首页 > 最新文献

Nature metabolism最新文献

英文 中文
Age-related decline of chaperone-mediated autophagy in skeletal muscle leads to progressive myopathy 骨骼肌中伴侣介导的自噬的年龄相关性下降导致进行性肌病。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-03 DOI: 10.1038/s42255-025-01412-9
Olaya Santiago-Fernández, Luisa Coletto, Inmaculada Tasset, Susmita Kaushik, Axel R. Concepcion, Rizwan Qaisar, Adrián Macho-González, Kristen Lindenau, Antonio Diaz, Rabia R. Khawaja, Stefano Donega, Nirad Banskota, Ceereena Ubaida-Mohien, Gavin Pharaoh, Bumsoo Ahn, Lisa M. Hartnell, Ignacio Ramírez-Pardo, Bhakti Chavda, Aiara Gazteluiturri, Michael Kinter, Luigi Ferrucci, Julie A. Reisz, Angelo D’Alessandro, Holly Van Remmen, Pura Muñoz-Cánoves, Stefan Feske, Ana Maria Cuervo
Chaperone-mediated autophagy (CMA) contributes to proteostasis maintenance by selectively degrading a subset of proteins in lysosomes. CMA declines with age in most tissues, including skeletal muscle. However, the role of CMA in skeletal muscle and the consequences of its decline remain poorly understood. Here we demonstrate that CMA regulates skeletal muscle function. We show that CMA is upregulated in skeletal muscle in response to starvation, exercise and tissue repair, but declines in ageing and obesity. Using a muscle-specific CMA-deficient mouse model, we show that CMA loss leads to progressive myopathy, including reduced muscle force and degenerative myofibre features. Comparative proteomic analyses reveal CMA-dependent changes in the mitochondrial proteome and identify the sarcoplasmic–endoplasmic reticulum Ca2+-ATPase (SERCA) as a CMA substrate. Impaired SERCA turnover in CMA-deficient skeletal muscle is associated with defective calcium (Ca2+) storage and dysregulated Ca2+ dynamics. We confirm that CMA is also downregulated with age in human skeletal muscle. Remarkably, genetic upregulation of CMA activity in old mice partially ameliorates skeletal muscle ageing phenotypes. Together, our work highlights the contribution of CMA to skeletal muscle homoeostasis and myofibre integrity. Chaperone-mediated autophagy declines with age in skeletal muscle of humans and mice, leading to muscle dysfunction characterized by impaired calcium homoeostasis and mitochondrial function.
伴侣介导的自噬(CMA)通过选择性地降解溶酶体中的一组蛋白质来维持蛋白质稳态。在包括骨骼肌在内的大多数组织中,CMA随年龄增长而下降。然而,CMA在骨骼肌中的作用及其下降的后果仍然知之甚少。在这里,我们证明CMA调节骨骼肌功能。我们发现骨骼肌中的CMA在饥饿、运动和组织修复的反应中上调,但在衰老和肥胖中下降。使用肌肉特异性CMA缺陷小鼠模型,我们发现CMA缺失导致进行性肌病,包括肌肉力量减少和肌纤维变性特征。比较蛋白质组学分析揭示了线粒体蛋白质组的CMA依赖性变化,并确定肌浆-内质网Ca2+- atp酶(SERCA)是CMA底物。cma缺陷骨骼肌中SERCA转换受损与钙(Ca2+)储存缺陷和Ca2+动力学失调有关。我们证实,CMA在人类骨骼肌中也随着年龄的增长而下调。值得注意的是,老年小鼠CMA活性的基因上调部分改善了骨骼肌老化表型。总之,我们的工作强调了CMA对骨骼肌平衡和肌纤维完整性的贡献。
{"title":"Age-related decline of chaperone-mediated autophagy in skeletal muscle leads to progressive myopathy","authors":"Olaya Santiago-Fernández, Luisa Coletto, Inmaculada Tasset, Susmita Kaushik, Axel R. Concepcion, Rizwan Qaisar, Adrián Macho-González, Kristen Lindenau, Antonio Diaz, Rabia R. Khawaja, Stefano Donega, Nirad Banskota, Ceereena Ubaida-Mohien, Gavin Pharaoh, Bumsoo Ahn, Lisa M. Hartnell, Ignacio Ramírez-Pardo, Bhakti Chavda, Aiara Gazteluiturri, Michael Kinter, Luigi Ferrucci, Julie A. Reisz, Angelo D’Alessandro, Holly Van Remmen, Pura Muñoz-Cánoves, Stefan Feske, Ana Maria Cuervo","doi":"10.1038/s42255-025-01412-9","DOIUrl":"10.1038/s42255-025-01412-9","url":null,"abstract":"Chaperone-mediated autophagy (CMA) contributes to proteostasis maintenance by selectively degrading a subset of proteins in lysosomes. CMA declines with age in most tissues, including skeletal muscle. However, the role of CMA in skeletal muscle and the consequences of its decline remain poorly understood. Here we demonstrate that CMA regulates skeletal muscle function. We show that CMA is upregulated in skeletal muscle in response to starvation, exercise and tissue repair, but declines in ageing and obesity. Using a muscle-specific CMA-deficient mouse model, we show that CMA loss leads to progressive myopathy, including reduced muscle force and degenerative myofibre features. Comparative proteomic analyses reveal CMA-dependent changes in the mitochondrial proteome and identify the sarcoplasmic–endoplasmic reticulum Ca2+-ATPase (SERCA) as a CMA substrate. Impaired SERCA turnover in CMA-deficient skeletal muscle is associated with defective calcium (Ca2+) storage and dysregulated Ca2+ dynamics. We confirm that CMA is also downregulated with age in human skeletal muscle. Remarkably, genetic upregulation of CMA activity in old mice partially ameliorates skeletal muscle ageing phenotypes. Together, our work highlights the contribution of CMA to skeletal muscle homoeostasis and myofibre integrity. Chaperone-mediated autophagy declines with age in skeletal muscle of humans and mice, leading to muscle dysfunction characterized by impaired calcium homoeostasis and mitochondrial function.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2589-2611"},"PeriodicalIF":20.8,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01412-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dedicated recycling bin keeps muscle healthy 专用的回收箱使肌肉保持健康。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-03 DOI: 10.1038/s42255-025-01418-3
Vittorio Sartorelli
Two studies in Nature Metabolism reveal a critical role of chaperone-mediated autophagy in maintaining homeostasis and promoting regeneration of skeletal muscle.
