首页 > 最新文献

Neurobiology of Stress最新文献

英文 中文
Hyperexcitation of the glutamatergic neurons in lateral hypothalamus induced by chronic pain contributes to depression-like behavior and learning and memory impairment in male mice 慢性疼痛诱导的下丘脑外侧谷氨酸能神经元过度兴奋导致雄性小鼠出现抑郁样行为以及学习和记忆障碍
IF 5 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-06-01 DOI: 10.1016/j.ynstr.2024.100654
Lianghui Meng , Xuefeng Zheng , Keman Xie, Yifei Li, Danlei Liu, Yuanyuan Xu, Jifeng Zhang, Fengming Wu, Guoqing Guo

Chronic pain can induce mood disorders and cognitive dysfunctions, such as anxiety, depression, and learning and memory impairment in humans. However, the specific neural network involved in anxiety- and depression-like behaviors and learning and memory impairment caused by chronic pain remains poorly understood. In this study, behavioral test results showed that chronic pain induced anxiety- and depression-like behaviors, and learning and memory impairment in male mice. c-Fos immunofluorescence and fiber photometry recording showed that glutamatergic neurons in the LH of mice with chronic pain were selectively activated. Next, the glutamatergic neurons of LH in normal mice were activated using optogenetic and chemogenetic methods, which recapitulates some of the depressive-like behaviors, as well as memory impairment, but not anxiety-like behavior. Finally, inhibition of glutamatergic neurons in the LH of mice with chronic pain, effectively relieved anxiety- and depression-like behaviors and learning and memory impairment. Taken together, our findings suggest that hyperexcitation of glutamatergic neurons in the LH is involved in depression-like behavior and learning and memory impairment induced by chronic pain.

慢性疼痛可诱发人类情绪紊乱和认知功能障碍,如焦虑、抑郁以及学习和记忆障碍。然而,人们对慢性疼痛引起的焦虑和抑郁样行为以及学习和记忆障碍所涉及的特定神经网络仍然知之甚少。本研究的行为测试结果表明,慢性疼痛会诱发雄性小鼠的焦虑和抑郁样行为以及学习和记忆障碍。c-Fos免疫荧光和纤维光度记录显示,慢性疼痛小鼠LH中的谷氨酸能神经元被选择性激活。接着,使用光遗传学和化学遗传学方法激活了正常小鼠 LH 的谷氨酸能神经元,结果再现了一些类似抑郁的行为以及记忆损伤,但没有再现类似焦虑的行为。最后,抑制慢性疼痛小鼠 LH 中的谷氨酸能神经元可有效缓解焦虑和抑郁样行为以及学习和记忆障碍。综上所述,我们的研究结果表明,LH 中谷氨酸能神经元的过度兴奋参与了慢性疼痛诱发的抑郁样行为以及学习和记忆损伤。
{"title":"Hyperexcitation of the glutamatergic neurons in lateral hypothalamus induced by chronic pain contributes to depression-like behavior and learning and memory impairment in male mice","authors":"Lianghui Meng ,&nbsp;Xuefeng Zheng ,&nbsp;Keman Xie,&nbsp;Yifei Li,&nbsp;Danlei Liu,&nbsp;Yuanyuan Xu,&nbsp;Jifeng Zhang,&nbsp;Fengming Wu,&nbsp;Guoqing Guo","doi":"10.1016/j.ynstr.2024.100654","DOIUrl":"10.1016/j.ynstr.2024.100654","url":null,"abstract":"<div><p>Chronic pain can induce mood disorders and cognitive dysfunctions, such as anxiety, depression, and learning and memory impairment in humans. However, the specific neural network involved in anxiety- and depression-like behaviors and learning and memory impairment caused by chronic pain remains poorly understood. In this study, behavioral test results showed that chronic pain induced anxiety- and depression-like behaviors, and learning and memory impairment in male mice. c-Fos immunofluorescence and fiber photometry recording showed that glutamatergic neurons in the LH of mice with chronic pain were selectively activated. Next, the glutamatergic neurons of LH in normal mice were activated using optogenetic and chemogenetic methods, which recapitulates some of the depressive-like behaviors, as well as memory impairment, but not anxiety-like behavior. Finally, inhibition of glutamatergic neurons in the LH of mice with chronic pain, effectively relieved anxiety- and depression-like behaviors and learning and memory impairment. Taken together, our findings suggest that hyperexcitation of glutamatergic neurons in the LH is involved in depression-like behavior and learning and memory impairment induced by chronic pain.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"31 ","pages":"Article 100654"},"PeriodicalIF":5.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235228952400050X/pdfft?md5=6b0622f56c031da0a2696b424f60f254&pid=1-s2.0-S235228952400050X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141233507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Individual longitudinal changes in DNA-methylome identify signatures of early-life adversity and correlate with later outcome DNA-甲基组的个体纵向变化可识别早期生活逆境的特征,并与日后的结果相关联
IF 5 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-05-31 DOI: 10.1016/j.ynstr.2024.100652
Annabel K. Short , Ryan Weber , Noriko Kamei , Christina Wilcox Thai , Hina Arora , Ali Mortazavi , Hal S. Stern , Laura Glynn , Tallie Z. Baram

Adverse early-life experiences (ELA) affect a majority of the world's children. Whereas the enduring impact of ELA on cognitive and emotional health is established, there are no tools to predict vulnerability to ELA consequences in an individual child. Epigenetic markers including peripheral-cell DNA-methylation profiles may encode ELA and provide predictive outcome markers, yet the interindividual variance of the human genome and rapid changes in DNA methylation in childhood pose significant challenges. Hoping to mitigate these challenges we examined the relation of several ELA dimensions to DNA methylation changes and outcome using a within-subject longitudinal design and a high methylation-change threshold.

DNA methylation was analyzed in buccal swab/saliva samples collected twice (neonatally and at 12 months) in 110 infants. We identified CpGs differentially methylated across time for each child and determined whether they associated with ELA indicators and executive function at age 5. We assessed sex differences and derived a sex-dependent ‘impact score’ based on sites that most contributed to methylation changes.

Changes in methylation between two samples of an individual child reflected age-related trends and correlated with executive function years later. Among tested ELA dimensions and life factors including income to needs ratios, maternal sensitivity, body mass index and infant sex, unpredictability of parental and household signals was the strongest predictor of executive function. In girls, high early-life unpredictability interacted with methylation changes to presage executive function. Thus, longitudinal, within-subject changes in methylation profiles may provide a signature of ELA and a potential predictive marker of individual outcome.

