首页 > 最新文献

npj Materials Degradation最新文献

英文 中文
The effect of variable humidity on corrosion fatigue of AA7085-T7451 with surface salt deposits 湿度变化对表面盐沉积 AA7085-T7451 腐蚀疲劳的影响
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1038/s41529-024-00530-1
Brandon Free, Gabriella C. Montiel, Gabriella A. Marino, Eric Schindelholz, Sarah Galyon Dorman, Jenifer S. Warner Locke
Corrosion fatigue (CF) crack growth is quantified as a function of relative humidity (RH) using AA7085-T7451 samples with NaCl deposited to understand the effect of deliquesced surface electrolyte droplets on CF performance when humidity varies. Fracture mechanics testing holding mechanical driving forces for cracking constant and incrementally increasing humidity show that crack growth rate (da/dN) more than doubles once RH moves above 78–80% RH. When decreasing RH, some amount of drying below the efflorescence RH (ERH) and/or a sufficient time is needed to pass in order for da/dN to return to that expected for a dry crack tip. All in all, this study establishes time of crack tip wetness as an important parameter for predicting fatigue lifetimes in atmospheric conditions, a parameter that cannot be solely predicted by RH, as accelerated cracking can continue for a limited amount of time even when RH is brought below the ERH.
使用沉积了氯化钠的 AA7085-T7451 样品,对腐蚀疲劳 (CF) 裂纹增长与相对湿度 (RH) 的函数关系进行了量化,以了解湿度变化时潮解表面电解质液滴对 CF 性能的影响。断裂力学测试表明,当相对湿度超过 78-80% RH 时,裂纹增长率(da/dN)会增加一倍以上。在降低相对湿度时,需要在一定程度上干燥到低于渗出相对湿度(ERH)和/或足够长的时间后,da/dN 才能恢复到干燥裂缝尖端的预期值。总之,这项研究确定了裂纹尖端潮湿时间是预测大气条件下疲劳寿命的一个重要参数,而这一参数不能仅由相对湿度来预测,因为即使相对湿度低于 ERH,加速开裂也会持续有限的时间。
{"title":"The effect of variable humidity on corrosion fatigue of AA7085-T7451 with surface salt deposits","authors":"Brandon Free, Gabriella C. Montiel, Gabriella A. Marino, Eric Schindelholz, Sarah Galyon Dorman, Jenifer S. Warner Locke","doi":"10.1038/s41529-024-00530-1","DOIUrl":"10.1038/s41529-024-00530-1","url":null,"abstract":"Corrosion fatigue (CF) crack growth is quantified as a function of relative humidity (RH) using AA7085-T7451 samples with NaCl deposited to understand the effect of deliquesced surface electrolyte droplets on CF performance when humidity varies. Fracture mechanics testing holding mechanical driving forces for cracking constant and incrementally increasing humidity show that crack growth rate (da/dN) more than doubles once RH moves above 78–80% RH. When decreasing RH, some amount of drying below the efflorescence RH (ERH) and/or a sufficient time is needed to pass in order for da/dN to return to that expected for a dry crack tip. All in all, this study establishes time of crack tip wetness as an important parameter for predicting fatigue lifetimes in atmospheric conditions, a parameter that cannot be solely predicted by RH, as accelerated cracking can continue for a limited amount of time even when RH is brought below the ERH.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-12"},"PeriodicalIF":6.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00530-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Film-forming amines as corrosion inhibitors: a state-of-the-art review 作为缓蚀剂的成膜胺:最新进展综述
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1038/s41529-024-00523-0
Deni Jero, Nicolas Caussé, Nadine Pébère
This review summarizes the use of film-forming amines (FFAs) for corrosion protection in water/steam industrial circuits, focusing on carbon steel. It discusses industrial feedback on FFAs’ benefits and challenges, alongside experimental methods for studying their inhibition and structural properties. Key research areas include FFAs’ corrosion inhibition mechanisms, adsorption kinetics, and layer structures. The review also identifies knowledge gaps and suggests future research directions to deepen the understanding of FFAs.
