首页 > 最新文献

Nature Reviews Materials最新文献

英文 中文
Author Correction: Dielectric breakdown of oxide films in electronic devices 作者更正:电子设备中氧化膜的介电击穿
IF 79.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-30 DOI: 10.1038/s41578-024-00752-4
Andrea Padovani, Paolo La Torraca, Jack Strand, Luca Larcher, Alexander L. Shluger
{"title":"Author Correction: Dielectric breakdown of oxide films in electronic devices","authors":"Andrea Padovani, Paolo La Torraca, Jack Strand, Luca Larcher, Alexander L. Shluger","doi":"10.1038/s41578-024-00752-4","DOIUrl":"10.1038/s41578-024-00752-4","url":null,"abstract":"","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 1","pages":"79-79"},"PeriodicalIF":79.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41578-024-00752-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two anions are better than one 两个阴离子比一个好
IF 79.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-28 DOI: 10.1038/s41578-024-00751-5
Giulia Pacchioni
An article in Nature Materials demonstrates that the use of dual-anion sublattices in solid-state electrolytes results in superior ionic conductivity and good cycling stability.
自然-材料》(Nature Materials)杂志上的一篇文章表明,在固态电解质中使用双阴离子亚晶格可获得卓越的离子电导率和良好的循环稳定性。
{"title":"Two anions are better than one","authors":"Giulia Pacchioni","doi":"10.1038/s41578-024-00751-5","DOIUrl":"10.1038/s41578-024-00751-5","url":null,"abstract":"An article in Nature Materials demonstrates that the use of dual-anion sublattices in solid-state electrolytes results in superior ionic conductivity and good cycling stability.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 12","pages":"842-842"},"PeriodicalIF":79.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mid-air capture of rocket booster towards reusable rocket technology 火箭助推器的空中捕获,实现可重复使用火箭技术
IF 79.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-23 DOI: 10.1038/s41578-024-00748-0
Charlotte Allard
{"title":"Mid-air capture of rocket booster towards reusable rocket technology","authors":"Charlotte Allard","doi":"10.1038/s41578-024-00748-0","DOIUrl":"10.1038/s41578-024-00748-0","url":null,"abstract":"","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 11","pages":"767-767"},"PeriodicalIF":79.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Search for signs of life on Jupiter’s moon Europa 寻找木星卫星木卫二上的生命迹象
IF 79.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-23 DOI: 10.1038/s41578-024-00749-z
Charlotte Allard
{"title":"Search for signs of life on Jupiter’s moon Europa","authors":"Charlotte Allard","doi":"10.1038/s41578-024-00749-z","DOIUrl":"10.1038/s41578-024-00749-z","url":null,"abstract":"","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 11","pages":"768-768"},"PeriodicalIF":79.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing shock events in materials 可视化材料中的冲击事件
IF 79.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-22 DOI: 10.1038/s41578-024-00746-2
Ariane Vartanian
An article in Nature Communications uses mechanophores to visualize shockwaves, induced by high-velocity impacts, in a block copolymer.