Nature Metabolism上的两项研究揭示了伴侣介导的自噬在维持体内平衡和促进骨骼肌再生中的关键作用。
{"title":"A dedicated recycling bin keeps muscle healthy","authors":"Vittorio Sartorelli","doi":"10.1038/s42255-025-01418-3","DOIUrl":"10.1038/s42255-025-01418-3","url":null,"abstract":"Two studies in Nature Metabolism reveal a critical role of chaperone-mediated autophagy in maintaining homeostasis and promoting regeneration of skeletal muscle.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2390-2392"},"PeriodicalIF":20.8,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chaperone-mediated autophagy sustains muscle stem cell regenerative functions but declines with age 伴侣介导的自噬维持肌肉干细胞的再生功能,但随着年龄的增长而下降。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-03 DOI: 10.1038/s42255-025-01411-w
Ignacio Ramírez-Pardo, Silvia Campanario, Bhakti Chavda, Olaya Santiago-Fernández, Marta Flández, Mercedes Grima-Terrén, Andrés Cisneros, Aina Calls-Cobos, Daniel N. Itzhak, Bryan Ngo, Sudha Janaki-Raman, Edward D. Kantz, Laura Ortet, Antonio Diaz, Kristen Lindenau, Julio Doménech-Fernández, Mari Carmen Gómez-Cabrera, Emilio Camafeita, Jesús Vázquez, Marta Martinez-Vicente, Antonio L. Serrano, Eusebio Perdiguero, Joan Isern, Ana Maria Cuervo, Pura Muñoz-Cánoves
Proteostasis supports stemness, and its loss correlates with the functional decline of diverse stem cell types. Chaperone-mediated autophagy (CMA) is a selective autophagy pathway implicated in proteostasis, but whether it plays a role in muscle stem cell (MuSC) function is unclear. Here we show that CMA is necessary for MuSC regenerative capacity throughout life. Genetic loss of CMA in young MuSCs, or failure of CMA in aged MuSCs, causes proliferative impairment resulting in defective skeletal muscle regeneration. Using comparative proteomics to identify CMA substrates, we find that actin cytoskeleton organization and glycolytic metabolism are key processes altered in aged murine and human MuSCs. CMA reactivation and glycolysis enhancement restore the proliferative capacity of aged mouse and human MuSCs, and improve their regenerative ability. Overall, our results show that CMA is a decisive stem cell-fate regulator, with implications in fostering muscle regeneration in old age. Age-related decline of chaperone-mediated autophagy blunts the regenerative capacity of muscle stem cells, partly due to impaired glycolytic shift required for normal stem cell expansion.
蛋白质平衡支持干细胞的干性,它的丧失与多种干细胞类型的功能下降有关。伴侣介导的自噬(CMA)是一种选择性自噬途径,与蛋白质稳态有关,但它是否在肌肉干细胞(MuSC)功能中起作用尚不清楚。在这里,我们表明CMA是整个生命中MuSC再生能力所必需的。年轻肌细胞中CMA的遗传缺失,或老年肌细胞中CMA的失效,会导致增殖性损伤,导致骨骼肌再生缺陷。使用比较蛋白质组学鉴定CMA底物,我们发现肌动蛋白细胞骨架组织和糖酵解代谢是衰老小鼠和人类musc改变的关键过程。CMA再激活和糖酵解增强可恢复老年小鼠和人MuSCs的增殖能力,提高其再生能力。总的来说,我们的研究结果表明,CMA是一个决定性的干细胞命运调节剂,具有促进老年肌肉再生的意义。
{"title":"Chaperone-mediated autophagy sustains muscle stem cell regenerative functions but declines with age","authors":"Ignacio Ramírez-Pardo, Silvia Campanario, Bhakti Chavda, Olaya Santiago-Fernández, Marta Flández, Mercedes Grima-Terrén, Andrés Cisneros, Aina Calls-Cobos, Daniel N. Itzhak, Bryan Ngo, Sudha Janaki-Raman, Edward D. Kantz, Laura Ortet, Antonio Diaz, Kristen Lindenau, Julio Doménech-Fernández, Mari Carmen Gómez-Cabrera, Emilio Camafeita, Jesús Vázquez, Marta Martinez-Vicente, Antonio L. Serrano, Eusebio Perdiguero, Joan Isern, Ana Maria Cuervo, Pura Muñoz-Cánoves","doi":"10.1038/s42255-025-01411-w","DOIUrl":"10.1038/s42255-025-01411-w","url":null,"abstract":"Proteostasis supports stemness, and its loss correlates with the functional decline of diverse stem cell types. Chaperone-mediated autophagy (CMA) is a selective autophagy pathway implicated in proteostasis, but whether it plays a role in muscle stem cell (MuSC) function is unclear. Here we show that CMA is necessary for MuSC regenerative capacity throughout life. Genetic loss of CMA in young MuSCs, or failure of CMA in aged MuSCs, causes proliferative impairment resulting in defective skeletal muscle regeneration. Using comparative proteomics to identify CMA substrates, we find that actin cytoskeleton organization and glycolytic metabolism are key processes altered in aged murine and human MuSCs. CMA reactivation and glycolysis enhancement restore the proliferative capacity of aged mouse and human MuSCs, and improve their regenerative ability. Overall, our results show that CMA is a decisive stem cell-fate regulator, with implications in fostering muscle regeneration in old age. Age-related decline of chaperone-mediated autophagy blunts the regenerative capacity of muscle stem cells, partly due to impaired glycolytic shift required for normal stem cell expansion.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2571-2588"},"PeriodicalIF":20.8,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fat sensory cues in early life program central response to food and obesity 早期生活中的脂肪感官提示程序对食物和肥胖的中枢反应。
