首页 > 最新文献

npj Materials Degradation最新文献

英文 中文
DATACORTECH: artificial intelligence platform for the virtual screen of aluminum corrosion inhibitors DATACORTECH:用于虚拟筛选铝腐蚀抑制剂的人工智能平台
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-11 DOI: 10.1038/s41529-024-00489-z
Tiago L. P. Galvão, Inês Ferreira, Frederico Maia, José R. B. Gomes, João Tedim
The machine learning framework reported herein can greatly accelerate the development of more effective and sustainable corrosion inhibitors for aluminum alloys, which still rely mostly on the experience of corrosion scientists, and trial and error laboratory testing. It can be used to design inhibitors for specific applications, which can be immobilized into nanocontainers or included directly into coatings in the search for less hazardous corrosion protective technologies. Therefore, a machine learning (ML) classification model that allows to identify promising compounds ( > 70% inhibitor efficiency) among less promising ones, and an online application ( https://datacor.shinyapps.io/datacortech/ ) were developed for the virtual screen (simulation) of potential inhibitors for aluminum alloys, capable of considering the molecular structure and the influence of pH as an input.
本文所报告的机器学习框架可大大加快更有效、更可持续的铝合金缓蚀剂的开发速度,而这些缓蚀剂的开发仍主要依赖于腐蚀科学家的经验以及实验室测试的反复试验。它可用于为特定应用设计抑制剂,这些抑制剂可固定在纳米容器中或直接加入涂层中,以寻求危害较小的腐蚀防护技术。因此,我们开发了一个机器学习(ML)分类模型,该模型可以从前景较差的化合物中识别出有潜力的化合物(抑制剂效率为 70%),并开发了一个在线应用程序(https://datacor.shinyapps.io/datacortech/),用于虚拟筛选(模拟)潜在的铝合金抑制剂,该应用程序可以将分子结构和 pH 值的影响作为输入。
{"title":"DATACORTECH: artificial intelligence platform for the virtual screen of aluminum corrosion inhibitors","authors":"Tiago L. P. Galvão, Inês Ferreira, Frederico Maia, José R. B. Gomes, João Tedim","doi":"10.1038/s41529-024-00489-z","DOIUrl":"10.1038/s41529-024-00489-z","url":null,"abstract":"The machine learning framework reported herein can greatly accelerate the development of more effective and sustainable corrosion inhibitors for aluminum alloys, which still rely mostly on the experience of corrosion scientists, and trial and error laboratory testing. It can be used to design inhibitors for specific applications, which can be immobilized into nanocontainers or included directly into coatings in the search for less hazardous corrosion protective technologies. Therefore, a machine learning (ML) classification model that allows to identify promising compounds ( > 70% inhibitor efficiency) among less promising ones, and an online application ( https://datacor.shinyapps.io/datacortech/ ) were developed for the virtual screen (simulation) of potential inhibitors for aluminum alloys, capable of considering the molecular structure and the influence of pH as an input.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-9"},"PeriodicalIF":6.6,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00489-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyepitaxial grain matching to study the oxidation of uranium dioxide 研究二氧化铀氧化的多外延晶粒匹配
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-11 DOI: 10.1038/s41529-024-00479-1
Jacek Wasik, Joseph Sutcliffe, Renaud Podor, Jarrod Lewis, James Edward Darnbrough, Sophie Rennie, Syed Akbar Hussain, Christopher Bell, Daniel Alexander Chaney, Gareth Griffiths, Lottie Mae Harding, Florence Legg, Eleanor Lawrence Bright, Rebecca Nicholls, Yadukrishnan Sasikumar, Angus Siberry, Philip Smith, Ross Springell
Although the principal physical behaviour of a material is inherently connected to its fundamental crystal structure, the behaviours observed in the real-world are often driven by the microstructure, which for many polycrystalline materials, equates to the size and shape of the constituent crystal grains. Here we highlight a cutting edge synthesis route to the controlled engineering of grain structures in thin films and the simplification of associated 3-dimensional problems to less complex 2D ones. This has been applied to the actinide ceramic, uranium dioxide, to replicate structures typical in nuclear fission fuel pellets, in order to investigate the oxidation and subsequent transformation of cubic UO2 to orthorhombic U3O8. This article shows how this synthesis approach could be utilised to investigate a range of phenomena, affected by grain morphology, and highlights some unusual results in the oxidation behaviour of UO2, regarding the phase transition to U3O8.
