Pub Date : 2024-04-04DOI: 10.1007/s13744-023-01121-6
Abstract
Cylindrostethus Fieber, 1861 is one of the most striking genera of water striders (Insecta: Hemiptera: Gerridae) and has Pantropical distribution. Members of this group can be recognized by the very long, cylindrical body; the short antennomere IV; the short labium not reaching the mesosternum; and by characteristics of the abdomen of males and females. Although Neotropical representatives of the genus have been revised, there are pending taxonomic issues related to this fauna, and that of the Eastern Hemisphere has been barely studied in recent years. Here, we present a short note about the authorship of Cylindrostethus, an updated key to all species of the genus, a new synonymy, and the description of a previously unknown macropterous male of C. hungerfordi Drake and Harris.
摘要 Cylindrostethus Fieber, 1861 是水黾(昆虫纲:半翅目:黾科)中最引人注目的属之一,分布于南太平洋。该类群的成员可以通过以下特征辨认出来:身体非常长,呈圆柱形;第四触角较短;唇短,未达到中胸;雌雄腹部均有特征。虽然该属在新热带地区的代表物种已被修订,但与该动物群相关的分类学问题仍悬而未决,而东半球的动物群近年来几乎未被研究。在此,我们简要介绍了 Cylindrostethus 的作者,更新了该属所有物种的检索表、新的同义词,并描述了 C. hungerfordi Drake and Harris 的一种以前未知的大型雄性。
{"title":"A synopsis of the genus Cylindrostethus Fieber 1861 (Insecta: Hemiptera: Gerridae)","authors":"","doi":"10.1007/s13744-023-01121-6","DOIUrl":"https://doi.org/10.1007/s13744-023-01121-6","url":null,"abstract":"<h3>Abstract</h3> <p><em>Cylindrostethus</em> Fieber, 1861 is one of the most striking genera of water striders (Insecta: Hemiptera: Gerridae) and has Pantropical distribution. Members of this group can be recognized by the very long, cylindrical body; the short antennomere IV; the short labium not reaching the mesosternum; and by characteristics of the abdomen of males and females. Although Neotropical representatives of the genus have been revised, there are pending taxonomic issues related to this fauna, and that of the Eastern Hemisphere has been barely studied in recent years. Here, we present a short note about the authorship of <em>Cylindrostethus</em>, an updated key to all species of the genus, a new synonymy, and the description of a previously unknown macropterous male of <em>C. hungerfordi</em> Drake and Harris.</p>","PeriodicalId":19071,"journal":{"name":"Neotropical Entomology","volume":"13 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140591602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-01-18DOI: 10.1007/s13744-023-01125-2
Victoria Lantschner, Demian F Gomez, Gimena Vilardo, Leonel Stazione, Sergio Ramos, Edgar Eskiviski, Romina Fachinetti, Marcela Schiappacassi, Natalia Vallejos, Monica Germano, José Villacide, Mariano P Grilli, Gonzalo Martinez, Rodrigo Ahumada, Sergio A Estay, Ignacio Dumois, Juan Corley
The growth of international trade, coupled with an expansion of large-scale pine plantations in South America during the second half of the twentieth century, has significantly increased the opportunities for the invasion of forest insects. Bark beetles (Coleoptera: Curculionidae, Scolytinae) are a large and diverse group of insects, commonly recognized as one of the most important tree mortality agents in coniferous forests worldwide and an important group among invasive forest species. In this study, we combined data from field sampling with published records of established non-native pine bark beetles, to describe their distribution and invasion history in pine plantations across southern South America, reviewing the available information on their phenology and host range. We obtained records of established populations of six Eurasian species distributed in two major regions: the southwest region comprises plantations in Chile and the Argentine Patagonia, with four bark beetle species: Hylastes ater, Hylastes linearis, Hylurgus ligniperda, and Orthotomicus laricis; the northeastern zone includes northeastern Argentina, Uruguay, and southern Brazil, and includes three bark beetle species: Cyrtogenius luteus, H. ligniperda, and O. erosus. The establishment of non-native populations across the study area began in the 1950s, and from the 1980s onwards, there has been an exponential increase in introductions. We predict that several of these species will continue spreading across South America and that new species will continue arriving. We highlight the importance of international collaboration for early detection and management of non-native pine bark beetles.