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-01 DOI: 10.1038/s42255-025-01405-8
Laura Casanueva Reimon, Ayden Gouveia, André Carvalho, Joscha N. Schmehr, Mouna El Mehdi, Rolando D. Moreira-Soto, Carlos G. Ardanaz, Janice Bulk, Lionel Rigoux, Paul Klemm, Anna Lena Cremer, Frederik Dethloff, Yvonne Hinze, Heiko Backes, Patrick Giavalisco, Sophie M. Steculorum
Maternal obesity predisposes offspring to metabolic diseases. Here, we show that non-nutritive sensory components of a high-fat diet (HFD), beyond its hypercaloric, obesogenic effects, are sufficient to alter metabolic health in the offspring. To dissociate the caloric and sensory components of HFD, we fed dams a bacon-flavoured diet, isonutritional to a normal chow diet but enriched with fat-related odours. Offspring exposed to these fat-related odours during development display metabolic inflexibility and increased adiposity when fed HFD in adulthood independently of maternal metabolic health. Developmental exposure to fat-related odours shifts mesolimbic dopaminergic circuits and Agouti-related peptide (AgRP) hunger neurons’ responses to phenocopy those of obese mice, including a desensitization of AgRP neurons to dietary fat. While neither neonatal optogenetic activation of sensory circuits nor passive exposure to fat-related odours is sufficient to alter metabolic responses to HFD, coupling optogenetic stimulation of sensory circuits with caloric intake exacerbates obesity. Collectively, we report that fat-related sensory cues during development act as signals that can prime central responses to food cues and whole-body metabolism regulation. Non-nutritive sensory components of high-fat diet, such as bacon flavour, are sufficient to impair metabolic health in offspring in mice.
母亲肥胖使后代易患代谢性疾病。在这里,我们表明,高脂肪饮食(HFD)的非营养感官成分,除了其高热量,致肥效应,足以改变后代的代谢健康。为了分离HFD的热量和感官成分,我们给它们喂食了培根味的食物,与正常的食物营养相同,但富含脂肪相关的气味。在发育过程中暴露于这些脂肪相关气味的后代在成年后独立于母体代谢健康而喂食HFD时表现出代谢不灵活性和肥胖增加。发育过程中暴露于脂肪相关气味会改变肥胖小鼠的中脑边缘多巴胺能回路和agouti相关肽(AgRP)饥饿神经元对肥胖小鼠的表型反应,包括AgRP神经元对饮食脂肪的脱敏。虽然新生儿光遗传激活感觉回路和被动暴露于脂肪相关气味都不足以改变对HFD的代谢反应,但光遗传刺激感觉回路与热量摄入的耦合会加剧肥胖。总的来说,我们报告了发育过程中与脂肪相关的感官信号作为信号,可以启动对食物线索和全身代谢调节的中枢反应。
{"title":"Fat sensory cues in early life program central response to food and obesity","authors":"Laura Casanueva Reimon, Ayden Gouveia, André Carvalho, Joscha N. Schmehr, Mouna El Mehdi, Rolando D. Moreira-Soto, Carlos G. Ardanaz, Janice Bulk, Lionel Rigoux, Paul Klemm, Anna Lena Cremer, Frederik Dethloff, Yvonne Hinze, Heiko Backes, Patrick Giavalisco, Sophie M. Steculorum","doi":"10.1038/s42255-025-01405-8","DOIUrl":"10.1038/s42255-025-01405-8","url":null,"abstract":"Maternal obesity predisposes offspring to metabolic diseases. Here, we show that non-nutritive sensory components of a high-fat diet (HFD), beyond its hypercaloric, obesogenic effects, are sufficient to alter metabolic health in the offspring. To dissociate the caloric and sensory components of HFD, we fed dams a bacon-flavoured diet, isonutritional to a normal chow diet but enriched with fat-related odours. Offspring exposed to these fat-related odours during development display metabolic inflexibility and increased adiposity when fed HFD in adulthood independently of maternal metabolic health. Developmental exposure to fat-related odours shifts mesolimbic dopaminergic circuits and Agouti-related peptide (AgRP) hunger neurons’ responses to phenocopy those of obese mice, including a desensitization of AgRP neurons to dietary fat. While neither neonatal optogenetic activation of sensory circuits nor passive exposure to fat-related odours is sufficient to alter metabolic responses to HFD, coupling optogenetic stimulation of sensory circuits with caloric intake exacerbates obesity. Collectively, we report that fat-related sensory cues during development act as signals that can prime central responses to food cues and whole-body metabolism regulation. Non-nutritive sensory components of high-fat diet, such as bacon flavour, are sufficient to impair metabolic health in offspring in mice.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2451-2473"},"PeriodicalIF":20.8,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01405-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145655252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial NAD+ drives liver regeneration 线粒体NAD+驱动肝脏再生
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-24 DOI: 10.1038/s42255-025-01414-7
We show that the size of the mitochondrial NAD+ pool in hepatocytes is regulated by SLC25A51 expression in vivo. We further find that selectively increasing mitochondrial NAD+ is sufficient to improve liver regeneration after partial hepatectomy, equivalent to the effect of systemic high-dose NAD+ precursor supplementation.