自然-通讯》(Nature Communications)杂志上的一篇文章利用机械波来观察嵌段共聚物在高速撞击下产生的冲击波。
{"title":"Visualizing shock events in materials","authors":"Ariane Vartanian","doi":"10.1038/s41578-024-00746-2","DOIUrl":"10.1038/s41578-024-00746-2","url":null,"abstract":"An article in Nature Communications uses mechanophores to visualize shockwaves, induced by high-velocity impacts, in a block copolymer.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 11","pages":"764-764"},"PeriodicalIF":79.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding tissue biomechanics using conformable electronic devices 利用可适配电子设备解码组织生物力学
IF 79.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-21 DOI: 10.1038/s41578-024-00729-3
Hyeokjun Yoon, Jin-Hoon Kim, David Sadat, Arjun Barrett, Seung Hwan Ko, Canan Dagdeviren
Understanding the human body’s tissue biomechanics — the physical deformation and variations in intrinsic mechanical properties — has considerable potential in health monitoring, disease diagnosis and bioengineering. However, current tools for decoding tissue biomechanics rely on rigid and bulky devices that are not compatible with biological tissues. Such a discrepancy results in inaccurate measurement and even pain and discomfort for the subjects undergoing the measurement. To overcome the limitations of current tools, conformable electronic devices have been developed for monitoring internal and external tissue biomechanics. Moreover, by adopting advanced machine-learning approaches, more insights can be gained from the collected data. In this Review, we provide a comprehensive overview of conformable electronic devices for tissue biomechanics decoding. We discuss basic principles for external and internal tissue decoding, focusing on electromechanical transduction for external tissue decoding and on ultrasonography for internal tissue decoding. Then, we highlight various data analysis methods, including machine-learning algorithms. Finally, we outline challenges and future directions. Tissue biomechanics provides essential biological information that is important for various biomedical applications. This Review discusses the potential of conformable electronic devices for decoding tissue biomechanics, focusing on different decoding principles, data analysis methods and relevant application examples.
了解人体组织的生物力学(物理变形和内在机械特性的变化)在健康监测、疾病诊断和生物工程方面具有相当大的潜力。然而,目前解码组织生物力学的工具依赖于与生物组织不兼容的坚硬而笨重的设备。这种差异会导致测量结果不准确,甚至给测量对象带来疼痛和不适。为了克服现有工具的局限性,人们开发出了用于监测内部和外部组织生物力学的适形电子设备。此外,通过采用先进的机器学习方法,还可以从收集到的数据中获得更多见解。在本综述中,我们将全面概述用于组织生物力学解码的可适形电子设备。我们讨论了外部和内部组织解码的基本原理,重点是外部组织解码的机电传导和内部组织解码的超声波技术。然后,我们重点介绍各种数据分析方法,包括机器学习算法。最后,我们概述了面临的挑战和未来的发展方向。
{"title":"Decoding tissue biomechanics using conformable electronic devices","authors":"Hyeokjun Yoon, Jin-Hoon Kim, David Sadat, Arjun Barrett, Seung Hwan Ko, Canan Dagdeviren","doi":"10.1038/s41578-024-00729-3","DOIUrl":"10.1038/s41578-024-00729-3","url":null,"abstract":"Understanding the human body’s tissue biomechanics — the physical deformation and variations in intrinsic mechanical properties — has considerable potential in health monitoring, disease diagnosis and bioengineering. However, current tools for decoding tissue biomechanics rely on rigid and bulky devices that are not compatible with biological tissues. Such a discrepancy results in inaccurate measurement and even pain and discomfort for the subjects undergoing the measurement. To overcome the limitations of current tools, conformable electronic devices have been developed for monitoring internal and external tissue biomechanics. Moreover, by adopting advanced machine-learning approaches, more insights can be gained from the collected data. In this Review, we provide a comprehensive overview of conformable electronic devices for tissue biomechanics decoding. We discuss basic principles for external and internal tissue decoding, focusing on electromechanical transduction for external tissue decoding and on ultrasonography for internal tissue decoding. Then, we highlight various data analysis methods, including machine-learning algorithms. Finally, we outline challenges and future directions. Tissue biomechanics provides essential biological information that is important for various biomedical applications. This Review discusses the potential of conformable electronic devices for decoding tissue biomechanics, focusing on different decoding principles, data analysis methods and relevant application examples.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 1","pages":"4-27"},"PeriodicalIF":79.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Materials for high-temperature digital electronics 高温数字电子器件材料
IF 79.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-18 DOI: 10.1038/s41578-024-00731-9
Dhiren K. Pradhan, David C. Moore, A. Matt Francis, Jacob Kupernik, W. Joshua Kennedy, Nicholas R. Glavin, Roy H. Olsson III, Deep Jariwala
Silicon microelectronics, consisting of complementary metal–oxide–semiconductor technology, have changed nearly all aspects of human life from communication to transportation, entertainment and health care. Despite their widespread and mainstream use, current silicon-based devices are unreliable at temperatures exceeding 125 °C. The emergent technological frontiers of space exploration, geothermal energy harvesting, nuclear energy, unmanned avionic systems and autonomous driving will rely on control systems, sensors and communication devices that operate at temperatures as high as 500 °C and beyond. At these extreme temperatures, active (heat exchanger and phase-change cooling) or passive (fins and thermal interface materials) cooling strategies add considerable mass and complicate the systems, which is often infeasible. Thus, new material solutions beyond conventional silicon complementary metal–oxide–semiconductor devices are necessary for high-temperature, resilient electronic systems. The ultimate realization of high-temperature electronic systems requires united efforts to develop, integrate and ultimately manufacture non-silicon-based logic and memory technologies, non-traditional metals for interconnects and ceramic packaging technology. Digital electronics capable of operating at elevated temperatures are gaining importance in aerospace, space and geothermal energy as well as oil and gas exploration. This Review presents recent advances and future outlook on critical materials and devices for the same.