虽然一种材料的主要物理特性与其基本晶体结构有着内在联系,但在现实世界中观察到的特性往往是由微观结构驱动的,对于许多多晶材料来说,微观结构等同于组成晶体晶粒的大小和形状。在此,我们重点介绍一种尖端的合成方法,用于控制薄膜中的晶粒结构,并将相关的三维问题简化为不太复杂的二维问题。该方法已应用于锕系元素陶瓷二氧化铀,复制了核裂变燃料芯块中的典型结构,以研究立方氧化铀到正方氧化铀的氧化及随后的转化过程。这篇文章展示了如何利用这种合成方法来研究受晶粒形态影响的一系列现象,并重点介绍了二氧化铀氧化行为中有关向八氧化三铀相变的一些不寻常结果。
{"title":"Polyepitaxial grain matching to study the oxidation of uranium dioxide","authors":"Jacek Wasik, Joseph Sutcliffe, Renaud Podor, Jarrod Lewis, James Edward Darnbrough, Sophie Rennie, Syed Akbar Hussain, Christopher Bell, Daniel Alexander Chaney, Gareth Griffiths, Lottie Mae Harding, Florence Legg, Eleanor Lawrence Bright, Rebecca Nicholls, Yadukrishnan Sasikumar, Angus Siberry, Philip Smith, Ross Springell","doi":"10.1038/s41529-024-00479-1","DOIUrl":"10.1038/s41529-024-00479-1","url":null,"abstract":"Although the principal physical behaviour of a material is inherently connected to its fundamental crystal structure, the behaviours observed in the real-world are often driven by the microstructure, which for many polycrystalline materials, equates to the size and shape of the constituent crystal grains. Here we highlight a cutting edge synthesis route to the controlled engineering of grain structures in thin films and the simplification of associated 3-dimensional problems to less complex 2D ones. This has been applied to the actinide ceramic, uranium dioxide, to replicate structures typical in nuclear fission fuel pellets, in order to investigate the oxidation and subsequent transformation of cubic UO2 to orthorhombic U3O8. This article shows how this synthesis approach could be utilised to investigate a range of phenomena, affected by grain morphology, and highlights some unusual results in the oxidation behaviour of UO2, regarding the phase transition to U3O8.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-6"},"PeriodicalIF":6.6,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00479-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141614794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Ion migration mechanisms in the early stages of drying and degradation of oil paint films 作者更正:油漆薄膜干燥和降解初期的离子迁移机制
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-09 DOI: 10.1038/s41529-024-00491-5
Margherita Gnemmi, Laura Fuster-Lòpez, Marion Mecklenburg, Alison Murray, Sarah Sands, Greg Watson, Francesca Caterina Izzo
{"title":"Author Correction: Ion migration mechanisms in the early stages of drying and degradation of oil paint films","authors":"Margherita Gnemmi, Laura Fuster-Lòpez, Marion Mecklenburg, Alison Murray, Sarah Sands, Greg Watson, Francesca Caterina Izzo","doi":"10.1038/s41529-024-00491-5","DOIUrl":"10.1038/s41529-024-00491-5","url":null,"abstract":"","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-1"},"PeriodicalIF":6.6,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00491-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of biomaterial degradation assessment approaches employed in the biomedical field 生物医学领域采用的生物材料降解评估方法综述
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-06 DOI: 10.1038/s41529-024-00487-1
Hillary Mndlovu, Pradeep Kumar, Lisa C. du Toit, Yahya E. Choonara
The biological response to biomaterials plays a crucial role in selecting suitable materials for the formulation and development of tissue engineering platforms. Biodegradation is one of the properties that is considered in selecting appropriate biomaterials for biomedical applications. Biodegradation is the process of breaking down large molecules into smaller molecules with/without the aid of catalytic enzymes. The biodegradation process is crucial in the chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) process of biomaterials and small molecules in the body. Degradation of biomaterials can be followed by assessing the physical, mechanical, and chemical attributes of biomaterials. There are several techniques/parameters that can be targeted when studying the degradation of biomaterials, with gravimetric analysis, surface erosion, and morphological changes being the largely employed techniques. However, the techniques present a few limitations, such as technical errors and material solubility being mistaken for degradation, and these techniques can infer but not confirm degradation as they do not provide the chemical composition of fragmenting/fragmented molecules. The American Society for Testing and Materials (ASTM) guidelines provide techniques and parameters for assessing biodegradation. However, the ASTM guidelines for degradation assessment approaches and techniques need to be updated to provide sufficient evidence to draw conclusive decisions regarding the degradation of biomaterials. In this review, the degradation assessment approaches and techniques are critically reviewed about their advantages and disadvantages, and to provide suggestions on how they can still play a role in assessing the degradation of biomaterials. This review could assist researchers employ cost-effective, efficient, and multiple degradation assessment techniques to evaluate and provide sufficient information about the degradation of biomaterials. Suggested future ASTM guidelines for assessing biodegradation should include measuring parameters (such as chemical, mechanical, or physical attributes of biomaterials) in real-time, employing non-invasive, continuous, and automated processes.
