岛素抵抗、心血管疾病和慢性肾脏疾病共存。人类遗传学揭示了MASLD易感性及其与2型糖尿病和胰岛素抵抗的因果关系,使该领域朝着精准医学治疗的方向发展。肝硬化中参与糖脂代谢的基因的体细胞突变的趋同选择表明对影响终末期肝病的糖脂毒性的适应性反应。最近,根据分割的多基因风险评分,确定了两种具有特定临床轨迹的不同类型的MASLD。未来的研究需要整合这些知识,实现早期检测、风险分层和靶向治疗。
{"title":"Human genetics of steatotic liver disease: insights into insulin resistance and lipid metabolism","authors":"Rosellina M. Mancina, Luca Valenti, Stefano Romeo","doi":"10.1038/s42255-025-01394-8","DOIUrl":"10.1038/s42255-025-01394-8","url":null,"abstract":"Metabolic-dysfunction-associated steatotic liver disease (MASLD, previously known as non-alcoholic fatty liver disease or NAFLD) is a prevalent and heterogeneous condition affecting nearly 30% of the global population. MASLD is defined as excessive hepatic lipid accumulation with at least one feature of insulin resistance, with potential progression to metabolic dysfunction-associated steatohepatitis, cirrhosis and hepatocellular carcinoma. The disease often coexists with insulin resistance and cardiovascular and chronic kidney diseases. Human genetics has shed light on MASLD predisposition and its causal association with type 2 diabetes and insulin resistance, enabling the field to progress towards precision-medicine therapeutics. Convergent selection of somatic mutations in genes involved in glucose and lipid metabolism in cirrhotic livers suggests adaptive responses to gluco-lipotoxicity that influence end-stage liver disease. Recently, two distinct types of MASLD, with specific clinical trajectories, were identified on the basis of partitioned polygenic risk scores. Future studies are needed to integrate this knowledge, enabling earlier detection, risk stratification and targeted therapies. This Review summarizes our current knowledge about the genetic underpinnings of metabolic-dysfunction-associated steatotic liver disease and highlights its causal association with type 2 diabetes and insulin resistance.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 11","pages":"2199-2211"},"PeriodicalIF":20.8,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145311701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction of sortilin with apolipoprotein E3 enables neurons to use long-chain fatty acids as alternative metabolic fuel sortilin与载脂蛋白E3的相互作用使神经元使用长链脂肪酸作为替代代谢燃料。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-10-16 DOI: 10.1038/s42255-025-01389-5
Anna K. Greda, Jemila P. Gomes, Vanessa Schmidt-Krueger, Ewa Zurawska-Plaksej, Raphaela Fritsche-Guenther, Ina-Maria Rudolph, Narasimha S. Telugu, Cagla Cömert, Jennifer Kirwan, Séverine Kunz, Michael Rothe, Mogens Johannsen, Sebastian Diecke, Peter Bross, Thomas E. Willnow
Sortilin (SORT1) is a lipoprotein receptor that shows genome-wide association with hypercholesterolaemia, explained by its ability to control hepatic output of lipoproteins. Although SORT1 also shows genome-wide association with Alzheimer disease and frontotemporal lobe dementia, the most prevalent forms of age-related dementias, sortilin’s contribution to human brain lipid metabolism and health remains unclear. Here we show that sortilin mediates neuronal uptake of polyunsaturated fatty acids carried by apolipoprotein E (apoE). Using humanized mouse strains and induced pluripotent stem cell-based cell models of brain lipid homeostasis, we demonstrate that internalized lipids are converted into ligands for peroxisome proliferator-activated receptor alpha inducing transcription profiles that enable neurons to use long-chain fatty acids as metabolic fuel when glucose is limited. This pathway works with apoE3 but cannot operate with the Alzheimer disease risk factor apoE4, which disrupts sortilin’s endocytic activity. Our data indicate a role for the lipoprotein receptor sortilin in metabolic fuel choice in neurons, which may be crucial when glucose supply is limited, such as in the ageing brain. Greda et al. show that sortilin and apolipoprotein E3 mediate import and utilization of long-chain fatty acids as a metabolic fuel in neurons after glucose restriction.