早期不良生活经历(ELA)影响着世界上大多数儿童。虽然ELA对认知和情绪健康的持久影响已经得到证实,但目前还没有工具可以预测儿童个体易受ELA影响的程度。表观遗传标记(包括外周细胞 DNA 甲基化图谱)可能编码 ELA 并提供预测结果的标记,然而人类基因组的个体间差异和儿童期 DNA 甲基化的快速变化带来了巨大的挑战。为了减轻这些挑战,我们采用受试者内纵向设计和高甲基化变化阈值,研究了ELA的几个维度与DNA甲基化变化和结果的关系。我们确定了每个儿童在不同时期甲基化程度不同的 CpGs,并确定它们是否与 5 岁时的英语语言学习(ELA)指标和执行功能有关。我们评估了性别差异,并根据对甲基化变化贡献最大的位点得出了与性别相关的 "影响得分"。在经过测试的英语语言能力水平维度和生活因素(包括收入与需求比、母亲敏感性、体重指数和婴儿性别)中,父母和家庭信号的不可预测性是预测执行功能的最强因素。在女孩中,早期生活的高度不可预测性与甲基化变化相互作用,预示着执行功能。因此,甲基化特征的纵向、受试者内变化可能是ELA的特征,也是个体结果的潜在预测标志。
{"title":"Individual longitudinal changes in DNA-methylome identify signatures of early-life adversity and correlate with later outcome","authors":"Annabel K. Short ,&nbsp;Ryan Weber ,&nbsp;Noriko Kamei ,&nbsp;Christina Wilcox Thai ,&nbsp;Hina Arora ,&nbsp;Ali Mortazavi ,&nbsp;Hal S. Stern ,&nbsp;Laura Glynn ,&nbsp;Tallie Z. Baram","doi":"10.1016/j.ynstr.2024.100652","DOIUrl":"https://doi.org/10.1016/j.ynstr.2024.100652","url":null,"abstract":"<div><p>Adverse early-life experiences (ELA) affect a majority of the world's children. Whereas the enduring impact of ELA on cognitive and emotional health is established, there are no tools to predict vulnerability to ELA consequences in an individual child. Epigenetic markers including peripheral-cell DNA-methylation profiles may encode ELA and provide predictive outcome markers, yet the interindividual variance of the human genome and rapid changes in DNA methylation in childhood pose significant challenges. Hoping to mitigate these challenges we examined the relation of several ELA dimensions to DNA methylation changes and outcome using a within-subject longitudinal design and a high methylation-change threshold.</p><p>DNA methylation was analyzed in buccal swab/saliva samples collected twice (neonatally and at 12 months) in 110 infants. We identified CpGs differentially methylated across time for each child and determined whether they associated with ELA indicators and executive function at age 5. We assessed sex differences and derived a sex-dependent ‘impact score’ based on sites that most contributed to methylation changes.</p><p>Changes in methylation between two samples of an individual child reflected age-related trends and correlated with executive function years later. Among tested ELA dimensions and life factors including income to needs ratios, maternal sensitivity, body mass index and infant sex, unpredictability of parental and household signals was the strongest predictor of executive function. In girls, high early-life unpredictability interacted with methylation changes to presage executive function. Thus, longitudinal, within-subject changes in methylation profiles may provide a signature of ELA and a potential predictive marker of individual outcome.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"31 ","pages":"Article 100652"},"PeriodicalIF":5.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000481/pdfft?md5=0cf553b631bada52c8cfef4dd0c2e6a7&pid=1-s2.0-S2352289524000481-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype 青少年环境强化可诱导社会适应能力,并改变选择性培育的焦虑表型啮齿动物模型的神经基因表达
IF 5 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-05-30 DOI: 10.1016/j.ynstr.2024.100651
Angela May O'Connor , Megan Hastings Hagenauer, Liam Cannon Thew Forrester, Pamela M. Maras, Keiko Arakawa, Elaine K. Hebda-Bauer, Huzefa Khalil, Evelyn R. Richardson, Farizah I. Rob, Yusra Sannah, Stanley J. Watson Jr., Huda Akil

Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the “internalizing” bred Low Responder (bLR) line versus the “externalizing” bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.

压力是影响心理健康状况的一个重要因素;个人应对或处理压力的方式决定了他们未来是否会受到负面影响。压力反应是由遗传、环境和生活经历相互作用而形成的。社会心理压力在青春期的影响尤为明显,而青春期正是情绪障碍发展的关键时期。在这项研究中,我们比较了两种成熟的、经过选择性繁殖的 Sprague Dawley 大鼠品系,即 "内化型 "低反应品系(bLR)和 "外化型 "高反应品系(bHR),以研究遗传气质和青春期环境如何影响未来对社会交往和社会心理压力的反应,以及这些压力反应的决定因素如何相互作用。雄性 bLR 和 bHR 大鼠在经历社交失败之前的青春期暴露于社交和环境强化中,然后对其社交互动和焦虑样行为进行评估。青春期的丰富环境使大鼠表现出更多的社会交往,以及名义上较少的社会回避、失败时较少的屈服和对社会压力对皮质酮影响的恢复力,这种方式似乎在 bLRs 中更为明显。对 bHRs 而言,富集也会导致它们在中性社交中和名义上在失败时表现出更强的攻击性,并减少焦虑样行为。为了探索焦虑表型 bLRs 发展社会适应能力的神经生物学基础,研究人员对海马和脑核这两个介导压力调节和社会行为的脑区进行了 RNA-seq。以前与压力、社会行为、攻击性和探索活动相关的基因组在这两个区域都有差异表达,尤其是对调节社会行为的基因组影响更大。我们的研究结果进一步证明,青春期强化训练可以作为一种预防性经历,抵御未来的压力。通过操纵环境来诱导通常焦虑的动物系的社会适应能力具有转化意义,因为它强调了针对基因脆弱的青少年群体采取干预策略的可行性。
{"title":"Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype","authors":"Angela May O'Connor ,&nbsp;Megan Hastings Hagenauer,&nbsp;Liam Cannon Thew Forrester,&nbsp;Pamela M. Maras,&nbsp;Keiko Arakawa,&nbsp;Elaine K. Hebda-Bauer,&nbsp;Huzefa Khalil,&nbsp;Evelyn R. Richardson,&nbsp;Farizah I. Rob,&nbsp;Yusra Sannah,&nbsp;Stanley J. Watson Jr.,&nbsp;Huda Akil","doi":"10.1016/j.ynstr.2024.100651","DOIUrl":"https://doi.org/10.1016/j.ynstr.2024.100651","url":null,"abstract":"<div><p>Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the “internalizing” bred Low Responder (bLR) line versus the “externalizing” bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"31 ","pages":"Article 100651"},"PeriodicalIF":5.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235228952400047X/pdfft?md5=4f4599f39a78873b53a1c34653e282a6&pid=1-s2.0-S235228952400047X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141286296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of acute stress on reward processing: A comprehensive meta-analysis of rodent and human studies 急性应激对奖赏加工的影响:啮齿动物和人类研究的综合荟萃分析
IF 5 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-05-24 DOI: 10.1016/j.ynstr.2024.100647
Martino Schettino , Valeria Tarmati , Paola Castellano , Valeria Gigli , Luca Carnevali , Simona Cabib , Cristina Ottaviani , Cristina Orsini