我们发现肝细胞线粒体NAD+池的大小受体内SLC25A51表达的调节。我们进一步发现,选择性地增加线粒体NAD+足以改善部分肝切除术后的肝脏再生,相当于全身高剂量NAD+前体补充的效果。
{"title":"Mitochondrial NAD+ drives liver regeneration","authors":"","doi":"10.1038/s42255-025-01414-7","DOIUrl":"10.1038/s42255-025-01414-7","url":null,"abstract":"We show that the size of the mitochondrial NAD+ pool in hepatocytes is regulated by SLC25A51 expression in vivo. We further find that selectively increasing mitochondrial NAD+ is sufficient to improve liver regeneration after partial hepatectomy, equivalent to the effect of systemic high-dose NAD+ precursor supplementation.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2393-2394"},"PeriodicalIF":20.8,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145582933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The metabolic engine of cognition: microglia–neuron interactions in health, ageing and disease 认知的代谢引擎:小胶质细胞与神经元在健康、衰老和疾病中的相互作用
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-21 DOI: 10.1038/s42255-025-01409-4
Evridiki Asimakidou, Stefano Pluchino, Bianca Ambrogina Silva, Luca Peruzzotti-Jametti
Cognitive impairment is associated with perturbations of fine-tuned neuroimmune interactions. At the molecular level, alterations in cellular metabolism can compromise brain function, driving structural damage and cognitive deficits. In this Review, we focus on the bidirectional interactions between microglia, the brain-resident immune cells and neurons to dissect the metabolic determinants of brain resilience and cognition. We first outline these metabolic pathways during development and adult life. Then, we delineate how these processes are perturbed in ageing, as well as in metabolic, neuroinflammatory and neurodegenerative disorders. By doing so, we provide a mechanistic understanding of the metabolic pathways relevant to cognitive function in health and disease, thus paving the way for novel therapeutic targets based on the emerging field of neuroimmunometabolism. This Review highlights how metabolic interactions between microglia and neurons shape brain health, and how their disruption in ageing and disease contributes to cognitive decline.
认知障碍与微调神经免疫相互作用的扰动有关。在分子水平上,细胞代谢的改变会损害大脑功能,导致结构损伤和认知缺陷。在这篇综述中,我们关注小胶质细胞、脑驻留免疫细胞和神经元之间的双向相互作用,以剖析脑恢复和认知的代谢决定因素。我们首先概述了这些代谢途径在发育和成年生活。然后,我们描述了这些过程如何在衰老,以及代谢,神经炎症和神经退行性疾病中受到干扰。通过这样做,我们提供了与健康和疾病中认知功能相关的代谢途径的机制理解,从而为基于新兴的神经免疫代谢领域的新治疗靶点铺平了道路。这篇综述强调了小胶质细胞和神经元之间的代谢相互作用如何影响大脑健康,以及它们在衰老和疾病中的破坏如何导致认知能力下降。
{"title":"The metabolic engine of cognition: microglia–neuron interactions in health, ageing and disease","authors":"Evridiki Asimakidou, Stefano Pluchino, Bianca Ambrogina Silva, Luca Peruzzotti-Jametti","doi":"10.1038/s42255-025-01409-4","DOIUrl":"10.1038/s42255-025-01409-4","url":null,"abstract":"Cognitive impairment is associated with perturbations of fine-tuned neuroimmune interactions. At the molecular level, alterations in cellular metabolism can compromise brain function, driving structural damage and cognitive deficits. In this Review, we focus on the bidirectional interactions between microglia, the brain-resident immune cells and neurons to dissect the metabolic determinants of brain resilience and cognition. We first outline these metabolic pathways during development and adult life. Then, we delineate how these processes are perturbed in ageing, as well as in metabolic, neuroinflammatory and neurodegenerative disorders. By doing so, we provide a mechanistic understanding of the metabolic pathways relevant to cognitive function in health and disease, thus paving the way for novel therapeutic targets based on the emerging field of neuroimmunometabolism. This Review highlights how metabolic interactions between microglia and neurons shape brain health, and how their disruption in ageing and disease contributes to cognitive decline.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2395-2413"},"PeriodicalIF":20.8,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145559900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatocyte mitochondrial NAD+ content is limiting for liver regeneration 肝细胞线粒体NAD+含量限制肝脏再生
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-20 DOI: 10.1038/s42255-025-01408-5
Sarmistha Mukherjee, Ricardo A. Velázquez Aponte, Caroline E. Perry, Won Dong Lee, Kevin A. Janssen, Marc Niere, Gabriel K. Adzika, Mu-Jie Lu, Hsin-Ru Chan, Xiangyu Zou, Beishan Chen, Nicole Bye, Teresa Xiao, Jin-Seon Yook, Oniel Salik, David W. Frederick, Ryan B. Gaspar, Khanh V. Doan, James G. Davis, Joshua D. Rabinowitz, Douglas C. Wallace, Nathaniel W. Snyder, Shingo Kajimura, Xiaolu A. Cambronne, Mathias Ziegler, Joseph A. Baur