生物材料的生物反应在为组织工程平台的配方和开发选择合适材料方面起着至关重要的作用。生物降解是为生物医学应用选择合适的生物材料时要考虑的特性之一。生物降解是大分子在催化酶的作用下或不在催化酶的作用下分解成小分子的过程。生物降解过程对生物材料和小分子在体内的化学吸收、分布、代谢、排泄和毒性(ADMET)过程至关重要。可以通过评估生物材料的物理、机械和化学属性来跟踪生物材料的降解过程。在研究生物材料降解时,有几种技术/参数可以作为研究对象,其中主要采用的是重力分析、表面侵蚀和形态变化技术。不过,这些技术也有一些局限性,如技术误差和材料溶解性被误认为是降解,而且这些技术不能提供碎片/碎裂分子的化学成分,因此只能推断而不能证实降解。美国材料与试验协会 (ASTM) 准则提供了评估生物降解的技术和参数。不过,ASTM 准则中的降解评估方法和技术需要更新,以便提供足够的证据,对生物材料的降解做出决定。本综述对降解评估方法和技术的优缺点进行了批判性评述,并就这些方法和技术如何在评估生物材料降解方面发挥作用提出了建议。本综述可帮助研究人员采用经济、高效和多种降解评估技术来评估生物材料的降解情况,并提供足够的相关信息。建议未来评估生物降解的 ASTM 准则应包括实时测量参数(如生物材料的化学、机械或物理属性),采用非侵入式、连续和自动化流程。
{"title":"A review of biomaterial degradation assessment approaches employed in the biomedical field","authors":"Hillary Mndlovu, Pradeep Kumar, Lisa C. du Toit, Yahya E. Choonara","doi":"10.1038/s41529-024-00487-1","DOIUrl":"10.1038/s41529-024-00487-1","url":null,"abstract":"The biological response to biomaterials plays a crucial role in selecting suitable materials for the formulation and development of tissue engineering platforms. Biodegradation is one of the properties that is considered in selecting appropriate biomaterials for biomedical applications. Biodegradation is the process of breaking down large molecules into smaller molecules with/without the aid of catalytic enzymes. The biodegradation process is crucial in the chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) process of biomaterials and small molecules in the body. Degradation of biomaterials can be followed by assessing the physical, mechanical, and chemical attributes of biomaterials. There are several techniques/parameters that can be targeted when studying the degradation of biomaterials, with gravimetric analysis, surface erosion, and morphological changes being the largely employed techniques. However, the techniques present a few limitations, such as technical errors and material solubility being mistaken for degradation, and these techniques can infer but not confirm degradation as they do not provide the chemical composition of fragmenting/fragmented molecules. The American Society for Testing and Materials (ASTM) guidelines provide techniques and parameters for assessing biodegradation. However, the ASTM guidelines for degradation assessment approaches and techniques need to be updated to provide sufficient evidence to draw conclusive decisions regarding the degradation of biomaterials. In this review, the degradation assessment approaches and techniques are critically reviewed about their advantages and disadvantages, and to provide suggestions on how they can still play a role in assessing the degradation of biomaterials. This review could assist researchers employ cost-effective, efficient, and multiple degradation assessment techniques to evaluate and provide sufficient information about the degradation of biomaterials. Suggested future ASTM guidelines for assessing biodegradation should include measuring parameters (such as chemical, mechanical, or physical attributes of biomaterials) in real-time, employing non-invasive, continuous, and automated processes.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-19"},"PeriodicalIF":6.6,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00487-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymerised forms in the zirconium conversion coatings on cold-rolled steel: proof of concept 冷轧钢板锆转化涂层中的聚合形式:概念验证
IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-18 DOI: 10.1038/s41529-024-00485-3
Ana Kraš, Ingrid Milošev, Antoine Seyeux, Philippe Marcus