Stressors can initiate a cascade of central and peripheral changes that modulate mesocorticolimbic dopaminergic circuits and, ultimately, behavioral response to rewards. Driven by the absence of conclusive evidence on this topic and the Research Domain Criteria framework, random-effects meta-analyses were adopted to quantify the effects of acute stressors on reward responsiveness, valuation, and learning in rodent and human subjects.

In rodents, acute stress reduced reward responsiveness (g = −1.43) and valuation (g = −0.32), while amplifying reward learning (g = 1.17). In humans, acute stress had marginal effects on valuation (g = 0.25), without affecting responsiveness and learning. Moderation analyses suggest that acute stress neither has unitary effects on reward processing in rodents nor in humans and that the duration of the stressor and specificity of reward experience (i.e., food vs drugs) may produce qualitatively and quantitatively different behavioral endpoints.

Subgroup analyses failed to reduce heterogeneity, which, together with the presence of publication bias, pose caution on the conclusions that can be drawn and point to the need of guidelines for the conduction of future studies in the field.

压力可引发一系列中枢和外周变化,从而调节中皮质边缘多巴胺能回路,并最终影响对奖赏的行为反应。在啮齿类动物中,急性应激降低了奖赏反应性(g = -1.43 )和评价性(g = -0.32),同时扩大了奖赏学习(g = 1.17)。在人类中,急性应激对估价的影响微乎其微(g = 0.25),但不影响反应性和学习。调节分析表明,急性应激对啮齿类动物和人类的奖赏加工都没有单一的影响,应激持续时间和奖赏体验的特异性(即食物与药物)可能会产生不同质和量的行为终点。亚组分析未能减少异质性,再加上发表偏倚的存在,对可以得出的结论提出了警告,并指出需要为今后开展该领域的研究提供指导。
{"title":"Effects of acute stress on reward processing: A comprehensive meta-analysis of rodent and human studies","authors":"Martino Schettino ,&nbsp;Valeria Tarmati ,&nbsp;Paola Castellano ,&nbsp;Valeria Gigli ,&nbsp;Luca Carnevali ,&nbsp;Simona Cabib ,&nbsp;Cristina Ottaviani ,&nbsp;Cristina Orsini","doi":"10.1016/j.ynstr.2024.100647","DOIUrl":"10.1016/j.ynstr.2024.100647","url":null,"abstract":"<div><p>Stressors can initiate a cascade of central and peripheral changes that modulate mesocorticolimbic dopaminergic circuits and, ultimately, behavioral response to rewards. Driven by the absence of conclusive evidence on this topic and the Research Domain Criteria framework, random-effects meta-analyses were adopted to quantify the effects of acute stressors on reward responsiveness, valuation, and learning in rodent and human subjects.</p><p>In rodents, acute stress reduced reward responsiveness (<em>g</em> = −1.43) and valuation (<em>g</em> = −0.32), while amplifying reward learning (<em>g</em> = 1.17). In humans, acute stress had marginal effects on valuation (<em>g</em> = 0.25), without affecting responsiveness and learning. Moderation analyses suggest that acute stress neither has unitary effects on reward processing in rodents nor in humans and that the duration of the stressor and specificity of reward experience (i.e., food vs drugs) may produce qualitatively and quantitatively different behavioral endpoints.</p><p>Subgroup analyses failed to reduce heterogeneity, which, together with the presence of publication bias, pose caution on the conclusions that can be drawn and point to the need of guidelines for the conduction of future studies in the field.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"31 ","pages":"Article 100647"},"PeriodicalIF":5.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000432/pdfft?md5=99670d9ad52837144ea285d4c1bf4f65&pid=1-s2.0-S2352289524000432-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141139398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain correlates and functional connectivity linking stress, autonomic dysregulation, and alcohol motivation 与压力、自律神经失调和酗酒动机有关的大脑相关性和功能连通性
IF 5 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-05-21 DOI: 10.1016/j.ynstr.2024.100645
Dongju Seo , Jorge S. Martins , Rajita Sinha

High stress is a key risk factor for alcohol use disorder (AUD) and often accompanied by physiological dysregulation including autonomic nervous system (ANS) disruptions. However, neural mechanisms underlying drinking behaviors associated with stress and ANS disruptions remain unclear. The current study aims to understand neural correlates of stress, ANS disruptions, and subsequent alcohol intake in social drinkers with risky drinking. Using functional magnetic resonance imaging (fMRI), we investigated brain and heart rate (HR) autonomic responses during brief exposure to stress, alcohol, and neutral cues utilizing a well-validated, individualized imagery paradigm in 48 social drinkers of which 26 reported high-risk drinking (HD) while 22 reported low-risk drinking (LD) patterns. Results indicated that HD individuals showed stress and ANS disruptions with increased basal HR, stress-induced craving, and decreased brain response to stress exposure in frontal-striatal regions including the ventromedial prefrontal cortex (VmPFC), anterior cingulate cortex, striatum, insula, and temporal gyrus. Furthermore, whole-brain correlation analysis indicated that greater basal HR was associated with hypoactive VmPFC, but hyperactive medulla oblongata (MOb) responses during stress, with an inverse association between activity in the VmPFC and Mob (whole-brain corrected (WBC), p < 0.05). Functional connectivity with the MOb as a seed to the whole brain indicated that HD versus LD had decreased functional connectivity between the VmPFC and MOb during stress (WBC, p < 0.05). In addition, those with more compromised functional connectivity between the VmPFC and MOb during stress consumed greater amount of alcohol beverage during an experimental alcohol taste test conducted on a separate day, as well as in their self-reported weekly alcohol intake. Together, these results indicate that stress-related, dysfunctional VmPFC control over brain regions of autonomic arousal contributes to greater alcohol motivation and may be a significant risk factor for hazardous alcohol use in non-dependent social drinkers. Findings also suggest that restoring VmPFC integrity in modulating autonomic arousal during stress may be critical for preventing the development of AUD.