{"title":"Distribution, Invasion History, and Ecology of Non-native Pine Bark Beetles (Coleoptera: Curculionidae: Scolytinae) in Southern South America.","authors":"Victoria Lantschner, Demian F Gomez, Gimena Vilardo, Leonel Stazione, Sergio Ramos, Edgar Eskiviski, Romina Fachinetti, Marcela Schiappacassi, Natalia Vallejos, Monica Germano, José Villacide, Mariano P Grilli, Gonzalo Martinez, Rodrigo Ahumada, Sergio A Estay, Ignacio Dumois, Juan Corley","doi":"10.1007/s13744-023-01125-2","DOIUrl":"10.1007/s13744-023-01125-2","url":null,"abstract":"<p><p>The growth of international trade, coupled with an expansion of large-scale pine plantations in South America during the second half of the twentieth century, has significantly increased the opportunities for the invasion of forest insects. Bark beetles (Coleoptera: Curculionidae, Scolytinae) are a large and diverse group of insects, commonly recognized as one of the most important tree mortality agents in coniferous forests worldwide and an important group among invasive forest species. In this study, we combined data from field sampling with published records of established non-native pine bark beetles, to describe their distribution and invasion history in pine plantations across southern South America, reviewing the available information on their phenology and host range. We obtained records of established populations of six Eurasian species distributed in two major regions: the southwest region comprises plantations in Chile and the Argentine Patagonia, with four bark beetle species: Hylastes ater, Hylastes linearis, Hylurgus ligniperda, and Orthotomicus laricis; the northeastern zone includes northeastern Argentina, Uruguay, and southern Brazil, and includes three bark beetle species: Cyrtogenius luteus, H. ligniperda, and O. erosus. The establishment of non-native populations across the study area began in the 1950s, and from the 1980s onwards, there has been an exponential increase in introductions. We predict that several of these species will continue spreading across South America and that new species will continue arriving. We highlight the importance of international collaboration for early detection and management of non-native pine bark beetles.</p>","PeriodicalId":19071,"journal":{"name":"Neotropical Entomology","volume":" ","pages":"351-363"},"PeriodicalIF":1.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139486022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potential Ecological Interactions and Challenges for the Management of Spotted-Wing Drosophila in Recently Invaded Regions.","authors":"Flávio Roberto Mello Garcia, Eugenio Eduardo Oliveira","doi":"10.1007/s13744-024-01138-5","DOIUrl":"10.1007/s13744-024-01138-5","url":null,"abstract":"","PeriodicalId":19071,"journal":{"name":"Neotropical Entomology","volume":" ","pages":"186-188"},"PeriodicalIF":1.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139913144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-01-11DOI: 10.1007/s13744-023-01113-6
Alexandra P Krüger, Amanda M Garcez, Tiago Scheunemann, Dori E Nava, Flávio R M Garcia
In South America, the resident pupal parasitoid Trichopria anastrephae Costa Lima (Hymenoptera: Diapriidae) is a potential biological control agent of the pest Drosophila suzukii Matsumura (Diptera: Drosophilidae). In the present study, we (1) examined the behavior of T. anastrephae towards different host (D. suzukii) and host-substrate (strawberry) cues in choice and non-choice bioassays in laboratory, and (2) examined the density-dependent parasitism of T. anastrephae in D. suzukii-infested strawberries in a greenhouse. When given a choice, female parasitoids walked longer over chambers with fruits infested with eggs, larvae, or pupae of D. suzukii, when compared to healthy uninfested strawberries, and over overripe fruits when compared to unripe or ripe fruits. In the greenhouse assay, we observed an increase in parasitism and a decrease in the number of D. suzukii emerging per fruit with an increase in the number of parasitoids released. Our results allow a better understanding of the behavior and parasitism of T. anastrephae in D. suzukii-infested strawberries and provide useful data for potential biological control programs using this parasitoid.