This study validates the proposed polymerised structure, including tetrameric polynuclear species, of solid amorphous oxyhydroxide zirconium conversion coatings on cold-rolled steel using ToF-SIMS. Tetramers are formed at pH near 4 (and possibly higher), with thickness increasing over extended conversion times. EIS in simulated acid rain further demonstrates that optimal coating formation requires a pH of at least 4 and a sufficient conversion time for adequate thickness, confirmed by the high-frequency EIS loop. Tetramer forms were not observed when the coatings were prepared at lower pH or shorter conversion time, proving that the polymerisation step is crucial for obtaining the coatings offering adequate corrosion protection.
本研究利用 ToF-SIMS 验证了所提出的冷轧钢固态无定形氢氧化锆转化涂层的聚合结构,包括四聚体多核物种。四聚物在 pH 值接近 4(也可能更高)时形成,厚度随着转化时间的延长而增加。在模拟酸雨中进行的 EIS 进一步证明,最佳涂层形成需要至少 4 的 pH 值和足够的转化时间才能达到足够的厚度,这一点已被高频 EIS 循环所证实。在较低的 pH 值或较短的转化时间下制备涂层时,没有观察到四聚体形式,这证明聚合步骤对于获得具有足够腐蚀保护能力的涂层至关重要。
{"title":"Polymerised forms in the zirconium conversion coatings on cold-rolled steel: proof of concept","authors":"Ana Kraš, Ingrid Milošev, Antoine Seyeux, Philippe Marcus","doi":"10.1038/s41529-024-00485-3","DOIUrl":"10.1038/s41529-024-00485-3","url":null,"abstract":"This study validates the proposed polymerised structure, including tetrameric polynuclear species, of solid amorphous oxyhydroxide zirconium conversion coatings on cold-rolled steel using ToF-SIMS. Tetramers are formed at pH near 4 (and possibly higher), with thickness increasing over extended conversion times. EIS in simulated acid rain further demonstrates that optimal coating formation requires a pH of at least 4 and a sufficient conversion time for adequate thickness, confirmed by the high-frequency EIS loop. Tetramer forms were not observed when the coatings were prepared at lower pH or shorter conversion time, proving that the polymerisation step is crucial for obtaining the coatings offering adequate corrosion protection.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-6"},"PeriodicalIF":5.1,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00485-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of structural disorder induced by external irradiation with heavy ions on the alteration of a four oxide borosilicate glass 重离子外部辐照引起的结构紊乱对四氧化物硼硅酸盐玻璃变化的影响
IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-17 DOI: 10.1038/s41529-024-00483-5
Stéphane Gin, Mélanie Taron, Hélène Arena, Jean-Marc Delaye
The irradiation of glass by heavy ions induces structural damage, generally leading to a decrease in its chemical durability whose amplitude strongly depends on the glass chemical composition. Here, we investigate the effects of irradiation by 7 MeV Au ions (simulating the main ballistic effects induced by self-irradiation in nuclear glass) on the behavior of a 4-oxide borosilicate glass in both the initial and residual dissolution regimes. The comparison between irradiated and non-irradiated glasses provides insights into the predominant atomic mechanisms governing glass alteration processes. The most pronounced effect is observed on interdiffusion in acidic conditions, with the rate increased by more than an order of magnitude for the irradiated glass. We show that both the interdiffusion regime and the residual regime are controlled by the hydrolysis of the B—O—Si linkages, whereas under initial dissolution rate regime in basic conditions the rate-limiting step becomes the hydrolysis of Si—O—Si linkages. Overall, the observations suggest structural disorder due to external irradiation by Au ions primarily affects the kinetics of glass alteration without changing the fundamental nature of the limiting reactions.
