Pub Date : 2024-11-10DOI: 10.1016/j.neures.2024.11.003
Yoshio Iguchi, Richard Benton, Kazuto Kobayashi
Chemogenetics uses artificially-engineered proteins to modify the activity of cells, notably neurons, in response to small molecules. Although a common set of chemogenetic tools are the G protein-coupled receptor-based DREADDs, there has been great hope for ligand-gated, ion channel-type chemogenetic tools that directly impact neuronal excitability. We have devised such a technology by exploiting insect Ionotropic Receptors (IRs), a highly divergent subfamily of ionotropic glutamate receptors that evolved to detect diverse environmental chemicals. Here, we review a series of studies developing and applying this "IR-mediated neuronal activation" (IRNA) technology with the Drosophila melanogaster IR84a/IR8a complex, which detects phenyl-containing ligands. We also discuss how variants of IRNA could be produced by modifying the composition of the IR complex, using natural or engineered subunits, which would enable artificial activation of different cell populations in the brain in response to distinct chemicals.
化学遗传学利用人工合成的蛋白质来改变细胞(特别是神经元)对小分子的活性。虽然一套常见的化学遗传学工具是基于 G 蛋白偶联受体的 DREADDs,但人们一直对直接影响神经元兴奋性的配体门控离子通道型化学遗传学工具寄予厚望。我们利用昆虫的离子受体(IRs)设计出了这样一种技术,IRs 是一种高度分化的离子谷氨酸受体亚家族,在进化过程中可检测到多种环境化学物质。在此,我们回顾了利用黑腹果蝇 IR84a/IR8a 复合物开发和应用这种 "IR 介导的神经元激活"(IRNA)技术的一系列研究,IR84a/IR8a 复合物可检测含苯基的配体。我们还讨论了如何利用天然或人工合成的亚基,通过改变IR复合体的组成来制造IRNA的变体,从而实现人工激活大脑中不同的细胞群,以应对不同的化学物质。
{"title":"A chemogenetic technology using insect Ionotropic Receptors to stimulate target cell populations in the mammalian brain.","authors":"Yoshio Iguchi, Richard Benton, Kazuto Kobayashi","doi":"10.1016/j.neures.2024.11.003","DOIUrl":"10.1016/j.neures.2024.11.003","url":null,"abstract":"<p><p>Chemogenetics uses artificially-engineered proteins to modify the activity of cells, notably neurons, in response to small molecules. Although a common set of chemogenetic tools are the G protein-coupled receptor-based DREADDs, there has been great hope for ligand-gated, ion channel-type chemogenetic tools that directly impact neuronal excitability. We have devised such a technology by exploiting insect Ionotropic Receptors (IRs), a highly divergent subfamily of ionotropic glutamate receptors that evolved to detect diverse environmental chemicals. Here, we review a series of studies developing and applying this \"IR-mediated neuronal activation\" (IRNA) technology with the Drosophila melanogaster IR84a/IR8a complex, which detects phenyl-containing ligands. We also discuss how variants of IRNA could be produced by modifying the composition of the IR complex, using natural or engineered subunits, which would enable artificial activation of different cell populations in the brain in response to distinct chemicals.</p>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.neures.2024.11.002
Tomohiko Yoshizawa, Makoto Funahashi
The striatum consists of two anatomically and neurochemically distinct compartments, striosomes and the matrix, which receive dopaminergic inputs from the midbrain and exhibit distinct dopamine release dynamics in acute brain slices. Striosomes comprise approximately 15 % of the striatum by volume and are distributed mosaically. Therefore, it is difficult to selectively record dopamine dynamics in striosomes using traditional neurochemical measurements in behaving animals, and it is unclear whether distinct dynamics play a role in associative learning. In this study, we used transgenic mice selectively expressing Cre in striosomal neurons, combined with a fiber photometry technique, to selectively record dopamine release in striosomes during classical conditioning. Water-restricted mice could distinguish the conditioned stimulus (CS) associated with saccharin water from the air-puff-associated CS. The air-puff-associated CS evoked phasic dopamine release only in striosomes. Furthermore, air puff presentation induced dopamine release to striosomal neurons but suppressed release to striatal neurons non-selectively recorded. These findings suggest that dopamine is released in a differential manner in striosomes and the matrix in behaving animals and that dopamine release in striosomes is preferentially induced by the air-puff-associated CS and air puff presentation. These findings support the hypothesis that striosomal neurons play a dominant role in aversive stimuli prediction.