在南美洲,常驻蛹寄生虫Trichopria anastrephae Costa Lima(膜翅目:Diapriidae)是害虫铃木果蝇(双翅目:果蝇科)的潜在生物控制剂。在本研究中,我们(1)在实验室选择和非选择生物测定中考察了T. anastrephae对不同寄主(铃木果蝇)和寄主-基质(草莓)线索的行为;(2)在温室中考察了T. anastrephae在受铃木果蝇侵害的草莓中的寄生密度。与未受铃木虫卵、幼虫或蛹侵染的健康草莓相比,雌性寄生虫在受铃木虫卵、幼虫或蛹侵染的果实上行走的时间更长;与未熟或成熟的果实相比,雌性寄生虫在过熟的果实上行走的时间更长。在温室试验中,我们观察到,随着寄生虫释放数量的增加,寄生率上升,每个果实中出现的小铃虫数量减少。我们的研究结果有助于更好地了解 T. anastrephae 在受铃木虫害的草莓中的行为和寄生情况,并为使用这种寄生虫的潜在生物防治计划提供有用的数据。
{"title":"Trichopria anastrephae as a Biological Control Agent of Drosophila suzukii in Strawberries.","authors":"Alexandra P Krüger, Amanda M Garcez, Tiago Scheunemann, Dori E Nava, Flávio R M Garcia","doi":"10.1007/s13744-023-01113-6","DOIUrl":"10.1007/s13744-023-01113-6","url":null,"abstract":"<p><p>In South America, the resident pupal parasitoid Trichopria anastrephae Costa Lima (Hymenoptera: Diapriidae) is a potential biological control agent of the pest Drosophila suzukii Matsumura (Diptera: Drosophilidae). In the present study, we (1) examined the behavior of T. anastrephae towards different host (D. suzukii) and host-substrate (strawberry) cues in choice and non-choice bioassays in laboratory, and (2) examined the density-dependent parasitism of T. anastrephae in D. suzukii-infested strawberries in a greenhouse. When given a choice, female parasitoids walked longer over chambers with fruits infested with eggs, larvae, or pupae of D. suzukii, when compared to healthy uninfested strawberries, and over overripe fruits when compared to unripe or ripe fruits. In the greenhouse assay, we observed an increase in parasitism and a decrease in the number of D. suzukii emerging per fruit with an increase in the number of parasitoids released. Our results allow a better understanding of the behavior and parasitism of T. anastrephae in D. suzukii-infested strawberries and provide useful data for potential biological control programs using this parasitoid.</p>","PeriodicalId":19071,"journal":{"name":"Neotropical Entomology","volume":" ","pages":"216-224"},"PeriodicalIF":1.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139417653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bt soybean cultivation is increasing worldwide. The Cry1Ac protein expressed in Bt soybean efficiently controls several lepidopteran pests. The stink bug, Piezodorus guildinii (Westwood), a major pest for soybean in the Americas, is not controlled by Bt crops, although possible sub-lethal effects may occur. Even if there were no negative effects for sting bug, ingesting toxins could affect its bio-controllers. We tested through ELISA detection if P. guildinii ingests Cry1Ac from Bt soybean and possible effects on its development, reproduction, survival, and feeding behavior. Biological traits were evaluated under controlled conditions of nymphs and adults feeding on pods of near-isogenic cultivars DM5958iPRO (Bt) and DM59i (non-Bt). Feeding behavior was recorded using an AC-DC electropenetrography (EPG) device. Results indicated that P. guildinii ingested the Cry1Ac protein; however, nymphal period and accumulated survival percentage did not differ between cultivars. Feeding on Bt soybean pods did not affect fecundity (i.e., number of egg masses and eggs/female) nor egg viability. Different feeding behaviors were only detected on the pathway phase (stylet penetration into plant tissue), which was more pronounced in the Bt cultivar. However, the total duration of the feeding activities on seeds was numerically higher (ca. 2X) on Bt plants compared to non-Bt. This is the first study to demonstrate that P. guildinii does ingest the Cry1Ac protein and excrete it without being absorbed, probably explaining the lack of direct adverse effects on its biological parameters. EPG could indicate that Bt soybean plants might be less palatable than non-Bt to red-banded stink bug.