重离子辐照玻璃会诱发结构损伤,通常会导致其化学耐久性下降,其幅度与玻璃的化学成分密切相关。在这里,我们研究了 7 MeV Au 离子(模拟核玻璃自辐照引起的主要弹道效应)辐照对 4 氧化物硼硅玻璃在初始和残余溶解状态下的行为的影响。通过对比辐照玻璃和非辐照玻璃,可以深入了解玻璃改变过程的主要原子机制。在酸性条件下,对相互扩散的影响最为明显,辐照玻璃的相互扩散速率增加了一个数量级以上。我们发现,相互扩散机制和残留机制都是由 B-O-Si 链接的水解作用控制的,而在碱性条件下的初始溶解速率机制中,限速步骤变成了 Si-O-Si 链接的水解作用。总之,这些观察结果表明,金离子外部辐照导致的结构紊乱主要影响玻璃改变的动力学,而不会改变限制反应的基本性质。
{"title":"Effect of structural disorder induced by external irradiation with heavy ions on the alteration of a four oxide borosilicate glass","authors":"Stéphane Gin, Mélanie Taron, Hélène Arena, Jean-Marc Delaye","doi":"10.1038/s41529-024-00483-5","DOIUrl":"10.1038/s41529-024-00483-5","url":null,"abstract":"The irradiation of glass by heavy ions induces structural damage, generally leading to a decrease in its chemical durability whose amplitude strongly depends on the glass chemical composition. Here, we investigate the effects of irradiation by 7 MeV Au ions (simulating the main ballistic effects induced by self-irradiation in nuclear glass) on the behavior of a 4-oxide borosilicate glass in both the initial and residual dissolution regimes. The comparison between irradiated and non-irradiated glasses provides insights into the predominant atomic mechanisms governing glass alteration processes. The most pronounced effect is observed on interdiffusion in acidic conditions, with the rate increased by more than an order of magnitude for the irradiated glass. We show that both the interdiffusion regime and the residual regime are controlled by the hydrolysis of the B—O—Si linkages, whereas under initial dissolution rate regime in basic conditions the rate-limiting step becomes the hydrolysis of Si—O—Si linkages. Overall, the observations suggest structural disorder due to external irradiation by Au ions primarily affects the kinetics of glass alteration without changing the fundamental nature of the limiting reactions.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":5.1,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00483-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pitting corrosion characteristics of sintered Type 316 L stainless steel: relationship between pores and MnS 烧结 316 L 型不锈钢的点腐蚀特性:孔隙与 MnS 之间的关系
IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-07 DOI: 10.1038/s41529-024-00482-6
Haruka Saito, Masashi Nishimoto, Izumi Muto
In Type 316 L stainless steel fabricated from gas-atomized powder via spark plasma sintering, lack-of-fusion pores and MnS inclusions were identified as possible pitting initiation sites. Through potentiodynamic polarization with different working electrode areas, the distribution density of the identified pit initiation sites was compared with that of sites found on wrought Type 316 L stainless steel. Surface observations of the sintered Type 316 L after polarization suggest that pitting corrosion was initiated at a location where both MnS and pores existed. By reducing the porosity and removing MnS, the roles of pores and MnS inclusions in the initiation of pitting corrosion were investigated.