{"title":"Dopamine release in striatal striosome compartments in response to rewards and aversive outcomes during classical conditioning in mice.","authors":"Tomohiko Yoshizawa, Makoto Funahashi","doi":"10.1016/j.neures.2024.11.002","DOIUrl":"https://doi.org/10.1016/j.neures.2024.11.002","url":null,"abstract":"<p><p>The striatum consists of two anatomically and neurochemically distinct compartments, striosomes and the matrix, which receive dopaminergic inputs from the midbrain and exhibit distinct dopamine release dynamics in acute brain slices. Striosomes comprise approximately 15 % of the striatum by volume and are distributed mosaically. Therefore, it is difficult to selectively record dopamine dynamics in striosomes using traditional neurochemical measurements in behaving animals, and it is unclear whether distinct dynamics play a role in associative learning. In this study, we used transgenic mice selectively expressing Cre in striosomal neurons, combined with a fiber photometry technique, to selectively record dopamine release in striosomes during classical conditioning. Water-restricted mice could distinguish the conditioned stimulus (CS) associated with saccharin water from the air-puff-associated CS. The air-puff-associated CS evoked phasic dopamine release only in striosomes. Furthermore, air puff presentation induced dopamine release to striosomal neurons but suppressed release to striatal neurons non-selectively recorded. These findings suggest that dopamine is released in a differential manner in striosomes and the matrix in behaving animals and that dopamine release in striosomes is preferentially induced by the air-puff-associated CS and air puff presentation. These findings support the hypothesis that striosomal neurons play a dominant role in aversive stimuli prediction.</p>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.neures.2024.05.001
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by nuclear depletion and cytoplasmic aggregation of TAR DNA-binding protein-43 (TDP-43). TDP-43 plays a key role in regulating the splicing of numerous genes, including TARDBP. This review aims to delineate two aspects of ALS/FTD pathogenesis associated with TDP-43 function. First, we described novel mechanistic insights into the splicing of UNC13A, a TDP-43 target gene. Single nucleotide polymorphisms (SNPs) in UNC13A are the most common risk factors for ALS/FTD. We found that TDP-43 represses “cryptic exon” inclusion during UNC13A RNA splicing. A risk-associated SNP in this exon results in increased RNA levels of UNC13A retaining the cryptic exon. Second, we described the perturbation of the TDP-43 autoregulatory mechanism caused by age-related DNA demethylation. Aging is a major risk factor for sporadic ALS/FTD. Typically, TDP-43 levels are regulated via alternative splicing of TARDBP mRNA. This review focused on that TARDBP methylation is altered by aging, thereby disrupting TDP-43 autoregulation. It was found that demethylation reduces the efficiency of alternative splicing and increases TARDBP mRNA levels. Moreover, we demonstrated that, with aging, this region is demethylated in the human motor cortex and is associated with the early onset of ALS.
肌萎缩侧索硬化症(ALS)和额颞叶痴呆症(FTD)的特征是 TAR DNA 结合蛋白-43(TDP-43)的核耗竭和胞质聚集。TDP-43 在调节包括 TARDBP 在内的许多基因的剪接过程中发挥着关键作用。本综述旨在阐述 ALS/FTD 发病机制中与 TDP-43 功能相关的两个方面。首先,我们对 TDP-43 的靶基因 UNC13A 的剪接提供了新的机理认识。UNC13A 中的单核苷酸多态性(SNPs)是 ALS/FTD 最常见的风险因素。我们发现,在 UNC13A RNA 剪接过程中,TDP-43 会抑制 "隐性外显子 "的包含。该外显子中的风险相关 SNP 会导致保留隐性外显子的 UNC13A RNA 水平升高。其次,我们描述了与年龄相关的 DNA 去甲基化对 TDP-43 自动调节机制的干扰。衰老是散发性 ALS/FTD 的主要风险因素。通常,TDP-43的水平通过TARDBP mRNA的替代剪接来调节。我们假设 TARDBP 甲基化会因衰老而改变,从而破坏 TDP-43 的自动调节。我们发现,去甲基化会降低替代剪接的效率,增加 TARDBP mRNA 的水平。此外,我们还证明,随着年龄的增长,人类运动皮层中的这一区域会发生去甲基化,并与 ALS 的早期发病有关。