由互补金属氧化物半导体技术组成的硅微电子技术几乎改变了人类生活的方方面面,从通信到交通、娱乐和医疗保健。尽管硅微电子技术已被广泛应用并成为主流技术,但目前的硅基器件在温度超过 125 ℃ 时仍不可靠。太空探索、地热能采集、核能、无人驾驶航空系统和自动驾驶等新兴技术前沿将依赖于在高达 500 ℃ 或更高温度下运行的控制系统、传感器和通信设备。在这些极端温度下,主动(热交换器和相变冷却)或被动(鳍片和热界面材料)冷却策略会增加相当大的质量,并使系统复杂化,这通常是不可行的。因此,除了传统的硅互补金属氧化物半导体器件外,高温弹性电子系统还需要新的材料解决方案。要最终实现高温电子系统,需要各方共同努力,开发、集成并最终制造非硅基逻辑和存储器技术、用于互连的非传统金属以及陶瓷封装技术。
{"title":"Materials for high-temperature digital electronics","authors":"Dhiren K. Pradhan, David C. Moore, A. Matt Francis, Jacob Kupernik, W. Joshua Kennedy, Nicholas R. Glavin, Roy H. Olsson III, Deep Jariwala","doi":"10.1038/s41578-024-00731-9","DOIUrl":"10.1038/s41578-024-00731-9","url":null,"abstract":"Silicon microelectronics, consisting of complementary metal–oxide–semiconductor technology, have changed nearly all aspects of human life from communication to transportation, entertainment and health care. Despite their widespread and mainstream use, current silicon-based devices are unreliable at temperatures exceeding 125 °C. The emergent technological frontiers of space exploration, geothermal energy harvesting, nuclear energy, unmanned avionic systems and autonomous driving will rely on control systems, sensors and communication devices that operate at temperatures as high as 500 °C and beyond. At these extreme temperatures, active (heat exchanger and phase-change cooling) or passive (fins and thermal interface materials) cooling strategies add considerable mass and complicate the systems, which is often infeasible. Thus, new material solutions beyond conventional silicon complementary metal–oxide–semiconductor devices are necessary for high-temperature, resilient electronic systems. The ultimate realization of high-temperature electronic systems requires united efforts to develop, integrate and ultimately manufacture non-silicon-based logic and memory technologies, non-traditional metals for interconnects and ceramic packaging technology. Digital electronics capable of operating at elevated temperatures are gaining importance in aerospace, space and geothermal energy as well as oil and gas exploration. This Review presents recent advances and future outlook on critical materials and devices for the same.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 11","pages":"790-807"},"PeriodicalIF":79.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR–Cas9 delivery strategies for the modulation of immune and non-immune cells 调控免疫细胞和非免疫细胞的 CRISPR-Cas9 传递策略
IF 79.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1038/s41578-024-00725-7
Shahad K. Alsaiari, Behnaz Eshaghi, Bujie Du, Maria Kanelli, Gary Li, Xunhui Wu, Linzixuan Zhang, Mehr Chaddah, Alicia Lau, Xin Yang, Robert Langer, Ana Jaklenec
CRISPR–Cas9 genome editing technology is a promising tool for genetically engineering immune cells and modulating immune systems. Although ex vivo genome editing of immune cells has reached clinical trials, in vivo application is still restricted by the instability and inefficient delivery of CRISPR–Cas9 components to immune cells through circulation. In this Review, we summarize ex vivo and in vivo strategies to deliver CRISPR–Cas9 components to both non-immune and immune cells. We review the progress made in non-immune cells because it offers insights that can be applied to advancing research in immune cells. We also discuss principles and challenges of immune system modulation using CRISPR–Cas9 genome editing technology. CRISPR–Cas9 technology is a powerful tool for immune cell engineering. Ex vivo editing has progressed to clinical trials, but in vivo applications are still limited owing to delivery challenges. This Review summarizes these challenges as well as strategies and progress in delivering CRISPR–Cas9 to immune and non-immune cells.