在通过火花等离子烧结由气体原子化粉末制成的 316 L 型不锈钢中,发现了可能的点蚀起始点--熔融缺乏孔隙和 MnS 夹杂物。通过不同工作电极面积的电位极化,将已确定的点蚀起始点的分布密度与锻造的 316 L 型不锈钢上发现的点蚀起始点的分布密度进行了比较。极化后对烧结 316 L 型不锈钢的表面观察结果表明,点蚀是在同时存在 MnS 和孔隙的位置引发的。通过降低孔隙率和去除 MnS,研究了孔隙和 MnS 包裹体在引发点蚀中的作用。
{"title":"Pitting corrosion characteristics of sintered Type 316 L stainless steel: relationship between pores and MnS","authors":"Haruka Saito, Masashi Nishimoto, Izumi Muto","doi":"10.1038/s41529-024-00482-6","DOIUrl":"10.1038/s41529-024-00482-6","url":null,"abstract":"In Type 316 L stainless steel fabricated from gas-atomized powder via spark plasma sintering, lack-of-fusion pores and MnS inclusions were identified as possible pitting initiation sites. Through potentiodynamic polarization with different working electrode areas, the distribution density of the identified pit initiation sites was compared with that of sites found on wrought Type 316 L stainless steel. Surface observations of the sintered Type 316 L after polarization suggest that pitting corrosion was initiated at a location where both MnS and pores existed. By reducing the porosity and removing MnS, the roles of pores and MnS inclusions in the initiation of pitting corrosion were investigated.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-15"},"PeriodicalIF":5.1,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00482-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion migration mechanisms in the early stages of drying and degradation of oil paint films 油漆薄膜干燥和降解初期的离子迁移机制
IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-07 DOI: 10.1038/s41529-024-00472-8
Margherita Gnemmi, Laura Fuster-Lòpez, Marion Mecklenburg, Alison Murray, Sarah Sands, Greg Watson, Francesca Caterina Izzo
The study of film-formation processes of oil paints has been extensively addressed over the last decade and the influence of metal ions in the drying and degradation stages of oil paints has been demonstrated. This research aimed to determine a suitable methodology for monitoring the early drying stages of selected commercial oil paint films and to gain an insight into the migration mechanisms of material degradation taking place between adjacent paint films, with special attention to the influence of the lead white. For this purpose, a hybrid approach was adopted to characterize the composition of the paint and highlight failure mechanisms in the paint films through a wide range of time. The methods included scribe tests, percentage weight variation (ΔW%), attenuated reflectance Fourier transform infrared spectrophotometry (ATR-FTIR), gas chromatography-mass spectrometry (GC-MS), and thermal analysis with differential scanning calorimetry (TG-DSC). The results show how metal ions interact with the oil binder and the pigment in the adjacent paint film: the transverse migration of lead white is shown to affect the reactivity of polyunsaturated triglycerides, increasing the rate of oxygen uptake and promoting the formation of radicals and bonds between polymer chains, depending on the pigment with which it interacts.
在过去十年中,对油画颜料成膜过程的研究得到了广泛的关注,金属离子在油画颜料干燥和降解阶段的影响也得到了证实。本研究旨在确定一种合适的方法来监测选定的商用油漆薄膜的早期干燥阶段,并深入了解相邻漆膜之间发生的材料降解迁移机制,特别关注铅白的影响。为此,我们采用了一种混合方法来确定油漆成分的特征,并突出漆膜在不同时间段内的失效机制。这些方法包括划线测试、重量变化百分比(ΔW%)、衰减反射傅立叶变换红外分光光度法(ATR-FTIR)、气相色谱-质谱法(GC-MS)和差示扫描量热法(TG-DSC)。结果显示了金属离子如何与油粘合剂和相邻漆膜中的颜料相互作用:铅白的横向迁移影响了多不饱和甘油三酯的反应性,增加了氧气的吸收率,促进了自由基和聚合物链之间键的形成,具体取决于与之相互作用的颜料。
{"title":"Ion migration mechanisms in the early stages of drying and degradation of oil paint films","authors":"Margherita Gnemmi, Laura Fuster-Lòpez, Marion Mecklenburg, Alison Murray, Sarah Sands, Greg Watson, Francesca Caterina Izzo","doi":"10.1038/s41529-024-00472-8","DOIUrl":"10.1038/s41529-024-00472-8","url":null,"abstract":"The study of film-formation processes of oil paints has been extensively addressed over the last decade and the influence of metal ions in the drying and degradation stages of oil paints has been demonstrated. This research aimed to determine a suitable methodology for monitoring the early drying stages of selected commercial oil paint films and to gain an insight into the migration mechanisms of material degradation taking place between adjacent paint films, with special