Nicotinamide adenine dinucleotide (NAD+) precursor supplementation shows metabolic and functional benefits in rodent models of disease and is being explored as potential therapeutic strategy in humans. However, the wide range of processes that involve NAD+ in every cell and subcellular compartment make it difficult to narrow down the mechanisms of action. Here we show that the rate of liver regeneration is closely associated with the concentration of NAD+ in hepatocyte mitochondria. We find that the mitochondrial NAD+ concentration in hepatocytes of male mice is determined by the expression of the transporter SLC25A51 (MCART1). The heterozygous loss of SLC25A51 modestly decreases mitochondrial NAD+ content in multiple tissues and impairs liver regeneration, whereas the hepatocyte-specific overexpression of SLC25A51 is sufficient to enhance liver regeneration comparably to the effect of systemic NAD+ precursor supplements. This benefit is observed even though NAD+ levels are increased only in mitochondria. Thus, the hepatocyte mitochondrial NAD+ pool is a key determinant of the rate of liver regeneration. Modulating mitochondrial NAD+ levels by changing the expression of the mitochondrial NAD+ transporter, SLC25A51, Mukherjee et al. demonstrate that mitochondrial, rather than cytosolic or nuclear, NAD+ levels are a key determinant of the rate of liver regeneration.
烟酰胺腺嘌呤二核苷酸(NAD +)前体补充在啮齿动物疾病模型中显示出代谢和功能益处,并且正在探索作为人类潜在的治疗策略。然而,涉及NAD +在每个细胞和亚细胞区室的广泛过程使其难以缩小作用机制。在这里,我们发现肝脏再生的速度与肝细胞线粒体中NAD +的浓度密切相关。我们发现雄性小鼠肝细胞线粒体NAD +浓度是由转运体SLC25A51 (MCART1)的表达决定的。SLC25A51的杂合缺失会适度降低多种组织中线粒体NAD +含量并损害肝脏再生,而肝细胞特异性过表达SLC25A51足以增强肝脏再生,其效果与全身补充NAD +前体的效果相当。即使NAD +水平仅在线粒体中增加,也能观察到这种益处。因此,肝细胞线粒体NAD +池是肝脏再生速率的关键决定因素。
{"title":"Hepatocyte mitochondrial NAD+ content is limiting for liver regeneration","authors":"Sarmistha Mukherjee, Ricardo A. Velázquez Aponte, Caroline E. Perry, Won Dong Lee, Kevin A. Janssen, Marc Niere, Gabriel K. Adzika, Mu-Jie Lu, Hsin-Ru Chan, Xiangyu Zou, Beishan Chen, Nicole Bye, Teresa Xiao, Jin-Seon Yook, Oniel Salik, David W. Frederick, Ryan B. Gaspar, Khanh V. Doan, James G. Davis, Joshua D. Rabinowitz, Douglas C. Wallace, Nathaniel W. Snyder, Shingo Kajimura, Xiaolu A. Cambronne, Mathias Ziegler, Joseph A. Baur","doi":"10.1038/s42255-025-01408-5","DOIUrl":"10.1038/s42255-025-01408-5","url":null,"abstract":"Nicotinamide adenine dinucleotide (NAD+) precursor supplementation shows metabolic and functional benefits in rodent models of disease and is being explored as potential therapeutic strategy in humans. However, the wide range of processes that involve NAD+ in every cell and subcellular compartment make it difficult to narrow down the mechanisms of action. Here we show that the rate of liver regeneration is closely associated with the concentration of NAD+ in hepatocyte mitochondria. We find that the mitochondrial NAD+ concentration in hepatocytes of male mice is determined by the expression of the transporter SLC25A51 (MCART1). The heterozygous loss of SLC25A51 modestly decreases mitochondrial NAD+ content in multiple tissues and impairs liver regeneration, whereas the hepatocyte-specific overexpression of SLC25A51 is sufficient to enhance liver regeneration comparably to the effect of systemic NAD+ precursor supplements. This benefit is observed even though NAD+ levels are increased only in mitochondria. Thus, the hepatocyte mitochondrial NAD+ pool is a key determinant of the rate of liver regeneration. Modulating mitochondrial NAD+ levels by changing the expression of the mitochondrial NAD+ transporter, SLC25A51, Mukherjee et al. demonstrate that mitochondrial, rather than cytosolic or nuclear, NAD+ levels are a key determinant of the rate of liver regeneration.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2424-2437"},"PeriodicalIF":20.8,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01408-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145554404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glycerol-3-phosphate activates ChREBP, FGF21 transcription and lipogenesis in citrin deficiency 甘油-3-磷酸激活ChREBP, FGF21转录和脂肪生成
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-14 DOI: 10.1038/s42255-025-01399-3
Vinod Tiwari, Byungchang Jin, Olivia Sun, Edwin D. J. Lopez Gonzalez, Min-Hsuan Chen, Xiwei Wu, Hardik Shah, Andrew Zhang, Mark A. Herman, Cassandra N. Spracklen, Russell P. Goodman, Charles Brenner
Citrin deficiency (CD) is caused by the inactivation of SLC25A13, a mitochondrial membrane protein required to move electrons from cytosolic NADH to the mitochondrial matrix in hepatocytes. People with CD do not like sweets. Here we show that SLC25A13 loss causes the accumulation of glycerol-3-phosphate (G3P), which activates the carbohydrate response element-binding protein (ChREBP) to transcribe FGF21, which acts in the brain to restrain intake of sweets and alcohol and to transcribe key genes driving lipogenesis. Mouse and human data suggest that G3P–ChREBP is a mechanistic component of the Randle Cycle that contributes to metabolic-dysfunction-associated steatotic liver disease and forms part of a system that communicates metabolic states from the liver to the brain in a manner that alters food and alcohol choices. The data provide a framework for understanding FGF21 induction in varied conditions, suggest ways to develop FGF21-inducing drugs and suggest potential drug candidates for lean metabolic-dysfunction-associated steatotic liver disease and support of urea cycle function in CD. In a mouse model of the rare disease citrin deficiency, the authors discovered that the accumulation of glycerol-3-phosphate leads to ChREBP activation and FGF21 induction. The study identifies glycerol-3-phosphate as a ChREBP-activating ligand, which could resolve paradoxes of FGF21 expression and clarify the logic of lipogenic transcription.