{"title":"Bt Soybean Cry1Ac Does Not Affect Development, Reproduction, or Feeding Behavior of Red-Banded Stink Bug Piezodorus guildinii (Hemiptera: Pentatomidae).","authors":"Silvana Abbate, Xavier Pons, Nora Altier, Tiago Lucini, Sebastián Bonansea, Oscar Bentancur, Agustina Armand Pilón, Horacio Silva, Giuliana De Souza, Luciano Irigoyen, Antônio Ricardo Panizzi","doi":"10.1007/s13744-024-01128-7","DOIUrl":"10.1007/s13744-024-01128-7","url":null,"abstract":"<p><p>Bt soybean cultivation is increasing worldwide. The Cry1Ac protein expressed in Bt soybean efficiently controls several lepidopteran pests. The stink bug, Piezodorus guildinii (Westwood), a major pest for soybean in the Americas, is not controlled by Bt crops, although possible sub-lethal effects may occur. Even if there were no negative effects for sting bug, ingesting toxins could affect its bio-controllers. We tested through ELISA detection if P. guildinii ingests Cry1Ac from Bt soybean and possible effects on its development, reproduction, survival, and feeding behavior. Biological traits were evaluated under controlled conditions of nymphs and adults feeding on pods of near-isogenic cultivars DM5958iPRO (Bt) and DM59i (non-Bt). Feeding behavior was recorded using an AC-DC electropenetrography (EPG) device. Results indicated that P. guildinii ingested the Cry1Ac protein; however, nymphal period and accumulated survival percentage did not differ between cultivars. Feeding on Bt soybean pods did not affect fecundity (i.e., number of egg masses and eggs/female) nor egg viability. Different feeding behaviors were only detected on the pathway phase (stylet penetration into plant tissue), which was more pronounced in the Bt cultivar. However, the total duration of the feeding activities on seeds was numerically higher (ca. 2X) on Bt plants compared to non-Bt. This is the first study to demonstrate that P. guildinii does ingest the Cry1Ac protein and excrete it without being absorbed, probably explaining the lack of direct adverse effects on its biological parameters. EPG could indicate that Bt soybean plants might be less palatable than non-Bt to red-banded stink bug.</p>","PeriodicalId":19071,"journal":{"name":"Neotropical Entomology","volume":" ","pages":"415-423"},"PeriodicalIF":1.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139546956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-03-26DOI: 10.1007/s13744-024-01130-z
Ana Celia Montes de Oca-Aguilar, Martha Pilar Ibarra-López, Carlos N Ibarra-Cerdeña
In Mexico, few studies have explored how environmental conditions in tropical dry forests (TDF) influence bat fly load even though, according to climate change scenarios, this ecosystem will experience a drier and warmer climate. Such an extension of the dry season in these ecosystems could have dramatic consequences for biodiversity, particularly in regions with plains where animals do not have elevational climate shifts. The present study therefore evaluates the effect of prevailing environmental conditions during 2015-2019, as well as host body conditions, on the infestation and abundance of bat-specific ectoparasites and the composition and bat fly load in the dry season of a TDF in Yucatan. Since Yucatan has an essentially flat and low-lying topography, organisms cannot escape from the predicted extreme conditions with elevational shifts. This region is therefore an excellent location for assessment of the potential effects of warming. We collected 270 bat flies from 12 species. Three streblid species (Nycterophilia parnelli Wenzel, Trichobius johnsonae Wenzel, and Trichobius sparsus Kessel) are new records for Yucatan. Our overview of the dry season bat ectoparasite loads reveals low values of richness and prevalence, but high aggregation. Our models detected significant differences in ectoparasite infestation and abundance over the years, but the environmental and body host condition variables were unrelated to these. We report that pregnant females are parasitized to a greater extent by bat flies during the dry season, which generally represents the season of most significant nutritional stress.