高度压力是导致酒精使用障碍(AUD)的一个关键风险因素,通常伴随着生理失调,包括自律神经系统(ANS)紊乱。然而,与压力和自律神经系统紊乱相关的饮酒行为的神经机制仍不清楚。本研究旨在了解有饮酒风险的社交饮酒者的压力、自律神经系统紊乱和随后酒精摄入的神经相关性。我们采用功能磁共振成像(fMRI)技术,利用一种经过充分验证的个性化想象范式,对 48 名社交饮酒者(其中 26 人报告了高风险饮酒(HD),22 人报告了低风险饮酒(LD)模式)在短暂暴露于压力、酒精和中性线索时的大脑和心率(HR)自律神经反应进行了调查。结果表明,高危饮酒者表现出压力和自律神经系统紊乱,基础心率升高,压力诱发渴求,大脑对压力暴露的额叶-前额叶区域反应减弱,包括腹外侧前额叶皮层(VmPFC)、前扣带回皮层、纹状体、岛叶和颞回。此外,全脑相关性分析表明,在应激时,基础心率越大,VmPFC的反应越不活跃,而延髓(MOb)的反应却越活跃,VmPFC的活动与Mob之间存在反向关联(全脑校正(WBC),p <0.05)。以MOb作为全脑种子的功能连通性表明,在应激期间,HD与LD相比,VmPFC与MOb之间的功能连通性降低(WBC,p <0.05)。此外,应激时VmPFC和MOb之间的功能连通性受损更严重的人在单独一天进行的实验性酒精味觉测试中摄入了更多的酒精饮料,他们自我报告的每周酒精摄入量也更高。这些结果表明,与压力相关的、对自律神经唤醒脑区功能失调的VmPFC控制导致了更大的饮酒动机,并可能成为非依赖性社交饮酒者危险饮酒的一个重要风险因素。研究结果还表明,恢复 VmPFC 在应激时调节自律神经唤醒的完整性可能对预防 AUD 的发生至关重要。
{"title":"Brain correlates and functional connectivity linking stress, autonomic dysregulation, and alcohol motivation","authors":"Dongju Seo ,&nbsp;Jorge S. Martins ,&nbsp;Rajita Sinha","doi":"10.1016/j.ynstr.2024.100645","DOIUrl":"10.1016/j.ynstr.2024.100645","url":null,"abstract":"<div><p>High stress is a key risk factor for alcohol use disorder (AUD) and often accompanied by physiological dysregulation including autonomic nervous system (ANS) disruptions. However, neural mechanisms underlying drinking behaviors associated with stress and ANS disruptions remain unclear. The current study aims to understand neural correlates of stress, ANS disruptions, and subsequent alcohol intake in social drinkers with risky drinking. Using functional magnetic resonance imaging (fMRI), we investigated brain and heart rate (HR) autonomic responses during brief exposure to stress, alcohol, and neutral cues utilizing a well-validated, individualized imagery paradigm in 48 social drinkers of which 26 reported high-risk drinking (HD) while 22 reported low-risk drinking (LD) patterns. Results indicated that HD individuals showed stress and ANS disruptions with increased basal HR, stress-induced craving, and decreased brain response to stress exposure in frontal-striatal regions including the ventromedial prefrontal cortex (VmPFC), anterior cingulate cortex, striatum, insula, and temporal gyrus. Furthermore, whole-brain correlation analysis indicated that greater basal HR was associated with hypoactive VmPFC, but hyperactive medulla oblongata (MOb) responses during stress, with an inverse association between activity in the VmPFC and Mob (whole-brain corrected (WBC), p &lt; 0.05). Functional connectivity with the MOb as a seed to the whole brain indicated that HD versus LD had decreased functional connectivity between the VmPFC and MOb during stress (WBC, p &lt; 0.05). In addition, those with more compromised functional connectivity between the VmPFC and MOb during stress consumed greater amount of alcohol beverage during an experimental alcohol taste test conducted on a separate day, as well as in their self-reported weekly alcohol intake. Together, these results indicate that stress-related, dysfunctional VmPFC control over brain regions of autonomic arousal contributes to greater alcohol motivation and may be a significant risk factor for hazardous alcohol use in non-dependent social drinkers. Findings also suggest that restoring VmPFC integrity in modulating autonomic arousal during stress may be critical for preventing the development of AUD.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"31 ","pages":"Article 100645"},"PeriodicalIF":5.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000419/pdfft?md5=3a245b2128a6213077f2e1182d6f1cbb&pid=1-s2.0-S2352289524000419-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141136597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Omega-3 alleviates behavioral and molecular changes in a mouse model of stress-induced juvenile depression 欧米伽-3 可缓解压力诱发的青少年抑郁症小鼠模型的行为和分子变化
IF 5 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-05-20 DOI: 10.1016/j.ynstr.2024.100646
Tatyana Strekalova , Daniel Radford-Smith , Isobel K. Dunstan , Anna Gorlova , Evgeniy Svirin , Elisaveta Sheveleva , Alisa Burova , Sergey Morozov , Aleksey Lyundup , Gregor Berger , Daniel C. Anthony , Susanne Walitza

Introduction

Depression is increasingly diagnosed in adolescence, necessitating specific prevention and treatment methods. However, there is a lack of animal models mimicking juvenile depression. This study explores a novel model using ultrasound (US) stress in juvenile mice.

Methods

We employed the US stress model in one-month-old C57/BL6 mice, exposing them to alternating ultrasound frequencies (20–25 kHz and 25–45 kHz) for three weeks. These frequencies correspond to negative and neutral emotional states in rodents and can induce a depressive-like syndrome. Concurrently, mice received either an omega-3 food supplement (FS) containing eicosapentaenoic acid (EPA; 0.55 mg/kg/day) and docosahexaenoic acid (DHA; 0.55 mg/kg/day) or a vehicle. Post-stress, we evaluated anxiety- and depressive-like behaviors, blood corticosterone levels, brain expression of pro-inflammatory cytokines, and conducted metabolome analysis of brain, liver and blood plasma.