Citrin缺乏症(CD)是由SLC25A13失活引起的,SLC25A13是一种线粒体膜蛋白,需要将电子从细胞质NADH转移到肝细胞的线粒体基质中。乳糜泻患者不喜欢甜食。本研究表明,SLC25A13缺失导致甘油-3-磷酸(G3P)积累,G3P激活碳水化合物反应元件结合蛋白(ChREBP)转录FGF21, FGF21在大脑中抑制糖和酒精的摄入,并转录驱动脂肪生成的关键基因。小鼠和人类数据表明,G3P-ChREBP是Randle循环的一个机制组成部分,有助于代谢功能障碍相关的脂肪变性肝病,并形成一个系统的一部分,该系统以改变食物和酒精选择的方式将代谢状态从肝脏传递到大脑。这些数据为理解FGF21在不同条件下的诱导提供了一个框架,为开发FGF21诱导药物提供了方法,并为瘦代谢功能障碍相关的脂肪变性肝病和支持CD中的尿素循环功能提供了潜在的候选药物。在罕见疾病柠檬素缺乏症的小鼠模型中,作者发现甘油-3-磷酸的积累导致ChREBP激活和FGF21诱导。该研究确定甘油-3-磷酸是一个激活chrebp的配体,这可以解决FGF21表达的悖论,并阐明脂肪生成转录的逻辑。
{"title":"Glycerol-3-phosphate activates ChREBP, FGF21 transcription and lipogenesis in citrin deficiency","authors":"Vinod Tiwari, Byungchang Jin, Olivia Sun, Edwin D. J. Lopez Gonzalez, Min-Hsuan Chen, Xiwei Wu, Hardik Shah, Andrew Zhang, Mark A. Herman, Cassandra N. Spracklen, Russell P. Goodman, Charles Brenner","doi":"10.1038/s42255-025-01399-3","DOIUrl":"10.1038/s42255-025-01399-3","url":null,"abstract":"Citrin deficiency (CD) is caused by the inactivation of SLC25A13, a mitochondrial membrane protein required to move electrons from cytosolic NADH to the mitochondrial matrix in hepatocytes. People with CD do not like sweets. Here we show that SLC25A13 loss causes the accumulation of glycerol-3-phosphate (G3P), which activates the carbohydrate response element-binding protein (ChREBP) to transcribe FGF21, which acts in the brain to restrain intake of sweets and alcohol and to transcribe key genes driving lipogenesis. Mouse and human data suggest that G3P–ChREBP is a mechanistic component of the Randle Cycle that contributes to metabolic-dysfunction-associated steatotic liver disease and forms part of a system that communicates metabolic states from the liver to the brain in a manner that alters food and alcohol choices. The data provide a framework for understanding FGF21 induction in varied conditions, suggest ways to develop FGF21-inducing drugs and suggest potential drug candidates for lean metabolic-dysfunction-associated steatotic liver disease and support of urea cycle function in CD. In a mouse model of the rare disease citrin deficiency, the authors discovered that the accumulation of glycerol-3-phosphate leads to ChREBP activation and FGF21 induction. The study identifies glycerol-3-phosphate as a ChREBP-activating ligand, which could resolve paradoxes of FGF21 expression and clarify the logic of lipogenic transcription.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 11","pages":"2284-2299"},"PeriodicalIF":20.8,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01399-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145509020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uridine-sensitized screening identifies demethoxy-coenzyme Q and NUDT5 as regulators of nucleotide synthesis 尿嘧啶敏化筛选鉴定脱氧氧基辅酶Q和NUDT5作为核苷酸合成的调节因子
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-13 DOI: 10.1038/s42255-025-01419-2
Abigail Strefeler, Zakery N. Baker, Sylvain Chollet, Mads M. Foged, Rachel M. Guerra, Julijana Ivanisevic, Hector Gallart-Ayala, David J. Pagliarini, Alexis A. Jourdain
Rapidly proliferating cells require large amounts of nucleotides, making nucleotide metabolism a widely exploited therapeutic target against cancer, autoinflammatory disorders and viral infections. However, regulation of nucleotide metabolism remains incompletely understood. Here, we reveal regulators of de novo pyrimidine synthesis. Using uridine-sensitized CRISPR-Cas9 screening, we show that coenzyme Q (CoQ) is dispensable for pyrimidine synthesis, in the presence of the demethoxy-CoQ intermediate as alternative electron acceptor. We further report that the ADP-ribose pyrophosphatase NUDT5 directly binds PPAT, the rate-limiting enzyme in purine synthesis, which inhibits its activity and preserves the phosphoribosyl pyrophosphate (PRPP) pool. In the absence of NUDT5, hyperactive purine synthesis exhausts the PRPP pool at the expense of pyrimidine synthesis, which promotes resistance to purine and pyrimidine nucleobase analogues. Of note, the interaction between NUDT5 and PPAT is disrupted by PRPP, highlighting an intricate allosteric regulation. Overall, our findings reveal a fundamental mechanism of nucleotide balance and position NUDT5 as a regulator of nucleobase analogue metabolism. A uridine-sensitized CRISPR-Cas9 screening identifies demethoxy-CoQ as an alternative electron acceptor in the absence of CoQ, and NUDT5 as a regulator of de novo pyrimidine synthesis via its interaction with PPAT.