{"title":"A Five-Year Study on Infestation and Abundance of Bat Flies (Hippoboscoidea: Streblidae) Under Severe Dry Season Conditions in the Tropical Dry Forest of Yucatan, Mexico.","authors":"Ana Celia Montes de Oca-Aguilar, Martha Pilar Ibarra-López, Carlos N Ibarra-Cerdeña","doi":"10.1007/s13744-024-01130-z","DOIUrl":"10.1007/s13744-024-01130-z","url":null,"abstract":"<p><p>In Mexico, few studies have explored how environmental conditions in tropical dry forests (TDF) influence bat fly load even though, according to climate change scenarios, this ecosystem will experience a drier and warmer climate. Such an extension of the dry season in these ecosystems could have dramatic consequences for biodiversity, particularly in regions with plains where animals do not have elevational climate shifts. The present study therefore evaluates the effect of prevailing environmental conditions during 2015-2019, as well as host body conditions, on the infestation and abundance of bat-specific ectoparasites and the composition and bat fly load in the dry season of a TDF in Yucatan. Since Yucatan has an essentially flat and low-lying topography, organisms cannot escape from the predicted extreme conditions with elevational shifts. This region is therefore an excellent location for assessment of the potential effects of warming. We collected 270 bat flies from 12 species. Three streblid species (Nycterophilia parnelli Wenzel, Trichobius johnsonae Wenzel, and Trichobius sparsus Kessel) are new records for Yucatan. Our overview of the dry season bat ectoparasite loads reveals low values of richness and prevalence, but high aggregation. Our models detected significant differences in ectoparasite infestation and abundance over the years, but the environmental and body host condition variables were unrelated to these. We report that pregnant females are parasitized to a greater extent by bat flies during the dry season, which generally represents the season of most significant nutritional stress.</p>","PeriodicalId":19071,"journal":{"name":"Neotropical Entomology","volume":" ","pages":"439-454"},"PeriodicalIF":1.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140294108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2023-12-22DOI: 10.1007/s13744-023-01110-9
Andrés F Velasco-Cárdenas, Jesús C Jacome-García, Diego G Pádua, Thiago G Kloss
Hymenoepimecis is a genus of Darwin wasps in the Polysphincta group of genera (Hymenoptera: Ichneumonidae: Pimplinae) known as ectoparasitoids of a broad spectrum of spiders. The parasitoid induces production of a web known as cocoon web, which provides shelter and support for the wasp pupa. In this study, we describe for the first time the interaction between Hymenoepimecis castilloi Pádua & Sääksjärvi (Hymenoptera: Ichneumonidae) and its host spider Leucauge mariana (Taczanowski) (Araneae: Tetragnathidae) in the Colombian Andes, provide new records of wasp genus distribution, and described the behavioral modifications induced in the spider. Web modifications occurred in the webs of both solitary and aggregated individuals. Adhesive spirals were lacking, and webs were connected to vegetation by multiple threads in all cocoon webs, which was not seen attached to webs of non-parasitized spiders. All parasitoid cocoons were observed hanging on a vertical line in the hub of the cocoon web. As previously described for other species, we believe that this modified web design results in increased web strength and favors parasitoid development during the pupal stage.