{"title":"Molecular mechanisms linking loss of TDP-43 function to amyotrophic lateral sclerosis/frontotemporal dementia-related genes","authors":"","doi":"10.1016/j.neures.2024.05.001","DOIUrl":"10.1016/j.neures.2024.05.001","url":null,"abstract":"<div><div>Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by nuclear depletion and cytoplasmic aggregation of TAR DNA-binding protein-43 (TDP-43). TDP-43 plays a key role in regulating the splicing of numerous genes, including <em>TARDBP</em>. This review aims to delineate two aspects of ALS/FTD pathogenesis associated with TDP-43 function. First, we described novel mechanistic insights into the splicing of <em>UNC13A</em>, a TDP-43 target gene. Single nucleotide polymorphisms (SNPs) in <em>UNC13A</em> are the most common risk factors for ALS/FTD. We found that TDP-43 represses “cryptic exon” inclusion during <em>UNC13A</em> RNA splicing. A risk-associated SNP in this exon results in increased RNA levels of <em>UNC13A</em> retaining the cryptic exon. Second, we described the perturbation of the TDP-43 autoregulatory mechanism caused by age-related DNA demethylation. Aging is a major risk factor for sporadic ALS/FTD. Typically, TDP-43 levels are regulated via alternative splicing of <em>TARDBP</em> mRNA. This review focused on that <em>TARDBP</em> methylation is altered by aging, thereby disrupting TDP-43 autoregulation. It was found that demethylation reduces the efficiency of alternative splicing and increases <em>TARDBP</em> mRNA levels. Moreover, we demonstrated that, with aging, this region is demethylated in the human motor cortex and is associated with the early onset of ALS.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"208 ","pages":"Pages 1-7"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.neures.2024.07.001
We estimated the severity of cerebellar ataxia by analyzing gait rhythm. We measured the step times in patients with pure cerebellar ataxia and healthy controls and then analyzed the distribution of the ratios of adjacent times. Gait rhythm displayed the best adaptation when expressed as the sum of the power law and lognormal distributions in both groups, and the groups could be distinguished by the exponent of the power law distribution, reflecting the fractal property of gait rhythm. Gait rhythm might reflect different features of impairment in patients with cerebellar ataxia, making it a useful continuous scale for cerebellar ataxia.
{"title":"Gait rhythm analysis as a new continuous scale for cerebellar ataxia: Power law and lognormal components represent the ataxic gait quantity","authors":"","doi":"10.1016/j.neures.2024.07.001","DOIUrl":"10.1016/j.neures.2024.07.001","url":null,"abstract":"<div><div>We estimated the severity of cerebellar ataxia by analyzing gait rhythm. We measured the step times in patients with pure cerebellar ataxia and healthy controls and then analyzed the distribution of the ratios of adjacent times. Gait rhythm displayed the best adaptation when expressed as the sum of the power law and lognormal distributions in both groups, and the groups could be distinguished by the exponent of the power law distribution, reflecting the fractal property of gait rhythm. Gait rhythm might reflect different features of impairment in patients with cerebellar ataxia, making it a useful continuous scale for cerebellar ataxia.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"208 ","pages":"Pages 39-43"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.neures.2024.07.002
Run-Qi Li , Wei-Wen Zhu , Cheng Li , Ke-Bin Zhan , Ping Zhang , Fan Xiao , Jia-Mei Jiang , Wei Zou
Our previous studies have reported that hydrogen sulfide (H2S) has ability to improve diabetes-associated cognitive dysfunction (DACD), but the exact mechanisms remain unknown. Recent research reveals that Warburg effect is associated with synaptic plasticity which plays a key role in cognition promotion. Herein, the present study was aimed to demonstrate whether hippocampal Warburg effect contributes to H2S-ameliorated DACD and further explore its potential mechanism. We found that H2S promoted the hippocampal Warburg effect and inhibited the OxPhos in the hippocampus of STZ-induced diabetic rats. It also improved the hippocampal synaptic plasticity in STZ-induced diabetic rats, as evidenced by the change of microstructures and the expression of different key-enzymes. Furthermore, inhibited hippocampal Warburg effect induced by DCA markedly abolished the improvement of H2S on synaptic plasticity in the hippocampus of STZ-induced diabetic rats. DCA blocked H2S-attenuated the cognitive dysfunction in STZ-induced diabetic rats, according to the Y-maze, Novel Objective Recognition, and Morris Water Maze tests. Collectively, these findings indicated that the hippocampal Warburg effect mediates H2S-ameliorated DACD by improving hippocampal synaptic plasticity.