快速增殖的细胞需要大量的核苷酸,这使得核苷酸代谢成为治疗癌症、自身炎症性疾病和病毒感染的广泛靶点。然而,对核苷酸代谢的调控仍不完全了解。在这里,我们揭示了重新合成嘧啶的调节因子。利用尿嘧啶致敏CRISPR-Cas9筛选,我们发现辅酶Q (CoQ)在嘧啶合成中是必不可少的,在脱氧辅酶Q中间体作为替代电子受体存在的情况下。我们进一步报道adp核糖焦磷酸酶NUDT5直接结合嘌呤合成限速酶PPAT,抑制其活性并保留磷酸核糖焦磷酸(PRPP)库。在缺少NUDT5的情况下,过度活跃的嘌呤合成以牺牲嘧啶合成为代价耗尽PRPP库,从而促进对嘌呤和嘧啶核碱基类似物的抗性。值得注意的是,NUDT5和PPAT之间的相互作用被PRPP破坏,突出了复杂的变构调节。总之,我们的研究结果揭示了核苷酸平衡的基本机制,并将NUDT5定位为核碱基类似物代谢的调节剂。
{"title":"Uridine-sensitized screening identifies demethoxy-coenzyme Q and NUDT5 as regulators of nucleotide synthesis","authors":"Abigail Strefeler, Zakery N. Baker, Sylvain Chollet, Mads M. Foged, Rachel M. Guerra, Julijana Ivanisevic, Hector Gallart-Ayala, David J. Pagliarini, Alexis A. Jourdain","doi":"10.1038/s42255-025-01419-2","DOIUrl":"10.1038/s42255-025-01419-2","url":null,"abstract":"Rapidly proliferating cells require large amounts of nucleotides, making nucleotide metabolism a widely exploited therapeutic target against cancer, autoinflammatory disorders and viral infections. However, regulation of nucleotide metabolism remains incompletely understood. Here, we reveal regulators of de novo pyrimidine synthesis. Using uridine-sensitized CRISPR-Cas9 screening, we show that coenzyme Q (CoQ) is dispensable for pyrimidine synthesis, in the presence of the demethoxy-CoQ intermediate as alternative electron acceptor. We further report that the ADP-ribose pyrophosphatase NUDT5 directly binds PPAT, the rate-limiting enzyme in purine synthesis, which inhibits its activity and preserves the phosphoribosyl pyrophosphate (PRPP) pool. In the absence of NUDT5, hyperactive purine synthesis exhausts the PRPP pool at the expense of pyrimidine synthesis, which promotes resistance to purine and pyrimidine nucleobase analogues. Of note, the interaction between NUDT5 and PPAT is disrupted by PRPP, highlighting an intricate allosteric regulation. Overall, our findings reveal a fundamental mechanism of nucleotide balance and position NUDT5 as a regulator of nucleobase analogue metabolism. A uridine-sensitized CRISPR-Cas9 screening identifies demethoxy-CoQ as an alternative electron acceptor in the absence of CoQ, and NUDT5 as a regulator of de novo pyrimidine synthesis via its interaction with PPAT.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 11","pages":"2221-2235"},"PeriodicalIF":20.8,"publicationDate":"2025-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01419-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145498181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impaired cAMP–PKA–CREB1 signalling drives mitochondrial dysfunction in skeletal muscle during cancer cachexia 受损的cAMP-PKA-CREB1信号驱动癌症恶病质期间骨骼肌线粒体功能障碍
IF 20.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-11-12 DOI: 10.1038/s42255-025-01397-5
Elia Angelino, Lorenza Bodo, Roberta Sartori, Valeria Malacarne, Beatrice D’Anna, Nicolò Formaggio, Suvham Barua, Tommaso Raiteri, Andrea Lauria, Simone Reano, Alessandra Murabito, Monica Nicolau, Fabiana Ferrero, Camilla Pezzini, Giulia Rossino, Francesco Favero, Michele Valmasoni, Nicoletta Filigheddu, Alessio Menga, Davide Corà, Emilio Hirsch, Salvatore Oliviero, Vittorio Sartorelli, Valentina Proserpio, Alessandra Ghigo, Marco Sandri, Paolo E. Porporato, Daniela Talarico, Giuseppina Caretti, Andrea Graziani
Skeletal muscle wasting is a defining feature of cancer cachexia, a multifactorial syndrome that drastically compromises patient quality of life and treatment outcomes. Mitochondrial dysfunction is a major contributor to skeletal muscle wasting in cancer cachexia, yet the upstream molecular drivers remain elusive. Here we show that cancer impairs the activity of cAMP-dependent protein kinase A (PKA) and of its transcriptional effector CREB1 in skeletal muscle, ultimately contributing to the downregulation of a core transcriptional network that supports mitochondrial integrity