{"title":"Behavioral Modification of Leucauge mariana Induced by an Ichneumonid Spider-Parasitoid, Hymenoepimecis castilloi, in the Colombian Andes.","authors":"Andrés F Velasco-Cárdenas, Jesús C Jacome-García, Diego G Pádua, Thiago G Kloss","doi":"10.1007/s13744-023-01110-9","DOIUrl":"10.1007/s13744-023-01110-9","url":null,"abstract":"<p><p>Hymenoepimecis is a genus of Darwin wasps in the Polysphincta group of genera (Hymenoptera: Ichneumonidae: Pimplinae) known as ectoparasitoids of a broad spectrum of spiders. The parasitoid induces production of a web known as cocoon web, which provides shelter and support for the wasp pupa. In this study, we describe for the first time the interaction between Hymenoepimecis castilloi Pádua & Sääksjärvi (Hymenoptera: Ichneumonidae) and its host spider Leucauge mariana (Taczanowski) (Araneae: Tetragnathidae) in the Colombian Andes, provide new records of wasp genus distribution, and described the behavioral modifications induced in the spider. Web modifications occurred in the webs of both solitary and aggregated individuals. Adhesive spirals were lacking, and webs were connected to vegetation by multiple threads in all cocoon webs, which was not seen attached to webs of non-parasitized spiders. All parasitoid cocoons were observed hanging on a vertical line in the hub of the cocoon web. As previously described for other species, we believe that this modified web design results in increased web strength and favors parasitoid development during the pupal stage.</p>","PeriodicalId":19071,"journal":{"name":"Neotropical Entomology","volume":" ","pages":"364-371"},"PeriodicalIF":1.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021313/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138830732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-02-14DOI: 10.1007/s13744-024-01135-8
Fateme Shafiei, Shahnaz Shahidi-Noghabi, Ebrahim Sedaghati, Guy Smagghe
Arbuscular mycorrhizal fungi (AMF) are one of the environment-friendly organisms that enhance plant performance. AMF affect the herbivorous insect community by indirectly modifying host plant nutrient uptake, growth, and defense, also known as priming. In the current study, under greenhouse conditions, the effects of inoculating tomato seedlings with four species of AMF, i.e., Funneliformis mosseae, Rhizophagus intraradices, Rhizophagus irregularis, and Glomus iranicus, were studied in relation to tomato plant growth parameters, plant defense enzymes, and total phenol content, and additionally, the life table of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) feeding on these plants was determined. The results demonstrated that the growth parameters of tomato plants, including plant height, stem diameter, number of leaves, root volume, leaf surface area, weight of the root, and aerial organs (containing the leaves and stem), were greater and larger in the AMF-inoculated plants compared to the non-inoculated plants. Furthermore, there were higher defense enzyme activities, including peroxidase, phenylalanine ammonia lyase and polyphenol oxidase, and also higher total phenol contents in the AMF-inoculated plants. The whitefly life table characteristics were decreased in the group feeding on the AMF-inoculated plants. All together, the AMF colonization made the tomato plants more resistant against B. tabaci by improving plant growth and increasing defense enzymes. The degree of priming observed here suggests the potential of AMF to have expansive applications, including their implementation in sustainable agriculture.
{"title":"Arbuscular Mycorrhizal Fungi Inducing Tomato Plant Resistance and Its Role in Control of Bemisia tabaci Under Greenhouse Conditions.","authors":"Fateme Shafiei, Shahnaz Shahidi-Noghabi, Ebrahim Sedaghati, Guy Smagghe","doi":"10.1007/s13744-024-01135-8","DOIUrl":"10.1007/s13744-024-01135-8","url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) are one of the environment-friendly organisms that enhance plant performance. AMF affect the herbivorous insect community by indirectly modifying host plant nutrient uptake, growth, and defense, also known as priming. In the current study, under greenhouse conditions, the effects of inoculating tomato seedlings with four species of AMF, i.e., Funneliformis mosseae, Rhizophagus intraradices, Rhizophagus irregularis, and Glomus iranicus, were studied in relation to tomato plant growth parameters, plant defense enzymes, and total phenol content, and additionally, the life table of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) feeding on these plants was determined. The results demonstrated that the growth parameters of tomato plants, including plant height, stem diameter, number of leaves, root volume, leaf surface area, weight of the root, and aerial organs (containing the leaves and stem), were greater and larger in the AMF-inoculated plants compared to the non-inoculated plants. Furthermore, there were higher defense enzyme activities, including peroxidase, phenylalanine ammonia lyase and polyphenol oxidase, and also higher total phenol contents in the AMF-inoculated plants. The whitefly life table characteristics were decreased in the group feeding on the AMF-inoculated plants. All together, the AMF colonization made the tomato plants more resistant against B. tabaci by improving plant growth and increasing defense enzymes. The degree of priming observed here suggests the potential of AMF to have expansive applications, including their implementation in sustainable agriculture.</p>","PeriodicalId":19071,"journal":{"name":"Neotropical Entomology","volume":" ","pages":"424-438"},"PeriodicalIF":1.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139735693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-01-09DOI: 10.1007/s13744-023-01116-3