本综述总结了成膜胺(FFAs)在水/蒸汽工业回路中的腐蚀防护应用,重点是碳钢。文章讨论了工业界对 FFAs 的益处和挑战的反馈,以及研究其抑制和结构特性的实验方法。主要研究领域包括反式脂肪酸的缓蚀机理、吸附动力学和层结构。综述还指出了知识差距,并提出了未来的研究方向,以加深对反式脂肪酸的了解。
{"title":"Film-forming amines as corrosion inhibitors: a state-of-the-art review","authors":"Deni Jero, Nicolas Caussé, Nadine Pébère","doi":"10.1038/s41529-024-00523-0","DOIUrl":"10.1038/s41529-024-00523-0","url":null,"abstract":"This review summarizes the use of film-forming amines (FFAs) for corrosion protection in water/steam industrial circuits, focusing on carbon steel. It discusses industrial feedback on FFAs’ benefits and challenges, alongside experimental methods for studying their inhibition and structural properties. Key research areas include FFAs’ corrosion inhibition mechanisms, adsorption kinetics, and layer structures. The review also identifies knowledge gaps and suggests future research directions to deepen the understanding of FFAs.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-12"},"PeriodicalIF":6.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00523-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the mechanism behind irregular inclusions triggering no HIC cracks in steels 揭示不规则夹杂物引发钢中无 HIC 裂纹的机理
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-31 DOI: 10.1038/s41529-024-00525-y
Rongzhe Hu, Zhixian Peng, Shiqi Zhang, Liquan Ding, Feng Huang, Zhengliang Xue, Jing Liu
This research investigates a specific type of irregularly shaped inclusions in steel, which are typically considered detrimental. A comparative study of two steels, treated with different inclusion modification methods by oxide metallurgy technology, reveals that spherical inclusions with complex structures can provide beneficial multipoint trap sites for hydrogen, thereby reducing the risk of hydrogen-induced cracking (HIC). Notably, irregular stripe-shaped silicate-oxide inclusions with sharp tips, due to their hot-soft characteristics during the process of hot-rolling, do not exacerbate cracks but instead mitigate local stresses. Conversely, large single-phase hard inclusions are detrimental to HIC resistance. This investigation provides insights into the mechanisms behind why certain irregular inclusions do not trigger HIC crack after the NACE TM 0284-2016 standard test.
这项研究调查了钢中一种特殊的不规则夹杂物,这种夹杂物通常被认为是有害的。通过对采用氧化物冶金技术的不同夹杂物改性方法处理的两种钢材进行比较研究,发现具有复杂结构的球形夹杂物可以为氢提供有益的多点捕集点,从而降低氢致开裂(HIC)的风险。值得注意的是,具有尖锐尖端的不规则条纹状氧化硅夹杂物由于在热轧过程中具有热软特性,不仅不会加剧裂纹,反而会减轻局部应力。相反,大的单相硬夹杂物不利于抗 HIC 性能。这项调查有助于深入了解某些不规则夹杂物在经过 NACE TM 0284-2016 标准测试后不会引发 HIC 裂纹的机制。
{"title":"Unveiling the mechanism behind irregular inclusions triggering no HIC cracks in steels","authors":"Rongzhe Hu, Zhixian Peng, Shiqi Zhang, Liquan Ding, Feng Huang, Zhengliang Xue, Jing Liu","doi":"10.1038/s41529-024-00525-y","DOIUrl":"10.1038/s41529-024-00525-y","url":null,"abstract":"This research investigates a specific type of irregularly shaped inclusions in steel, which are typically considered detrimental. A comparative study of two steels, treated with different inclusion modification methods by oxide metallurgy technology, reveals that spherical inclusions with complex structures can provide beneficial multipoint trap sites for hydrogen, thereby reducing the risk of hydrogen-induced cracking (HIC). Notably, irregular stripe-shaped silicate-oxide inclusions with sharp tips, due to their hot-soft characteristics during the process of hot-rolling, do not exacerbate cracks but instead mitigate local stresses. Conversely, large single-phase hard inclusions are detrimental to HIC resistance. This investigation provides insights into the mechanisms behind why certain irregular inclusions do not trigger HIC crack after the NACE TM 0284-2016 standard test.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-15"},"PeriodicalIF":6.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00525-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A data-driven strategy for phase field nucleation modeling 相场成核建模的数据驱动策略
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-30 DOI: 10.1038/s41529-024-00529-8
Yang Hu, Kai Wang, Robert Spatschek