Results

US-exposed mice treated with vehicle exhibited decreased sucrose preference, a sign of anhedonia, a key feature of depression, increased anxiety-like behavior, elevated corticosterone levels, and enhanced TNF and IL-1β gene expression in the brain. In contrast, US-FS mice did not display these changes. Omega-3 supplementation also reduced anxiety-like behavior in non-stressed mice. Metabolomic analysis revealed US-induced changes in brain energy metabolism, with FS increasing brain sphingomyelin. Liver metabolism was affected by both US and FS, while plasma metabolome changes were exclusive to FS. Brain glucose levels correlated positively with activity in anxiety tests.

Conclusion

Chronic omega-3 intake counteracted depressive- and anxiety-like behaviors in a US model of juvenile depression in mice. These effects likely stem from the anti-inflammatory properties of the supplement, suggesting potential therapeutic applications in juvenile depression.

导言:越来越多的青少年被诊断出患有抑郁症,因此需要采取特殊的预防和治疗方法。然而,目前还缺乏模拟青少年抑郁症的动物模型。本研究利用超声波(US)应激在幼年小鼠中探索了一种新的模型。方法我们在一个月大的C57/BL6小鼠中采用了US应激模型,将它们暴露于交替的超声波频率(20-25 kHz和25-45 kHz)中,持续三周。这些频率与啮齿动物的负面和中性情绪状态相对应,可诱发类似抑郁症的综合征。与此同时,小鼠接受含有二十碳五烯酸(EPA;0.55 毫克/千克/天)和二十二碳六烯酸(DHA;0.55 毫克/千克/天)的欧米加-3 食物补充剂(FS)或药物。应激后,我们评估了小鼠的焦虑和抑郁样行为、血液中皮质酮的水平、大脑中促炎细胞因子的表达,并对大脑、肝脏和血浆进行了代谢组分析。相比之下,US-FS 小鼠没有出现这些变化。补充 Omega-3 还能减少非应激小鼠的焦虑样行为。代谢组分析显示,US诱导了大脑能量代谢的变化,FS增加了大脑鞘磷脂。肝脏代谢同时受到 US 和 FS 的影响,而血浆代谢组的变化则是 FS 独有的。脑葡萄糖水平与焦虑测试中的活动呈正相关。这些效果可能源于补充剂的抗炎特性,表明它在青少年抑郁症方面具有潜在的治疗用途。
{"title":"Omega-3 alleviates behavioral and molecular changes in a mouse model of stress-induced juvenile depression","authors":"Tatyana Strekalova ,&nbsp;Daniel Radford-Smith ,&nbsp;Isobel K. Dunstan ,&nbsp;Anna Gorlova ,&nbsp;Evgeniy Svirin ,&nbsp;Elisaveta Sheveleva ,&nbsp;Alisa Burova ,&nbsp;Sergey Morozov ,&nbsp;Aleksey Lyundup ,&nbsp;Gregor Berger ,&nbsp;Daniel C. Anthony ,&nbsp;Susanne Walitza","doi":"10.1016/j.ynstr.2024.100646","DOIUrl":"10.1016/j.ynstr.2024.100646","url":null,"abstract":"<div><h3>Introduction</h3><p>Depression is increasingly diagnosed in adolescence, necessitating specific prevention and treatment methods. However, there is a lack of animal models mimicking juvenile depression. This study explores a novel model using ultrasound (US) stress in juvenile mice.</p></div><div><h3>Methods</h3><p>We employed the US stress model in one-month-old C57/BL6 mice, exposing them to alternating ultrasound frequencies (20–25 kHz and 25–45 kHz) for three weeks. These frequencies correspond to negative and neutral emotional states in rodents and can induce a depressive-like syndrome. Concurrently, mice received either an omega-3 food supplement (FS) containing eicosapentaenoic acid (EPA; 0.55 mg/kg/day) and docosahexaenoic acid (DHA; 0.55 mg/kg/day) or a vehicle. Post-stress, we evaluated anxiety- and depressive-like behaviors, blood corticosterone levels, brain expression of pro-inflammatory cytokines, and conducted metabolome analysis of brain, liver and blood plasma.</p></div><div><h3>Results</h3><p>US-exposed mice treated with vehicle exhibited decreased sucrose preference, a sign of anhedonia, a key feature of depression, increased anxiety-like behavior, elevated corticosterone levels, and enhanced TNF and IL-1β gene expression in the brain. In contrast, US-FS mice did not display these changes. Omega-3 supplementation also reduced anxiety-like behavior in non-stressed mice. Metabolomic analysis revealed US-induced changes in brain energy metabolism, with FS increasing brain sphingomyelin. Liver metabolism was affected by both US and FS, while plasma metabolome changes were exclusive to FS. Brain glucose levels correlated positively with activity in anxiety tests.</p></div><div><h3>Conclusion</h3><p>Chronic omega-3 intake counteracted depressive- and anxiety-like behaviors in a US model of juvenile depression in mice. These effects likely stem from the anti-inflammatory properties of the supplement, suggesting potential therapeutic applications in juvenile depression.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"31 ","pages":"Article 100646"},"PeriodicalIF":5.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000420/pdfft?md5=ae79e6addcc1c3641fd5e4579f15a922&pid=1-s2.0-S2352289524000420-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141144721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of resilience in the relationship between stress and alcohol 复原力在压力与酒精关系中的作用
IF 5 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-05-16 DOI: 10.1016/j.ynstr.2024.100644
Melanie L. Schwandt , Eva Cullins , Vijay A. Ramchandani

Stress plays a well-documented role in alcohol consumption and the risk for developing alcohol use disorder. The concept of resilience - coping with and successfully adapting to stressful life experiences – has received increasing attention in the field of addiction research in recent decades, and there has been an accumulation of evidence for resilience as a protective factor against problematic alcohol consumption, risk for alcohol use disorder, disorder severity, and relapse. The conceptual and methodological approaches used in the generation of this evidence vary considerably across investigations, however. In light of this, we carried out this review in order to provide a more thorough understanding of the meaning and scope of resilience, what factors contribute to resilience, how it is measured, and how it relates to alcohol-associated phenotypes. Implications for treatment through the use of resilience-building interventions are likewise discussed, as well as implications for future research on the role of resilience in the etiology and clinical outcomes of alcohol use disorder.