and function. The restoration of cAMP–PKA–CREB1 signalling through pharmacological inhibition of the cAMP-hydrolysing phosphodiesterase 4 (PDE4) rescues the expression of mitochondrial-related genes, improves mitochondrial function and mitigates skeletal muscle wasting in male mice. Altogether, our data identify tumour-induced suppression of the cAMP–PKA–CREB1 axis as a central mechanism contributing to mitochondrial dysfunction in skeletal muscle during cancer cachexia. Furthermore, these findings highlight PDE4, particularly the PDE4D isoform, as a potential therapeutic target to preserve muscle mitochondrial function and counteract muscle wasting in cancer cachexia. Tumour-induced dysregulation of cAMP–PKA–CREB1 signalling in skeletal muscle is shown to be a driver of mitochondrial dysfunction, contributing to cancer cachexia in mice.
骨骼肌萎缩是癌症恶病质的一个决定性特征,这是一种多因素综合征,严重影响患者的生活质量和治疗结果。线粒体功能障碍是癌症恶病质中骨骼肌萎缩的主要因素,但上游分子驱动因素尚不明确。本研究表明,癌症损害骨骼肌中camp依赖性蛋白激酶A (PKA)及其转录效应物CREB1的活性,最终导致支持线粒体完整性和功能的核心转录网络下调。通过药理学抑制camp -水解磷酸二酯酶4 (PDE4)恢复cAMP-PKA-CREB1信号通路,可以挽救线粒体相关基因的表达,改善线粒体功能,减轻雄性小鼠骨骼肌萎缩。总之,我们的数据确定肿瘤诱导的cAMP-PKA-CREB1轴的抑制是癌症恶病质期间骨骼肌线粒体功能障碍的主要机制。此外,这些发现强调了PDE4,特别是PDE4D异构体,作为一个潜在的治疗靶点,可以保护肌肉线粒体功能,抵消癌症恶病质中的肌肉萎缩。肿瘤诱导的骨骼肌cAMP-PKA-CREB1信号失调被证明是线粒体功能障碍的驱动因素,导致小鼠癌症恶病质。
{"title":"Impaired cAMP–PKA–CREB1 signalling drives mitochondrial dysfunction in skeletal muscle during cancer cachexia","authors":"Elia Angelino, Lorenza Bodo, Roberta Sartori, Valeria Malacarne, Beatrice D’Anna, Nicolò Formaggio, Suvham Barua, Tommaso Raiteri, Andrea Lauria, Simone Reano, Alessandra Murabito, Monica Nicolau, Fabiana Ferrero, Camilla Pezzini, Giulia Rossino, Francesco Favero, Michele Valmasoni, Nicoletta Filigheddu, Alessio Menga, Davide Corà, Emilio Hirsch, Salvatore Oliviero, Vittorio Sartorelli, Valentina Proserpio, Alessandra Ghigo, Marco Sandri, Paolo E. Porporato, Daniela Talarico, Giuseppina Caretti, Andrea Graziani","doi":"10.1038/s42255-025-01397-5","DOIUrl":"10.1038/s42255-025-01397-5","url":null,"abstract":"Skeletal muscle wasting is a defining feature of cancer cachexia, a multifactorial syndrome that drastically compromises patient quality of life and treatment outcomes. Mitochondrial dysfunction is a major contributor to skeletal muscle wasting in cancer cachexia, yet the upstream molecular drivers remain elusive. Here we show that cancer impairs the activity of cAMP-dependent protein kinase A (PKA) and of its transcriptional effector CREB1 in skeletal muscle, ultimately contributing to the downregulation of a core transcriptional network that supports mitochondrial integrity and function. The restoration of cAMP–PKA–CREB1 signalling through pharmacological inhibition of the cAMP-hydrolysing phosphodiesterase 4 (PDE4) rescues the expression of mitochondrial-related genes, improves mitochondrial function and mitigates skeletal muscle wasting in male mice. Altogether, our data identify tumour-induced suppression of the cAMP–PKA–CREB1 axis as a central mechanism contributing to mitochondrial dysfunction in skeletal muscle during cancer cachexia. Furthermore, these findings highlight PDE4, particularly the PDE4D isoform, as a potential therapeutic target to preserve muscle mitochondrial function and counteract muscle wasting in cancer cachexia. Tumour-induced dysregulation of cAMP–PKA–CREB1 signalling in skeletal muscle is shown to be a driver of mitochondrial dysfunction, contributing to cancer cachexia in mice.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"7 12","pages":"2548-2570"},"PeriodicalIF":20.8,"publicationDate":"2025-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42255-025-01397-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145492615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature metabolism
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1