SORT1是一种与高胆固醇血症全基因组相关的脂蛋白受体,其控制肝脏脂蛋白输出的能力可以解释这一点。尽管SORT1也显示出与阿尔茨海默病和额颞叶痴呆(最常见的与年龄有关的痴呆症)的全基因组关联,但sortilin对人脑脂质代谢和健康的贡献尚不清楚。在这里,我们表明sortilin介导由载脂蛋白E (apoE)携带的多不饱和脂肪酸的神经元摄取。利用人源化小鼠品系和基于诱导多能干细胞的脑脂质稳态细胞模型,我们证明内化的脂质转化为过氧化物酶体增殖体激活受体α诱导转录谱的配体,使神经元在葡萄糖受限时能够使用长链脂肪酸作为代谢燃料。该途径与apoE3起作用,但不能与阿尔茨海默病风险因子apoE4起作用,后者会破坏sortilin的内吞活性。我们的数据表明,脂蛋白受体sortilin在神经元代谢燃料选择中的作用,当葡萄糖供应有限时,例如在衰老的大脑中,这可能是至关重要的。
{"title":"Interaction of sortilin with apolipoprotein E3 enables neurons to use long-chain fatty acids as alternative metabolic fuel","authors":"Anna K. Greda, Jemila P. Gomes, Vanessa Schmidt-Krueger, Ewa Zurawska-Plaksej, Raphaela Fritsche-Guenther, Ina-Maria Rudolph, Narasimha S. Telugu, Cagla Cömert, Jennifer Kirwan, Séverine Kunz, Michael Rothe, Mogens Johannsen, Sebastian Diecke, Peter Bross, Thomas E. Willnow","doi":"10.1038/s42255-025-01389-5","DOIUrl":"10.1038/s42255-025-01389-5","url":null,"abstract":"Sortilin (SORT1) is a lipoprotein receptor that shows genome-wide association with hypercholesterolaemia, explained by its ability to control hepatic output of lipoproteins. Although SORT1 also shows genome-wide association with Alzheimer disease and frontotemporal lobe dementia, the most prevalent forms of age-related dementias, sortilin’s contribution to human brain lipid metabolism and health remains unclear. Here we show that sortilin mediates neuronal uptake of polyunsaturated fatty acids carried by apolipoprotein E (apoE). Using humanized mouse strains and induced pluripotent stem cell-based cell models of brain lipid homeostasis, we demonstrate that internalized lipids are converted into ligands for peroxisome proliferator-activated receptor alpha inducing transcription profiles that enable neurons to use long-chain fatty acids as metabolic fuel when glucose is limited. This pathway works with apoE3 but cannot operate with the Alzheimer disease risk factor apoE4, which disrupts sortilin’s endocytic activity. Our data indicate a role for the lipoprotein receptor sortilin in metabolic fuel choice in neurons, which may be crucial when glucose supply is limited, such as in the ageing brain. Greda et al. show that sortilin and apolipoprotein E3 mediate import and utilization of long-chain fatty acids as a metabolic fuel in neurons after glucose restriction.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 11","pages":"2346-2365"},"PeriodicalIF":20.8,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01389-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145308602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EMito-Metrix enables automated evaluation of mitochondrial morphology across species EMito-Metrix能够自动评估跨物种的线粒体形态。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-10-15 DOI: 10.1038/s42255-025-01400-z
Eléna Morin, Emmanuel Doumard, Lisa M. Hartnell, Beñat Salegi Ansa, Jean-Philippe Leduc-Gaudet, Aurélie Quillien, Jean Nakhle, Séverine Ethuin, Dominique Goudounèche, Bruno Payré, Vanessa Soldan, Stéphanie Balor, Anna Mattout, Jacques Rouquette, Laurence Dubois, Coralie Sengenès, Valérie Planat, Louis Casteilla, Armelle Yart, Cédric Dray, Julien Aligon, Luigi Ferrucci, Élise Duchesne, Sabah N. A. Hussain, Gilles Gouspillou, Laura Formentini, Arnaud Mourier, Olivier R. Baris, Philippe Valet, Harold Parpex, Paul Monsarrat, Mathieu Vigneau, Jean-Philippe Pradère
{"title":"EMito-Metrix enables automated evaluation of mitochondrial morphology across species","authors":"Eléna Morin, Emmanuel Doumard, Lisa M. Hartnell, Beñat Salegi Ansa, Jean-Philippe Leduc-Gaudet, Aurélie Quillien, Jean Nakhle, Séverine Ethuin, Dominique Goudounèche, Bruno Payré, Vanessa Soldan, Stéphanie Balor, Anna Mattout, Jacques Rouquette, Laurence Dubois, Coralie Sengenès, Valérie Planat, Louis Casteilla, Armelle Yart, Cédric Dray, Julien Aligon, Luigi Ferrucci, Élise Duchesne, Sabah N. A. Hussain, Gilles Gouspillou, Laura Formentini, Arnaud Mourier, Olivier R. Baris, Philippe Valet, Harold Parpex, Paul Monsarrat, Mathieu Vigneau, Jean-Philippe Pradère","doi":"10.1038/s42255-025-01400-z","DOIUrl":"10.1038/s42255-025-01400-z","url":null,"abstract":"","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 11","pages":"2179-2182"},"PeriodicalIF":20.8,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145296046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1