We propose a data-driven strategy for parameter selection in phase field nucleation models using machine learning and apply it to oxide nucleation in Fe-Cr alloys. A grand potential-based phase field model, incorporating Langevin noise, is employed to simulate oxide nucleation and benchmarked against the Johnson-Mehl-Avrami-Kolmogorov model. Three independent parameters in the phase field simulations (Langevin noise strength, numerical grid discretization and critical nucleation radius) are identified as essential for accurately modeling the nucleation behavior. These parameters serve as input features for machine learning classification and regression models. The classification model categorizes nucleation behavior into three nucleation density regimes, preventing invalid nucleation attempts in simulations, while the regression model estimates the appropriate Langevin noise strength, significantly reducing the need for time-consuming trial-and-error simulations. This data-driven approach improves the efficiency of parameter selection in phase field models and provides a generalizable method for simulating nucleation-driven microstructural evolution processes in various materials.
我们提出了一种利用机器学习在相场成核模型中选择参数的数据驱动策略,并将其应用于铁铬合金中的氧化物成核。我们采用了一种基于大电势的相场模型,其中包含了朗格文噪声,用于模拟氧化物成核,并与约翰逊-梅尔-阿夫拉米-科尔莫戈罗夫模型进行了比较。相场模拟中的三个独立参数(朗格文噪声强度、数值网格离散化和临界成核半径)被认为是准确模拟成核行为的关键。这些参数可作为机器学习分类和回归模型的输入特征。分类模型将成核行为分为三个成核密度区,防止在模拟中出现无效的成核尝试,而回归模型则估算出适当的朗格文噪声强度,大大减少了耗时的试错模拟。这种数据驱动方法提高了相场模型中参数选择的效率,并为模拟各种材料中成核驱动的微结构演变过程提供了一种通用方法。
{"title":"A data-driven strategy for phase field nucleation modeling","authors":"Yang Hu, Kai Wang, Robert Spatschek","doi":"10.1038/s41529-024-00529-8","DOIUrl":"10.1038/s41529-024-00529-8","url":null,"abstract":"We propose a data-driven strategy for parameter selection in phase field nucleation models using machine learning and apply it to oxide nucleation in Fe-Cr alloys. A grand potential-based phase field model, incorporating Langevin noise, is employed to simulate oxide nucleation and benchmarked against the Johnson-Mehl-Avrami-Kolmogorov model. Three independent parameters in the phase field simulations (Langevin noise strength, numerical grid discretization and critical nucleation radius) are identified as essential for accurately modeling the nucleation behavior. These parameters serve as input features for machine learning classification and regression models. The classification model categorizes nucleation behavior into three nucleation density regimes, preventing invalid nucleation attempts in simulations, while the regression model estimates the appropriate Langevin noise strength, significantly reducing the need for time-consuming trial-and-error simulations. This data-driven approach improves the efficiency of parameter selection in phase field models and provides a generalizable method for simulating nucleation-driven microstructural evolution processes in various materials.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":6.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00529-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface treatments on commercial glasses: durable impact on the retention of lead, barium and boron 商用玻璃的表面处理:对铅、钡和硼保留的持久影响
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-26 DOI: 10.1038/s41529-024-00526-x
L. Brunswic, F. Angeli, S. Gin, E. D. van Hullebusch, M. Tarrago, L. Gautron, D. R. Neuville
Glass durability is one of the properties that can be affected by surface treatments such as coatings or chemical attacks. These treatments can be used to reduce the quantities of potentially toxic elements contained in glass that may be released in solution. Five surface treatments were selected: three different coatings (SnO2, TiO2, SiO2) and two acidic attacks (SO2 dealkalization and acid polishing). These treatments were performed on five glass compositions (soda-lime, borosilicate, barium silicate, opal, and lead crystal). Their effects on alteration rates and mechanisms were investigated through a single protocol (acetic acid 4%, 70 °C) simulating accelerated aging conditions for containers of beverages or food. The data collected over 1.3 years showed significant reduction of lead leaching with all treatments except acid polishing. The best reduction factor was obtained with SO2 dealkalization, which also demonstrated beneficial effects towards the retention of Ba by reducing the diffusion of alkalis.