Leandro do Prado Ribeiro, Daian Marcos Savaris, Marcelo Salvatori, Eduardo Silva Gorayeb, Fábio Nascimento da Silva, Charles R Bartlett
Bermudagrass (Cynodon dactylon (L.) Pers., Poaceae) is one of the most important pasture grasses used in milk production systems in southern Brazil, with an increasing expansion of cultivated areas in recent years. Here, we report the first occurrence of the planthopper Metadelphax propinqua (Fieber) (Hemiptera: Delphacidae) feeding on bermudagrass in Brazil. Population outbreaks of this species were observed in January/February 2023 in a commercial hay production farm in the municipality of Chapecó, Santa Catarina State, southern Brazil. Metadelphax propinqua was found in association with three cultivars of C. dactylon (Tifton 85, Jiggs, and Vaquero). The infested plants showed leaf chlorosis and a reduced plant growth rate due to sap sucking and toxin injection as well as honeydew deposition on the leaves, which led to the development of sooty mold. In addition, this delphacid species has been reported as a vector of important pathogens to bermudagrass species and other row crops. Thus, M. propinqua is a potential pest of bermudagrass in Brazil and should be monitored to assess its establishment and behavior in Brazilian pasturelands.
{"title":"First Report of Metadelphax propinqua (Fieber) (Hemiptera: Delphacidae) Feeding on Bermudagrass in Brazil.","authors":"Leandro do Prado Ribeiro, Daian Marcos Savaris, Marcelo Salvatori, Eduardo Silva Gorayeb, Fábio Nascimento da Silva, Charles R Bartlett","doi":"10.1007/s13744-023-01116-3","DOIUrl":"10.1007/s13744-023-01116-3","url":null,"abstract":"<p><p>Bermudagrass (Cynodon dactylon (L.) Pers., Poaceae) is one of the most important pasture grasses used in milk production systems in southern Brazil, with an increasing expansion of cultivated areas in recent years. Here, we report the first occurrence of the planthopper Metadelphax propinqua (Fieber) (Hemiptera: Delphacidae) feeding on bermudagrass in Brazil. Population outbreaks of this species were observed in January/February 2023 in a commercial hay production farm in the municipality of Chapecó, Santa Catarina State, southern Brazil. Metadelphax propinqua was found in association with three cultivars of C. dactylon (Tifton 85, Jiggs, and Vaquero). The infested plants showed leaf chlorosis and a reduced plant growth rate due to sap sucking and toxin injection as well as honeydew deposition on the leaves, which led to the development of sooty mold. In addition, this delphacid species has been reported as a vector of important pathogens to bermudagrass species and other row crops. Thus, M. propinqua is a potential pest of bermudagrass in Brazil and should be monitored to assess its establishment and behavior in Brazilian pasturelands.</p>","PeriodicalId":19071,"journal":{"name":"Neotropical Entomology","volume":" ","pages":"455-459"},"PeriodicalIF":1.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139403777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-01-09DOI: 10.1007/s13744-023-01124-3
Fábio Luis Galvão-Silva, Alexandre Santos Araújo, Vanessa Simões Dias, Antonio Souza do Nascimento, Iara Sordi Joachim-Bravo
Anastrepha fraterculus (Wiedemann) and A. obliqua (Macquart) are important pests of fruit crops. In Brazil, these species cause damage to fruit growing in the South (annual average temperature of 20.9 °C) and Northeast (average yearly temperature of 24 °C). We evaluated the effect of temperature on the viability and development time of A. fraterculus and A. obliqua immature stages in their respective preferred hosts, guava (Psidium guajava L., Myrtaceae) and mango (Mangifera indica L., Anacardiaceae). The duration of egg and pupal stages, egg to pre-pupa, and viability of egg and pupal stages under different temperatures (15, 20, 25, 30, and 35 °C) were assessed. For both species, development time decreased with increasing temperature. Viability in the evaluated stages was only observed between 15 and 30 °C. However, the species responded differently to the exposure temperatures (15 and 30 °C), especially in the pupal stage and from egg to pre-pupa. Anastrepha fraterculus showed a lower tolerance to high temperatures, especially in the pupal stage and from egg to pre-pupa, which may explain its lower importance and economic impact in warmer Brazilian regions. Anastrepha obliqua had a lower tolerance at 15 °C, indicating greater adequacy for temperatures above 20 °C, characteristic of Northeast Brazil, suggesting the capacity to spread to cooler areas with rising temperatures.