attention to the influence of the lead white. For this purpose, a hybrid approach was adopted to characterize the composition of the paint and highlight failure mechanisms in the paint films through a wide range of time. The methods included scribe tests, percentage weight variation (ΔW%), attenuated reflectance Fourier transform infrared spectrophotometry (ATR-FTIR), gas chromatography-mass spectrometry (GC-MS), and thermal analysis with differential scanning calorimetry (TG-DSC). The results show how metal ions interact with the oil binder and the pigment in the adjacent paint film: the transverse migration of lead white is shown to affect the reactivity of polyunsaturated triglycerides, increasing the rate of oxygen uptake and promoting the formation of radicals and bonds between polymer chains, depending on the pigment with which it interacts.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-18"},"PeriodicalIF":5.1,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00472-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141294997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of antimony additions on the microstructure and performance of Zn–Mg–Al alloy coatings 添加锑对锌镁铝合金涂层微观结构和性能的影响
IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-07 DOI: 10.1038/s41529-024-00481-7
Daniel A. Britton, David Penney, Amar D. Malla, Shahin Mehraban, James Sullivan, Mathew Goldsworthy, James McGettrick, Richard Johnston, Ria L. Mitchell, Clive Challinor
Microscopy, electrochemical techniques and mechanical testing are used to investigate the effect of varying antimony additions (0.45–1.8 wt%) on the microstructure and corrosion properties of zinc-magnesium-aluminium coating alloys. Samples were produced by splat casting to produce high cooling rates similar to those seen in a continuous galvanising line. X-Ray Microscopy reveals that the Sb additions produce disk-shaped Mg3Sb2 intermetallics, subsequently reducing or eliminating the MgZn2 eutectic. Electrochemical testing in 1 wt% NaCl shows that the Mg3Sb2 phase is cathodic with respect to the bulk alloy with slower oxygen reduction kinetics. The decrease in eutectic content leads to less intense anodic activity. The combined effect is anodic and cathodic deactivation, which leads to a 43% reduction in corrosion rate as measured through LPR compared to the base alloy. This work shows that quaternary additions to ZMA coating alloys can be a potential route to improved corrosion resistance for galvanic protection.
本研究利用显微镜、电化学技术和机械测试来研究不同锑添加量(0.45-1.8 wt%)对锌-镁-铝涂层合金的微观结构和腐蚀性能的影响。样品通过溅射铸造生产,以产生与连续镀锌生产线类似的高冷却速率。X 射线显微镜显示,添加的锑会产生盘状 Mg3Sb2 金属间化合物,从而减少或消除 MgZn2 共晶。在 1 wt% 的 NaCl 溶液中进行的电化学测试表明,与块状合金相比,Mg3Sb2 相为阴极,氧还原动力学较慢。共晶含量的降低导致阳极活性减弱。阳极和阴极失活的综合效应导致通过 LPR 测得的腐蚀速率比基本合金降低了 43%。这项研究表明,在 ZMA 涂层合金中添加季化合物是提高电化学保护耐腐蚀性的潜在途径。
{"title":"Effect of antimony additions on the microstructure and performance of Zn–Mg–Al alloy coatings","authors":"Daniel A. Britton, David Penney, Amar D. Malla, Shahin Mehraban, James Sullivan, Mathew Goldsworthy, James McGettrick, Richard Johnston, Ria L. Mitchell, Clive Challinor","doi":"10.1038/s41529-024-00481-7","DOIUrl":"10.1038/s41529-024-00481-7","url":null,"abstract":"Microscopy, electrochemical techniques and mechanical testing are used to investigate the effect of varying antimony additions (0.45–1.8 wt%) on the microstructure and corrosion properties of zinc-magnesium-aluminium coating alloys. Samples were produced by splat casting to produce high cooling rates similar to those seen in a continuous galvanising line. X-Ray Microscopy reveals that the Sb additions produce disk-shaped Mg3Sb2 intermetallics, subsequently reducing or eliminating the MgZn2 eutectic. Electrochemical testing in 1 wt% NaCl shows that the Mg3Sb2 phase is cathodic with respect to the bulk alloy with slower oxygen reduction kinetics. The decrease in eutectic content leads to less intense anodic activity. The combined effect is anodic and cathodic deactivation, which leads to a 43% reduction in corrosion rate as measured through LPR compared to the base alloy. This work shows that quaternary additions to ZMA coating alloys can be a potential route to improved corrosion resistance for galvanic protection.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":5.1,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00481-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical characteristics and damage mechanism in scrubber washing water of UNS N08367 with plasma ion nitriding and electropolishing 等离子离子氮化和电抛光 UNS N08367 洗涤器洗涤水中的电化学特性和损伤机理
IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-01 DOI: 10.1038/s41529-024-00474-6
Hyun-Kyu Hwang, Seong-Jong Kim
In this investigation, electropolishing and plasma ion nitriding are applied to super austenitic stainless steel for the purpose of improving its corrosion and pitting resistance. Electrochemical experiments are conducted with washing water collected directly from the ship’s scrubber. After electropolishing, the surface roughness is improved by about 73.6% compared to mechanical polishing. After plasma ion nitriding, CrN (precipitate), Fe4N (compound), and γN (solid solution) are observed on the surface. The thickness of the layer formed on the surface is measured to be about 10 μm. A hysteresis loop is observed in the cyclic potentiodynamic polarization curves of mechanical polishing and electropolishing, and the areas are calculated as 23.33 mW cm−2 and 0.17 mW cm−2, respectively. The polarization curve of plasma ion nitriding presents perfect passivation characteristics. Accordingly, mechanical polishing and electropolishing reveal local corrosion, whereas plasma ion nitriding presents a tendency towards general corrosion. In the mechanical polishing, electropolishing, and plasma ion nitriding, the corrosion current densities are 0.665 μA cm−2, 0.093 μA cm−2, and 16.47 μA cm−2, respectively, and the maximum damage depth is observed to grow progressively smaller from plasma ion nitriding to electropolishing and then mechanical polishing.
在这项研究中,对超级奥氏体不锈钢进行了电解抛光和等离子离子氮化处理,以提高其耐腐蚀性和抗点蚀性。电化学实验使用的是直接从船舶洗涤器中收集的洗涤水。与机械抛光相比,电抛光后的表面粗糙度提高了约 73.6%。等离子体离子氮化后,表面出现了 CrN(沉淀)、Fe4N(化合物)和 γN(固溶体)。经测量,表面形成的层厚度约为 10 μm。在机械抛光和电抛光的循环电位极化曲线中观察到一个滞后环,计算出的面积分别为 23.33 mW cm-2 和 0.17 mW cm-2。等离子体离子氮化的极化曲线呈现出完美的钝化特性。因此,机械抛光和电抛光显示的是局部腐蚀,而等离子体离子氮化显示的是整体腐蚀。在机械抛光、电抛光和等离子体离子氮化中,腐蚀电流密度分别为 0.665 μA cm-2、0.093 μA cm-2 和 16.47 μA cm-2。
{"title":"Electrochemical characteristics and damage mechanism in scrubber washing water of UNS N08367 with plasma ion nitriding and electropolishing","authors":"Hyun-Kyu Hwang, Seong-Jong Kim","doi":"10.1038/s41529-024-00474-6","DOIUrl":"10.1038/s41529-024-00474-6","url":null,"abstract":"In this investigation, electropolishing and plasma ion nitriding are applied to super austenitic stainless steel for the purpose of improving its corrosion and pitting resistance. Electrochemical experiments are conducted with washing water collected directly from the ship’s scrubber. After electropolishing, the surface roughness is improved by about 73.6% compared to mechanical polishing. After plasma ion nitriding, CrN (precipitate), Fe4N (compound), and γN (solid solution) are observed on the surface. The thickness of the layer formed on the surface is measured to be about 10 μm. A hysteresis loop is observed in the cyclic potentiodynamic polarization curves of mechanical polishing and electropolishing, and the areas are calculated as 23.33 mW cm−2 and 0.17 mW cm−2, respectively. The polarization curve of plasma ion nitriding presents perfect passivation characteristics. Accordingly, mechanical polishing and electropolishing reveal local corrosion, whereas plasma ion nitriding presents a tendency towards general corrosion. In the mechanical polishing, electropolishing, and plasma ion nitriding, the corrosion current densities are 0.665 μA cm−2, 0.093 μA cm−2, and 16.47 μA cm−2, respectively, and the maximum damage depth is observed to grow progressively smaller from plasma ion nitriding to electropolishing and then mechanical polishing.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-13"},"PeriodicalIF":5.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00474-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141187659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Materials Degradation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1