{"title":"Hippocampal warburg effect mediates hydrogen sulfide-ameliorated diabetes-associated cognitive dysfunction: Involving promotion of hippocampal synaptic plasticity","authors":"Run-Qi Li , Wei-Wen Zhu , Cheng Li , Ke-Bin Zhan , Ping Zhang , Fan Xiao , Jia-Mei Jiang , Wei Zou","doi":"10.1016/j.neures.2024.07.002","DOIUrl":"10.1016/j.neures.2024.07.002","url":null,"abstract":"<div><div>Our previous studies have reported that hydrogen sulfide (H<sub>2</sub>S) has ability to improve diabetes-associated cognitive dysfunction (DACD), but the exact mechanisms remain unknown. Recent research reveals that Warburg effect is associated with synaptic plasticity which plays a key role in cognition promotion. Herein, the present study was aimed to demonstrate whether hippocampal Warburg effect contributes to H<sub>2</sub>S-ameliorated DACD and further explore its potential mechanism. We found that H<sub>2</sub>S promoted the hippocampal Warburg effect and inhibited the OxPhos in the hippocampus of STZ-induced diabetic rats. It also improved the hippocampal synaptic plasticity in STZ-induced diabetic rats, as evidenced by the change of microstructures and the expression of different key-enzymes. Furthermore, inhibited hippocampal Warburg effect induced by DCA markedly abolished the improvement of H<sub>2</sub>S on synaptic plasticity in the hippocampus of STZ-induced diabetic rats. DCA blocked H<sub>2</sub>S-attenuated the cognitive dysfunction in STZ-induced diabetic rats, according to the Y-maze, Novel Objective Recognition, and Morris Water Maze tests. Collectively, these findings indicated that the hippocampal Warburg effect mediates H<sub>2</sub>S-ameliorated DACD by improving hippocampal synaptic plasticity.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"208 ","pages":"Pages 15-28"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.neures.2024.07.004
Yu Katsuyama , Mitsuharu Hattori
Alzheimer’s disease (AD) is the most prevalent type of dementia; therefore, there is a high demand for therapeutic medication targeting it. In this context, extensive research has been conducted to identify molecular targets for drugs. AD manifests through two primary pathological signs: senile plaques and neurofibrillary tangles, caused by accumulations of amyloid-beta (Aβ) and phosphorylated tau, respectively. Thus, studies concerning the molecular mechanisms underlying AD etiology have primarily focused on Aβ generation and tau phosphorylation, with the anticipation of uncovering a signaling pathway impacting these molecular processes. Over the past two decades, studies using not only experimental model systems but also examining human brains have accumulated fragmentary evidences suggesting that REELIN signaling pathway is deeply involved in AD. Here, we explore REELIN signaling pathway and its involvement in memory function within the brain and review studies investigating molecular connections between REELIN signaling pathway and AD etiology. This review aims to understand how the manipulation (activation) of this pathway might ameliorate the disease’s etiology.