压力在酒精消费和酒精使用障碍的发病风险中扮演着有据可查的角色。近几十年来,抗压能力的概念--应对并成功适应生活中的压力经历--在成瘾研究领域受到越来越多的关注,已有越来越多的证据表明,抗压能力是防止问题酒精消费、酒精使用障碍风险、障碍严重程度和复发的保护因素。然而,不同的研究在得出这些证据时所使用的概念和方法却大相径庭。有鉴于此,我们撰写了这篇综述,以便更透彻地了解复原力的含义和范围、哪些因素有助于提高复原力、如何衡量复原力以及复原力与酒精相关表型之间的关系。此外,还讨论了通过使用抗逆力建设干预措施进行治疗的意义,以及未来研究抗逆力在酒精使用障碍的病因学和临床结果中的作用的意义。
{"title":"The role of resilience in the relationship between stress and alcohol","authors":"Melanie L. Schwandt ,&nbsp;Eva Cullins ,&nbsp;Vijay A. Ramchandani","doi":"10.1016/j.ynstr.2024.100644","DOIUrl":"10.1016/j.ynstr.2024.100644","url":null,"abstract":"<div><p>Stress plays a well-documented role in alcohol consumption and the risk for developing alcohol use disorder. The concept of resilience - coping with and successfully adapting to stressful life experiences – has received increasing attention in the field of addiction research in recent decades, and there has been an accumulation of evidence for resilience as a protective factor against problematic alcohol consumption, risk for alcohol use disorder, disorder severity, and relapse. The conceptual and methodological approaches used in the generation of this evidence vary considerably across investigations, however. In light of this, we carried out this review in order to provide a more thorough understanding of the meaning and scope of resilience, what factors contribute to resilience, how it is measured, and how it relates to alcohol-associated phenotypes. Implications for treatment through the use of resilience-building interventions are likewise discussed, as well as implications for future research on the role of resilience in the etiology and clinical outcomes of alcohol use disorder.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"31 ","pages":"Article 100644"},"PeriodicalIF":5.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000407/pdfft?md5=8641d237fceab69ab6cc4d3b927d56c3&pid=1-s2.0-S2352289524000407-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141023230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coffee polyphenols ameliorate early-life stress-induced cognitive deficits in male mice 咖啡多酚可改善雄性小鼠早期生活压力引起的认知缺陷
IF 5 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-05-15 DOI: 10.1016/j.ynstr.2024.100641
J. Geertsema , M. Kratochvil , R. González-Domínguez , S. Lefèvre-Arbogast , D.Y. Low , A. Du Preez , H. Lee , M. Urpi-Sarda , A. Sánchez-Pla , L. Aigner , C. Samieri , C. Andres-Lacueva , C. Manach , S. Thuret , P.J. Lucassen , A. Korosi

Stress exposure during the sensitive period of early development has been shown to program the brain and increases the risk to develop cognitive deficits later in life. We have shown earlier that early-life stress (ES) leads to cognitive decline at an adult age, associated with changes in adult hippocampal neurogenesis and neuroinflammation. In particular, ES has been shown to affect neurogenesis rate and the survival of newborn cells later in life as well as microglia, modulating their response to immune or metabolic challenges later in life. Both of these processes possibly contribute to the ES-induced cognitive deficits. Emerging evidence by us and others indicates that early nutritional interventions can protect against these ES-induced effects through nutritional programming. Based on human metabolomics studies, we identified various coffee-related metabolites to be part of a protective molecular signature against cognitive decline in humans. Caffeic and chlorogenic acids are coffee-polyphenols and have been described to have potent anti-oxidant and anti-inflammatory actions. Therefore, we here aimed to test whether supplementing caffeic and chlorogenic acids to the early diet could also protect against ES-induced cognitive deficits. We induced ES via the limited nesting and bedding paradigm in mice from postnatal(P) day 2–9. On P2, mice received a diet to which 0.02% chlorogenic acid (5-O-caffeoylquinic acid) + 0.02% caffeic acid (3′,4′-dihydroxycinnamic acid) were added, or a control diet up until P42. At 4 months of age, all mice were subjected to a behavioral test battery and their brains were stained for markers for microglia and neurogenesis. We found that coffee polyphenols supplemented early in life protected against ES-induced cognitive deficits, potentially this is mediated by the survival of neurons or microglia, but possibly other mechanisms not studied here are mediating the effects. This study provides additional support for the potential of early nutritional interventions and highlights polyphenols as nutrients that can protect against cognitive decline, in particular for vulnerable populations exposed to ES.