CRISPR-Cas9 基因组编辑技术是对免疫细胞进行基因工程和调节免疫系统的一种前景广阔的工具。虽然免疫细胞的体外基因组编辑已进入临床试验阶段,但体内应用仍受到 CRISPR-Cas9 成分不稳定和通过循环向免疫细胞传递效率低的限制。在本综述中,我们总结了向非免疫细胞和免疫细胞输送 CRISPR-Cas9 成分的体内外策略。我们回顾了在非免疫细胞方面取得的进展,因为这些进展提供了可用于推进免疫细胞研究的启示。我们还讨论了使用 CRISPR-Cas9 基因组编辑技术调节免疫系统的原理和挑战。
{"title":"CRISPR–Cas9 delivery strategies for the modulation of immune and non-immune cells","authors":"Shahad K. Alsaiari, Behnaz Eshaghi, Bujie Du, Maria Kanelli, Gary Li, Xunhui Wu, Linzixuan Zhang, Mehr Chaddah, Alicia Lau, Xin Yang, Robert Langer, Ana Jaklenec","doi":"10.1038/s41578-024-00725-7","DOIUrl":"10.1038/s41578-024-00725-7","url":null,"abstract":"CRISPR–Cas9 genome editing technology is a promising tool for genetically engineering immune cells and modulating immune systems. Although ex vivo genome editing of immune cells has reached clinical trials, in vivo application is still restricted by the instability and inefficient delivery of CRISPR–Cas9 components to immune cells through circulation. In this Review, we summarize ex vivo and in vivo strategies to deliver CRISPR–Cas9 components to both non-immune and immune cells. We review the progress made in non-immune cells because it offers insights that can be applied to advancing research in immune cells. We also discuss principles and challenges of immune system modulation using CRISPR–Cas9 genome editing technology. CRISPR–Cas9 technology is a powerful tool for immune cell engineering. Ex vivo editing has progressed to clinical trials, but in vivo applications are still limited owing to delivery challenges. This Review summarizes these challenges as well as strategies and progress in delivering CRISPR–Cas9 to immune and non-immune cells.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 1","pages":"44-61"},"PeriodicalIF":79.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
China unveils first lunar spacesuit for 2030 moon mission 中国为 2030 年登月任务推出首套登月宇航服
IF 79.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1038/s41578-024-00744-4
Charlotte Allard
{"title":"China unveils first lunar spacesuit for 2030 moon mission","authors":"Charlotte Allard","doi":"10.1038/s41578-024-00744-4","DOIUrl":"10.1038/s41578-024-00744-4","url":null,"abstract":"","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 11","pages":"765-765"},"PeriodicalIF":79.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First metal part 3D printed in space 首个在太空中 3D 打印的金属部件
IF 79.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1038/s41578-024-00745-3
Charlotte Allard
{"title":"First metal part 3D printed in space","authors":"Charlotte Allard","doi":"10.1038/s41578-024-00745-3","DOIUrl":"10.1038/s41578-024-00745-3","url":null,"abstract":"","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 11","pages":"766-766"},"PeriodicalIF":79.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Reviews Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1