阿尔茨海默病(AD)是最常见的痴呆症类型,因此对针对该病的治疗药物需求量很大。在这种情况下,人们进行了广泛的研究,以确定药物的分子靶点。老年痴呆症有两种主要病理表现:老年斑和神经纤维缠结,分别由淀粉样蛋白-β(Aβ)和磷酸化 tau 累积引起。因此,有关老年痴呆症病因的分子机制研究主要集中在 Aβ 的生成和 tau 的磷酸化上,以期发现影响这些分子过程的信号通路。在过去的二十年中,不仅利用实验模型系统,而且对人脑的研究也积累了一些零星的证据,表明REELIN信号通路与AD有很深的关系。在此,我们探讨了REELIN信号通路及其在大脑记忆功能中的参与,并回顾了研究REELIN信号通路与AD病因之间分子联系的研究。本综述旨在了解操纵(激活)该通路可能会如何改善该疾病的病因。
{"title":"REELIN ameliorates Alzheimer's disease, but how?","authors":"Yu Katsuyama , Mitsuharu Hattori","doi":"10.1016/j.neures.2024.07.004","DOIUrl":"10.1016/j.neures.2024.07.004","url":null,"abstract":"<div><div>Alzheimer’s disease (AD) is the most prevalent type of dementia; therefore, there is a high demand for therapeutic medication targeting it. In this context, extensive research has been conducted to identify molecular targets for drugs. AD manifests through two primary pathological signs: senile plaques and neurofibrillary tangles, caused by accumulations of amyloid-beta (Aβ) and phosphorylated tau, respectively. Thus, studies concerning the molecular mechanisms underlying AD etiology have primarily focused on Aβ generation and tau phosphorylation, with the anticipation of uncovering a signaling pathway impacting these molecular processes. Over the past two decades, studies using not only experimental model systems but also examining human brains have accumulated fragmentary evidences suggesting that REELIN signaling pathway is deeply involved in AD. Here, we explore REELIN signaling pathway and its involvement in memory function within the brain and review studies investigating molecular connections between REELIN signaling pathway and AD etiology. This review aims to understand how the manipulation (activation) of this pathway might ameliorate the disease’s etiology.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"208 ","pages":"Pages 8-14"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.neures.2024.06.005
We investigated whether soticlestat (TAK-935), a newly discovered cholesterol 24-hydroxylase (CH24H) inhibitor now in phase 3 clinical trials for Dravet and Lennox-Gastaut syndromes, has effects on neurodegeneration in both chronic and acute animal models associated with glutamate hyperexcitation. Soticlestat was administered at doses that approximately halve 24S-hydroxycholesterol in both experiments. In the kainic acid (KA)-induced acute hippocampal degeneration model, soticlestat ameliorated inflammatory cytokine expression, hippocampal degeneration, and memory impairment. We ruled out the possibility that soticlestat directly interferes with KA binding to the KA receptor, or that 24S-hydroxycholesterol modulates KA receptor signaling, by conducting receptor binding and cell death assays. In the PS19 chronic degeneration model of tauopathy, treatment effects were observed in neurodegeneration markers. Notably, there was a significant correlation between the levels of brain 24S-hydroxycholesterol and a proinflammatory cytokine, tumor necrosis factor-α, which is implicated in cognitive decline and lowering of seizure threshold. This is the first study demonstrating that CH24H inhibition can alleviate neurodegeneration concomitant with neuroinflammation. Herein, we discuss the interplay among 24S-hydroxycholesterol production, neuroinflammation, and excitotoxicity. Effects on neurodegeneration and neuroinflammation demonstrated in two preclinical models suggest that soticlestat is effective in ameliorating seizures and addressing cognitive dysfunction in seizure disorders.
{"title":"Characterization of soticlestat, a novel cholesterol 24-hydroxylase inhibitor, in acute and chronic neurodegeneration models","authors":"","doi":"10.1016/j.neures.2024.06.005","DOIUrl":"10.1016/j.neures.2024.06.005","url":null,"abstract":"<div><div>We investigated whether soticlestat (TAK-935), a newly discovered cholesterol 24-hydroxylase (CH24H) inhibitor now in phase 3 clinical trials for Dravet and Lennox-Gastaut syndromes, has effects on neurodegeneration in both chronic and acute animal models associated with glutamate hyperexcitation. Soticlestat was administered at doses that approximately halve 24S-hydroxycholesterol in both experiments. In the kainic acid (KA)-induced acute hippocampal degeneration model, soticlestat ameliorated inflammatory cytokine expression, hippocampal degeneration, and memory impairment. We ruled out the possibility that soticlestat directly interferes with KA binding to the KA receptor, or that 24S-hydroxycholesterol modulates KA receptor signaling, by conducting receptor binding and cell death assays. In the PS19 chronic degeneration model of tauopathy, treatment effects were observed in neurodegeneration markers. Notably, there was a significant correlation between the levels of brain 24S-hydroxycholesterol and a proinflammatory cytokine, tumor necrosis factor-α, which is implicated in cognitive decline and lowering of seizure threshold. This is the first study demonstrating that CH24H inhibition can alleviate neurodegeneration concomitant with neuroinflammation. Herein, we discuss the interplay among 24S-hydroxycholesterol production, neuroinflammation, and excitotoxicity. Effects on neurodegeneration and neuroinflammation demonstrated in two preclinical models suggest that soticlestat is effective in ameliorating seizures and addressing cognitive dysfunction in seizure disorders.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"208 ","pages":"Pages 29-38"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141335085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Previously, the integration of comparative biological and neuroscientific approaches has led to significant advancements in social neuroscience. This review highlights the potential and future directions of evolutionary social neuroscience research utilizing medaka fishes (the family Adrianichthyidae) including Japanese medaka (Oryzias latipes). We focus on medaka social cognitive capabilities and mate choice behavior, particularly emphasizing mate preference using visual cues. Medaka fishes are also advantageous due to their abundant genetic resources, extensive genomic information, and the relative ease of laboratory breeding and genetic manipulation. Here we present some research examples of both the conventional neuroscience approach and evolutionary approach involving medaka fishes and other species. We also discuss the prospects of uncovering the molecular and cellular mechanisms underlying the diversity of visual mate preference among species. Especially, we introduce that the single-cell transcriptome technology, particularly in conjunction with 'Adaptive Circuitry Census', is an innovative tool that bridges comparative biological methods and neuroscientific approaches. Evolutionary social neuroscience research using medaka has the potential to unveil fundamental principles in neuroscience and elucidate the mechanisms responsible for generating diversity in mating strategies.