玻璃的耐久性是受表面处理(如涂层或化学侵蚀)影响的特性之一。这些处理方法可用于减少玻璃中可能含有的有毒元素在溶液中的释放量。我们选择了五种表面处理方法:三种不同的涂层(SnO2、TiO2、SiO2)和两种酸性侵蚀(SO2 脱醛和酸性抛光)。这些处理对五种玻璃成分(钠钙玻璃、硼硅酸盐玻璃、硅酸钡玻璃、蛋白石玻璃和铅晶玻璃)进行。通过模拟饮料或食品容器加速老化条件的单一方案(醋酸 4%,70 °C),研究了它们对改变速率和机制的影响。1.3 年收集的数据显示,除酸性抛光外,所有处理方法都能显著减少铅的沥滤。二氧化硫脱醛法的降低率最高,同时还通过减少碱的扩散对钡的保留产生了有利影响。
{"title":"Surface treatments on commercial glasses: durable impact on the retention of lead, barium and boron","authors":"L. Brunswic, F. Angeli, S. Gin, E. D. van Hullebusch, M. Tarrago, L. Gautron, D. R. Neuville","doi":"10.1038/s41529-024-00526-x","DOIUrl":"10.1038/s41529-024-00526-x","url":null,"abstract":"Glass durability is one of the properties that can be affected by surface treatments such as coatings or chemical attacks. These treatments can be used to reduce the quantities of potentially toxic elements contained in glass that may be released in solution. Five surface treatments were selected: three different coatings (SnO2, TiO2, SiO2) and two acidic attacks (SO2 dealkalization and acid polishing). These treatments were performed on five glass compositions (soda-lime, borosilicate, barium silicate, opal, and lead crystal). Their effects on alteration rates and mechanisms were investigated through a single protocol (acetic acid 4%, 70 °C) simulating accelerated aging conditions for containers of beverages or food. The data collected over 1.3 years showed significant reduction of lead leaching with all treatments except acid polishing. The best reduction factor was obtained with SO2 dealkalization, which also demonstrated beneficial effects towards the retention of Ba by reducing the diffusion of alkalis.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-12"},"PeriodicalIF":6.6,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00526-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of carbides and Charpy toughness in a low alloy bainitic steel during step-up aging process 低合金贝氏体钢在阶跃时效过程中的碳化物演变和夏比韧性
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-21 DOI: 10.1038/s41529-024-00527-w
Long Jin, Kun Zhang, Ming-Liang Zhu, Fu-Zhen Xuan
The low alloy bainitic steel used in reactor pressure vessels deteriorates during thermal service while the macroscopic thermodynamic parameters that cause thermal aging remains unknown. In this work, a thermal aging restructuring scheme was proposed by step-up aging the steel from 350 °C to 490 °C, with a total duration of 7500 hours. Samples from varied thickness of the steel were characterized in terms of carbides evolution and Charpy impact toughness at 20 °C. The carbide size and its fraction were statistically analyzed showing partial coarsening and dissolution during aging, while the carbide fraction was found linearly correlated with the impact energy for the first time. The critical transition temperature parameter of the aging process was found to be 470 °C for the steel. The macroscopic thermodynamic parameters, including the thermal aging time and temperature, facilitate a comprehensive understanding of the material degradation mechanism and provide a basis for long-term safety of equipment.