事实证明,在早期发育的敏感时期受到的压力会对大脑产生影响,并增加日后出现认知障碍的风险。我们早些时候已经证明,早期生活压力(ES)会导致成年后的认知能力下降,这与成年海马神经发生和神经炎症的变化有关。特别是,ES 已被证明会影响神经发生率和新生细胞的存活率,并影响小胶质细胞,从而调节它们对免疫或新陈代谢挑战的反应。这两个过程都可能导致 ES 引起的认知障碍。我们和其他研究人员的新证据表明,早期营养干预可以通过营养编程防止 ES 诱导的这些影响。基于人类代谢组学研究,我们发现与咖啡有关的各种代谢物是防止人类认知能力下降的保护性分子特征的一部分。咖啡酸和绿原酸是咖啡多酚,据描述具有强大的抗氧化和抗炎作用。因此,我们在此旨在测试在早期饮食中补充咖啡酸和绿原酸是否也能保护ES诱导的认知缺陷。我们在小鼠出生后(P)第 2-9 天通过有限嵌套和铺垫范例诱导 ES。小鼠在出生后第2天开始摄入添加0.02%绿原酸(5-O-咖啡酰奎宁酸)+0.02%咖啡酸(3′,4′-二羟基肉桂酸)的食物,或在出生后第42天之前摄入对照食物。在小鼠 4 个月大时,对所有小鼠进行行为测试,并对其大脑进行染色,以检测小胶质细胞和神经发生的标记物。我们发现,在小鼠生命早期补充咖啡多酚可以防止 ES 诱导的认知缺陷,这可能是通过神经元或小胶质细胞的存活来实现的,但也可能是其他未研究的机制在起作用。这项研究为早期营养干预的潜力提供了更多支持,并强调了多酚类物质是可以防止认知能力下降的营养物质,尤其是对于暴露于 ES 的脆弱人群。
{"title":"Coffee polyphenols ameliorate early-life stress-induced cognitive deficits in male mice","authors":"J. Geertsema ,&nbsp;M. Kratochvil ,&nbsp;R. González-Domínguez ,&nbsp;S. Lefèvre-Arbogast ,&nbsp;D.Y. Low ,&nbsp;A. Du Preez ,&nbsp;H. Lee ,&nbsp;M. Urpi-Sarda ,&nbsp;A. Sánchez-Pla ,&nbsp;L. Aigner ,&nbsp;C. Samieri ,&nbsp;C. Andres-Lacueva ,&nbsp;C. Manach ,&nbsp;S. Thuret ,&nbsp;P.J. Lucassen ,&nbsp;A. Korosi","doi":"10.1016/j.ynstr.2024.100641","DOIUrl":"10.1016/j.ynstr.2024.100641","url":null,"abstract":"<div><p>Stress exposure during the sensitive period of early development has been shown to program the brain and increases the risk to develop cognitive deficits later in life. We have shown earlier that early-life stress (ES) leads to cognitive decline at an adult age, associated with changes in adult hippocampal neurogenesis and neuroinflammation. In particular, ES has been shown to affect neurogenesis rate and the survival of newborn cells later in life as well as microglia, modulating their response to immune or metabolic challenges later in life. Both of these processes possibly contribute to the ES-induced cognitive deficits. Emerging evidence by us and others indicates that early nutritional interventions can protect against these ES-induced effects through nutritional programming. Based on human metabolomics studies, we identified various coffee-related metabolites to be part of a protective molecular signature against cognitive decline in humans. Caffeic and chlorogenic acids are coffee-polyphenols and have been described to have potent anti-oxidant and anti-inflammatory actions. Therefore, we here aimed to test whether supplementing caffeic and chlorogenic acids to the early diet could also protect against ES-induced cognitive deficits. We induced ES via the limited nesting and bedding paradigm in mice from postnatal(P) day 2–9. On P2, mice received a diet to which 0.02% chlorogenic acid (5-O-caffeoylquinic acid) + 0.02% caffeic acid (3′,4′-dihydroxycinnamic acid) were added, or a control diet up until P42. At 4 months of age, all mice were subjected to a behavioral test battery and their brains were stained for markers for microglia and neurogenesis. We found that coffee polyphenols supplemented early in life protected against ES-induced cognitive deficits, potentially this is mediated by the survival of neurons or microglia, but possibly other mechanisms not studied here are mediating the effects. This study provides additional support for the potential of early nutritional interventions and highlights polyphenols as nutrients that can protect against cognitive decline, in particular for vulnerable populations exposed to ES.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"31 ","pages":"Article 100641"},"PeriodicalIF":5.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000377/pdfft?md5=40d2abee4459a0f3845da654a524f7d4&pid=1-s2.0-S2352289524000377-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141051629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-species analysis uncovers the mitochondrial stress response in the hippocampus as a shared mechanism in mouse early life stress and human depression 跨物种分析发现海马线粒体应激反应是小鼠早期生活压力和人类抑郁症的共同机制
IF 5 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-05-14 DOI: 10.1016/j.ynstr.2024.100643
Bente M. Hofstra , Emmy E. Hoeksema , Martien JH. Kas , Dineke S. Verbeek

Depression, or major depressive disorder, poses a significant burden for both individuals and society, affecting approximately 10.8% of the general population. This psychiatric disorder leads to approximately 800,000 deaths per year. A combination of genetic and environmental factors such as early life stress (ELS) increase the risk for development of depression in humans, and a clear role for the hippocampus in the pathophysiology of depression has been shown. Nevertheless, the underlying mechanisms of depression remain poorly understood, resulting in a lack of effective treatments. To better understand the core mechanisms underlying the development of depression, we used a cross-species design to investigate shared hippocampal pathophysiological mechanisms in mouse ELS and human depression. Mice were subjected to ELS by a maternal separation paradigm, followed by RNA sequencing analysis of the adult hippocampal tissue. This identified persistent transcriptional changes linked to mitochondrial stress response pathways, with oxidative phosphorylation and protein folding emerging as the main mechanisms affected by maternal separation. Remarkably, there was a significant overlap between the pathways involved in mitochondrial stress response we observed and publicly available RNAseq data from hippocampal tissue of depressive patients. This cross-species conservation of changes in gene expression of mitochondria-related genes suggests that mitochondrial stress may play a pivotal role in the development of depression. Our findings highlight the potential significance of the hippocampal mitochondrial stress response as a core mechanism underlying the development of depression. Further experimental investigations are required to expand our understanding of these mechanisms.