Anastrepha fraterculus (Wiedemann) 和 A. obliqua (Macquart) 是水果作物的重要害虫。在巴西,这些害虫会对南部(年平均气温 20.9 °C)和东北部(年平均气温 24 °C)的水果造成危害。我们评估了温度对 A. fraterculus 和 A. obliqua 在其各自偏好的寄主番石榴(桃金娘科植物)和芒果(芒果科植物)中未成熟阶段的存活率和发育时间的影响。评估了不同温度(15、20、25、30 和 35 °C)下卵和蛹期的持续时间、卵到前蛹期的持续时间以及卵和蛹期的存活率。对于两种昆虫来说,发育时间都随着温度的升高而缩短。只有在 15 和 30 °C之间才能观察到所评估阶段的存活率。然而,两个物种对暴露温度(15 和 30 °C)的反应不同,尤其是在蛹期和从卵到蛹前期。翅果蝇(Anastrepha fraterculus)对高温的耐受性较低,尤其是在蛹期和从卵到蛹前的阶段,这可能是其在巴西温暖地区重要性和经济影响较低的原因。Anastrepha obliqua 对 15 ° C 的耐受性较低,这表明它更适合 20 ° C 以上的温度(巴西东北部的特点),这表明它有能力随着温度的升高扩散到温度较低的地区。
{"title":"Responses of two Anastrepha species' immature stages infesting preferential hosts to different temperature exposures.","authors":"Fábio Luis Galvão-Silva, Alexandre Santos Araújo, Vanessa Simões Dias, Antonio Souza do Nascimento, Iara Sordi Joachim-Bravo","doi":"10.1007/s13744-023-01124-3","DOIUrl":"10.1007/s13744-023-01124-3","url":null,"abstract":"<p><p>Anastrepha fraterculus (Wiedemann) and A. obliqua (Macquart) are important pests of fruit crops. In Brazil, these species cause damage to fruit growing in the South (annual average temperature of 20.9 °C) and Northeast (average yearly temperature of 24 °C). We evaluated the effect of temperature on the viability and development time of A. fraterculus and A. obliqua immature stages in their respective preferred hosts, guava (Psidium guajava L., Myrtaceae) and mango (Mangifera indica L., Anacardiaceae). The duration of egg and pupal stages, egg to pre-pupa, and viability of egg and pupal stages under different temperatures (15, 20, 25, 30, and 35 °C) were assessed. For both species, development time decreased with increasing temperature. Viability in the evaluated stages was only observed between 15 and 30 °C. However, the species responded differently to the exposure temperatures (15 and 30 °C), especially in the pupal stage and from egg to pre-pupa. Anastrepha fraterculus showed a lower tolerance to high temperatures, especially in the pupal stage and from egg to pre-pupa, which may explain its lower importance and economic impact in warmer Brazilian regions. Anastrepha obliqua had a lower tolerance at 15 °C, indicating greater adequacy for temperatures above 20 °C, characteristic of Northeast Brazil, suggesting the capacity to spread to cooler areas with rising temperatures.</p>","PeriodicalId":19071,"journal":{"name":"Neotropical Entomology","volume":" ","pages":"342-350"},"PeriodicalIF":1.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139403778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}