{"title":"The Medaka approach to evolutionary social neuroscience.","authors":"Satoshi Ansai, Towako Hiraki-Kajiyama, Ryutaro Ueda, Takahide Seki, Saori Yokoi, Takafumi Katsumura, Hideaki Takeuchi","doi":"10.1016/j.neures.2024.10.005","DOIUrl":"10.1016/j.neures.2024.10.005","url":null,"abstract":"<p><p>Previously, the integration of comparative biological and neuroscientific approaches has led to significant advancements in social neuroscience. This review highlights the potential and future directions of evolutionary social neuroscience research utilizing medaka fishes (the family Adrianichthyidae) including Japanese medaka (Oryzias latipes). We focus on medaka social cognitive capabilities and mate choice behavior, particularly emphasizing mate preference using visual cues. Medaka fishes are also advantageous due to their abundant genetic resources, extensive genomic information, and the relative ease of laboratory breeding and genetic manipulation. Here we present some research examples of both the conventional neuroscience approach and evolutionary approach involving medaka fishes and other species. We also discuss the prospects of uncovering the molecular and cellular mechanisms underlying the diversity of visual mate preference among species. Especially, we introduce that the single-cell transcriptome technology, particularly in conjunction with 'Adaptive Circuitry Census', is an innovative tool that bridges comparative biological methods and neuroscientific approaches. Evolutionary social neuroscience research using medaka has the potential to unveil fundamental principles in neuroscience and elucidate the mechanisms responsible for generating diversity in mating strategies.</p>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.neures.2024.10.006
Kyoungjoo Cho, Gyung Whan Kim
Huntington's disease (HD) is a neurodegenerative disorder characterized by the presence of abnormally expanded polyglutamine tracts in huntingtin protein (HTT). Mutant HTT disrupts synaptic transmission and plasticity, particularly in the striatum and cortex, leading to early dysfunctions, such as altered neurotransmitter release, impaired synaptic vesicle recycling, and disrupted postsynaptic receptor function. Synaptic loss precedes neuronal degeneration and contributes to disease progression. Neurexin1 (NRXN1), a synaptic cell adhesion molecule primarily located in the presynaptic membrane, plays a crucial role in maintaining synaptic integrity. The present study investigated the role of NRXN1 in HD. This study researched whether the changed level has been related to expanded polyQ stretch and disease progression. Here, we report a reduction in NRXN1 levels in post-symptomatic HD mice and in neuronal cells expressing abnormally expanded polyQ tracts. Mutant HTT was found to decrease NRXN1 levels while increasing LAMP2A levels, which promotes lysosomal degradation of NRXN1. In HD cells expressing Q111, downregulated LAMP2A restored NRXN1 levels and maintained cell proliferation compared with cells expressing Q7. These findings suggest that NRXN1 is regulated by LAMP2A-mediated way and that decreased NRXN1 levels are associated with symptomatic progression and neuronal cell loss in HD.