反应堆压力容器中使用的低合金贝氏体钢在热使用过程中会发生劣化,而导致热老化的宏观热力学参数仍然未知。在这项工作中,提出了一种热老化重组方案,将钢材从 350 °C 逐步老化到 490 °C,总持续时间为 7500 小时。对不同厚度的钢材样品进行了碳化物演变和 20 °C 时夏比冲击韧性的表征。对碳化物尺寸及其组分进行了统计分析,结果表明碳化物在时效过程中发生了部分粗化和溶解,同时首次发现碳化物组分与冲击能量呈线性相关。发现该钢的时效过程临界转变温度参数为 470 ℃。包括热老化时间和温度在内的宏观热力学参数有助于全面了解材料的降解机理,为设备的长期安全提供依据。
{"title":"Evolution of carbides and Charpy toughness in a low alloy bainitic steel during step-up aging process","authors":"Long Jin, Kun Zhang, Ming-Liang Zhu, Fu-Zhen Xuan","doi":"10.1038/s41529-024-00527-w","DOIUrl":"10.1038/s41529-024-00527-w","url":null,"abstract":"The low alloy bainitic steel used in reactor pressure vessels deteriorates during thermal service while the macroscopic thermodynamic parameters that cause thermal aging remains unknown. In this work, a thermal aging restructuring scheme was proposed by step-up aging the steel from 350 °C to 490 °C, with a total duration of 7500 hours. Samples from varied thickness of the steel were characterized in terms of carbides evolution and Charpy impact toughness at 20 °C. The carbide size and its fraction were statistically analyzed showing partial coarsening and dissolution during aging, while the carbide fraction was found linearly correlated with the impact energy for the first time. The critical transition temperature parameter of the aging process was found to be 470 °C for the steel. The macroscopic thermodynamic parameters, including the thermal aging time and temperature, facilitate a comprehensive understanding of the material degradation mechanism and provide a basis for long-term safety of equipment.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":6.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00527-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous accelerated stress testing of membrane electrode assembly components in polymer electrolyte fuel cells 聚合物电解质燃料电池膜电极组件的同步加速应力测试
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1038/s41529-024-00524-z
Wataru Yoshimune, Akihiko Kato, Tetsuichiro Hayakawa, Satoshi Yamaguchi, Satoru Kato
The durability of polymer electrolyte fuel cells (PEFCs) in fuel cell electric vehicles is important for the shift from passenger cars to heavy-duty vehicles. The components of a PEFC, namely the proton exchange membrane (PEM), catalyst layer (CL), and gas diffusion layer (GDL), contribute to the degradation of the fuel cell performance. In this paper, we propose a method for simultaneously evaluating the degradation rates of these components by combining electrochemical characterization with operando synchrotron X-ray radiography. The open-circuit voltage, electrochemically active surface area (ECSA), and water saturation were used as the degradation indicators for the PEMs, CLs, and GDLs, respectively. The results of two accelerated stress tests (loading and start-stop cycles) after 10,000 cycles showed that the increase in water saturation owing to the loss of hydrophobicity due to carbon corrosion in the cathode GDL occurred on the same timescale as the degradation in the PEM and cathode CL. Specifically, during the load cycle AST, the cathode CL degraded with a 26% reduction in the ECSA along with the cathode GDL degradation with a 10% increase in water saturation. This suggests that more efforts should be devoted to studies on the durability of GDLs for heavy-duty applications.