抑郁症或重度抑郁障碍给个人和社会都带来了沉重的负担,约有 10.8%的总人口受到抑郁症的影响。这种精神疾病每年导致约 80 万人死亡。遗传和环境因素(如早期生活压力(ELS))的结合增加了人类患抑郁症的风险,海马体在抑郁症的病理生理学中的作用也已得到证实。然而,人们对抑郁症的内在机制仍然知之甚少,因此缺乏有效的治疗方法。为了更好地了解抑郁症发病的核心机制,我们采用了跨物种设计来研究小鼠ELS和人类抑郁症的共同海马病理生理机制。通过母体分离范式对小鼠进行 ELS,然后对成年海马组织进行 RNA 测序分析。结果发现了与线粒体应激反应途径有关的持续转录变化,氧化磷酸化和蛋白质折叠是受母体分离影响的主要机制。值得注意的是,我们观察到的线粒体应激反应通路与从抑郁症患者海马组织中公开获得的 RNAseq 数据有明显的重叠。这种线粒体相关基因表达变化的跨物种一致性表明,线粒体应激可能在抑郁症的发病过程中起着关键作用。我们的研究结果凸显了海马线粒体应激反应作为抑郁症发病核心机制的潜在意义。我们还需要进一步的实验研究来加深对这些机制的理解。
{"title":"Cross-species analysis uncovers the mitochondrial stress response in the hippocampus as a shared mechanism in mouse early life stress and human depression","authors":"Bente M. Hofstra ,&nbsp;Emmy E. Hoeksema ,&nbsp;Martien JH. Kas ,&nbsp;Dineke S. Verbeek","doi":"10.1016/j.ynstr.2024.100643","DOIUrl":"https://doi.org/10.1016/j.ynstr.2024.100643","url":null,"abstract":"<div><p>Depression, or major depressive disorder, poses a significant burden for both individuals and society, affecting approximately 10.8% of the general population. This psychiatric disorder leads to approximately 800,000 deaths per year. A combination of genetic and environmental factors such as early life stress (ELS) increase the risk for development of depression in humans, and a clear role for the hippocampus in the pathophysiology of depression has been shown. Nevertheless, the underlying mechanisms of depression remain poorly understood, resulting in a lack of effective treatments. To better understand the core mechanisms underlying the development of depression, we used a cross-species design to investigate shared hippocampal pathophysiological mechanisms in mouse ELS and human depression. Mice were subjected to ELS by a maternal separation paradigm, followed by RNA sequencing analysis of the adult hippocampal tissue. This identified persistent transcriptional changes linked to mitochondrial stress response pathways, with oxidative phosphorylation and protein folding emerging as the main mechanisms affected by maternal separation. Remarkably, there was a significant overlap between the pathways involved in mitochondrial stress response we observed and publicly available RNAseq data from hippocampal tissue of depressive patients. This cross-species conservation of changes in gene expression of mitochondria-related genes suggests that mitochondrial stress may play a pivotal role in the development of depression. Our findings highlight the potential significance of the hippocampal mitochondrial stress response as a core mechanism underlying the development of depression. Further experimental investigations are required to expand our understanding of these mechanisms.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"31 ","pages":"Article 100643"},"PeriodicalIF":5.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000390/pdfft?md5=fac82eb9fd44871c7b1ef34015b2f78f&pid=1-s2.0-S2352289524000390-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroanatomical markers of social cognition in neglected adolescents 被忽视青少年社会认知的神经解剖标记
IF 5 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-05-13 DOI: 10.1016/j.ynstr.2024.100642
Catalina Trujillo-Llano , Agustín Sainz-Ballesteros , Fabián Suarez-Ardila , María Luz Gonzalez-Gadea , Agustín Ibáñez , Eduar Herrera , Sandra Baez

Growing up in neglectful households can impact multiple aspects of social cognition. However, research on neglect's effects on social cognition processes and their neuroanatomical correlates during adolescence is scarce. Here, we aimed to comprehensively assess social cognition processes (recognition of basic and contextual emotions, theory of mind, the experience of envy and Schadenfreude and empathy for pain) and their structural brain correlates in adolescents with legal neglect records within family-based care. First, we compared neglected adolescents (n = 27) with control participants (n = 25) on context-sensitive social cognition tasks while controlling for physical and emotional abuse and executive and intellectual functioning. Additionally, we explored the grey matter correlates of these domains through voxel-based morphometry. Compared to controls, neglected adolescents exhibited lower performance in contextual emotional recognition and theory of mind, higher levels of envy and Schadenfreude and diminished empathy. Physical and emotional abuse and executive or intellectual functioning did not explain these effects. Moreover, social cognition scores correlated with brain volumes in regions subserving social cognition and emotional processing. Our results underscore the potential impact of neglect on different aspects of social cognition during adolescence, emphasizing the necessity for preventive and intervention strategies to address these deficits in this population.

在被忽视的家庭中成长会对社会认知的多个方面产生影响。然而,有关青少年时期忽视对社会认知过程及其神经解剖相关性的影响的研究却很少。在此,我们旨在全面评估在家庭式照料中有合法忽视记录的青少年的社会认知过程(基本情绪和情境情绪的识别、心智理论、嫉妒和幸灾乐祸的体验以及对疼痛的同理心)及其大脑结构相关性。首先,我们比较了被忽视青少年(n = 27)和对照组参与者(n = 25)在情境敏感社会认知任务上的表现,同时控制了身体和情感虐待以及执行和智力功能。此外,我们还通过体素形态计量学探讨了这些领域的灰质相关性。与对照组相比,被忽视的青少年在情境情感识别和心智理论方面表现较差,嫉妒和幸灾乐祸程度较高,移情能力较弱。身体和情感虐待以及执行或智力功能并不能解释这些影响。此外,社会认知得分与社会认知和情绪处理区域的脑容量相关。我们的研究结果凸显了青少年时期忽视对社会认知不同方面的潜在影响,强调有必要采取预防和干预策略来解决这一人群的这些缺陷。
{"title":"Neuroanatomical markers of social cognition in neglected adolescents","authors":"Catalina Trujillo-Llano ,&nbsp;Agustín Sainz-Ballesteros ,&nbsp;Fabián Suarez-Ardila ,&nbsp;María Luz Gonzalez-Gadea ,&nbsp;Agustín Ibáñez ,&nbsp;Eduar Herrera ,&nbsp;Sandra Baez","doi":"10.1016/j.ynstr.2024.100642","DOIUrl":"https://doi.org/10.1016/j.ynstr.2024.100642","url":null,"abstract":"<div><p>Growing up in neglectful households can impact multiple aspects of social cognition. However, research on neglect's effects on social cognition processes and their neuroanatomical correlates during adolescence is scarce. Here, we aimed to comprehensively assess social cognition processes (recognition of basic and contextual emotions, theory of mind, the experience of envy and <em>Schadenfreude</em> and empathy for pain) and their structural brain correlates in adolescents with legal neglect records within family-based care. First, we compared neglected adolescents (<em>n</em> = 27) with control participants (<em>n</em> = 25) on context-sensitive social cognition tasks while controlling for physical and emotional abuse and executive and intellectual functioning. Additionally, we explored the grey matter correlates of these domains through voxel-based morphometry. Compared to controls, neglected adolescents exhibited lower performance in contextual emotional recognition and theory of mind, higher levels of envy and <em>Schadenfreude</em> and diminished empathy. Physical and emotional abuse and executive or intellectual functioning did not explain these effects. Moreover, social cognition scores correlated with brain volumes in regions subserving social cognition and emotional processing. Our results underscore the potential impact of neglect on different aspects of social cognition during adolescence, emphasizing the necessity for preventive and intervention strategies to address these deficits in this population.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"31 ","pages":"Article 100642"},"PeriodicalIF":5.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000389/pdfft?md5=e3d05bac79edcdc9e2a125ceab6e447b&pid=1-s2.0-S2352289524000389-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Neurobiology of Stress
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1