{"title":"Neurexin1 level in Huntington's Disease and decreased Neurexin1 in disease progression.","authors":"Kyoungjoo Cho, Gyung Whan Kim","doi":"10.1016/j.neures.2024.10.006","DOIUrl":"10.1016/j.neures.2024.10.006","url":null,"abstract":"<p><p>Huntington's disease (HD) is a neurodegenerative disorder characterized by the presence of abnormally expanded polyglutamine tracts in huntingtin protein (HTT). Mutant HTT disrupts synaptic transmission and plasticity, particularly in the striatum and cortex, leading to early dysfunctions, such as altered neurotransmitter release, impaired synaptic vesicle recycling, and disrupted postsynaptic receptor function. Synaptic loss precedes neuronal degeneration and contributes to disease progression. Neurexin1 (NRXN1), a synaptic cell adhesion molecule primarily located in the presynaptic membrane, plays a crucial role in maintaining synaptic integrity. The present study investigated the role of NRXN1 in HD. This study researched whether the changed level has been related to expanded polyQ stretch and disease progression. Here, we report a reduction in NRXN1 levels in post-symptomatic HD mice and in neuronal cells expressing abnormally expanded polyQ tracts. Mutant HTT was found to decrease NRXN1 levels while increasing LAMP2A levels, which promotes lysosomal degradation of NRXN1. In HD cells expressing Q111, downregulated LAMP2A restored NRXN1 levels and maintained cell proliferation compared with cells expressing Q7. These findings suggest that NRXN1 is regulated by LAMP2A-mediated way and that decreased NRXN1 levels are associated with symptomatic progression and neuronal cell loss in HD.</p>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1016/j.neures.2024.10.004
Aya Okamoto, Miku Uenaka, Yuki Ito, Yuta Kuroki, Tomohiro Miyasaka, Koji Toda, Shizuko Hiryu, Kohta I Kobayasi, Yuta Tamai
Infrared laser stimulation of the cochlea has been proposed as a possible alternative to conventional auditory prostheses. Whereas previous studies have focused primarily on the short-term effects of laser stimulation, the practical application of this technics requires an investigation into whether prolonged laser exposure can induce neural responses and safely. This study assessed the effect of laser-induced damage to the cochlea on auditory perception using Mongolian gerbils (Meriones unguiculatus) trained with a classical conditioning task. The broadband noise was presented as a conditioned stimulus, and reward licking was recorded as a conditioned response. After training, the subject's cochlea was exposed to a continuous pulsed laser for 15 h. Broadband noise of various intensities was presented without pairing it with water before and after laser exposure to assess the decrease in auditory perception due to laser-induced injury. The licking rate did not change after laser exposure of 6.6 W/cm2 or weaker but drastically decreased after 26.4 W/cm2 or higher. These findings showed, for the first time, that the safety margin of long-term, at least several hours, cochlear laser stimulation exists and will contribute to the appropriate delimitation of the safe and effective laser stimulation parameters in future research.
{"title":"Safety evaluations for transtympanic laser stimulation of the cochlea in Mongolian gerbils (Meriones unguiculatus).","authors":"Aya Okamoto, Miku Uenaka, Yuki Ito, Yuta Kuroki, Tomohiro Miyasaka, Koji Toda, Shizuko Hiryu, Kohta I Kobayasi, Yuta Tamai","doi":"10.1016/j.neures.2024.10.004","DOIUrl":"10.1016/j.neures.2024.10.004","url":null,"abstract":"<p><p>Infrared laser stimulation of the cochlea has been proposed as a possible alternative to conventional auditory prostheses. Whereas previous studies have focused primarily on the short-term effects of laser stimulation, the practical application of this technics requires an investigation into whether prolonged laser exposure can induce neural responses and safely. This study assessed the effect of laser-induced damage to the cochlea on auditory perception using Mongolian gerbils (Meriones unguiculatus) trained with a classical conditioning task. The broadband noise was presented as a conditioned stimulus, and reward licking was recorded as a conditioned response. After training, the subject's cochlea was exposed to a continuous pulsed laser for 15 h. Broadband noise of various intensities was presented without pairing it with water before and after laser exposure to assess the decrease in auditory perception due to laser-induced injury. The licking rate did not change after laser exposure of 6.6 W/cm<sup>2</sup> or weaker but drastically decreased after 26.4 W/cm<sup>2</sup> or higher. These findings showed, for the first time, that the safety margin of long-term, at least several hours, cochlear laser stimulation exists and will contribute to the appropriate delimitation of the safe and effective laser stimulation parameters in future research.</p>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}