燃料电池电动汽车中聚合物电解质燃料电池(PEFC)的耐用性对于从乘用车向重型车的转变非常重要。质子交换膜 (PEM)、催化剂层 (CL) 和气体扩散层 (GDL) 是 PEFC 的组成部分,它们都会导致燃料电池性能下降。在本文中,我们提出了一种通过将电化学表征与操作同步辐射 X 射线成像相结合来同时评估这些组件降解率的方法。开路电压、电化学活性表面积(ECSA)和水饱和度分别作为 PEM、CL 和 GDL 的降解指标。经过 10,000 次循环后进行的两次加速应力测试(加载和启停循环)结果表明,由于阴极 GDL 中的碳腐蚀导致疏水性丧失,水饱和度增加的时间与 PEM 和阴极 CL 的降解时间相同。具体来说,在负载循环 AST 期间,阴极 CL 降解,ECSA 降低 26%,同时阴极 GDL 降解,水饱和度增加 10%。这表明,应加大力度研究重型应用中 GDL 的耐用性。
{"title":"Simultaneous accelerated stress testing of membrane electrode assembly components in polymer electrolyte fuel cells","authors":"Wataru Yoshimune, Akihiko Kato, Tetsuichiro Hayakawa, Satoshi Yamaguchi, Satoru Kato","doi":"10.1038/s41529-024-00524-z","DOIUrl":"10.1038/s41529-024-00524-z","url":null,"abstract":"The durability of polymer electrolyte fuel cells (PEFCs) in fuel cell electric vehicles is important for the shift from passenger cars to heavy-duty vehicles. The components of a PEFC, namely the proton exchange membrane (PEM), catalyst layer (CL), and gas diffusion layer (GDL), contribute to the degradation of the fuel cell performance. In this paper, we propose a method for simultaneously evaluating the degradation rates of these components by combining electrochemical characterization with operando synchrotron X-ray radiography. The open-circuit voltage, electrochemically active surface area (ECSA), and water saturation were used as the degradation indicators for the PEMs, CLs, and GDLs, respectively. The results of two accelerated stress tests (loading and start-stop cycles) after 10,000 cycles showed that the increase in water saturation owing to the loss of hydrophobicity due to carbon corrosion in the cathode GDL occurred on the same timescale as the degradation in the PEM and cathode CL. Specifically, during the load cycle AST, the cathode CL degraded with a 26% reduction in the ECSA along with the cathode GDL degradation with a 10% increase in water saturation. This suggests that more efforts should be devoted to studies on the durability of GDLs for heavy-duty applications.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-9"},"PeriodicalIF":6.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00524-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen diffusion and trapping in a cryogenic processed high-Cr ferrous alloy 低温加工高铬铁合金中的氢扩散和捕获
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-11 DOI: 10.1038/s41529-024-00522-1
Patricia Jovičević-Klug, J. Manoj Prabhakar, Cristiano Kasdorf Giesbrecht, Tim M. Schwarz, Carsten Bonnekoh, Michael Rieth, Michael Rohwerder
The effect of hydrogen diffusion and trapping was studied in a high-Cr ferrous alloy using an inverted scanning Kelvin probe and thermal desorption spectroscopy in correlation with microstructure and residual stress study. In addition, different processing of ferritic/martensitic 9Cr1WTaV alloy (EUROFER97) was tested in correlation with observed selected properties to observe induced changes in material degradation and surface. The activation energies for hydrogen traps were shown to have distinct peaks corresponding to different trapping mechanisms, including matrix dislocations and grain boundaries. For the cryogenically treated sample, an additional peak was also identified and correlated with increased carbide precipitation.
使用倒置扫描开尔文探针和热解吸光谱法,结合微观结构和残余应力研究,对高铬铁合金中氢扩散和捕获的影响进行了研究。此外,还测试了铁素体/马氏体 9Cr1WTaV 合金(EUROFER97)的不同加工工艺与所观察到的选定特性之间的相关性,以观察材料降解和表面的诱导变化。结果表明,氢陷阱的活化能具有不同的峰值,与不同的陷阱机制相对应,包括基体位错和晶界。对于经过低温处理的样品,还发现了一个额外的峰值,并与碳化物析出的增加相关联。
{"title":"Hydrogen diffusion and trapping in a cryogenic processed high-Cr ferrous alloy","authors":"Patricia Jovičević-Klug, J. Manoj Prabhakar, Cristiano Kasdorf Giesbrecht, Tim M. Schwarz, Carsten Bonnekoh, Michael Rieth, Michael Rohwerder","doi":"10.1038/s41529-024-00522-1","DOIUrl":"10.1038/s41529-024-00522-1","url":null,"abstract":"The effect of hydrogen diffusion and trapping was studied in a high-Cr ferrous alloy using an inverted scanning Kelvin probe and thermal desorption spectroscopy in correlation with microstructure and residual stress study. In addition, different processing of ferritic/martensitic 9Cr1WTaV alloy (EUROFER97) was tested in correlation with observed selected properties to observe induced changes in material degradation and surface. The activation energies for hydrogen traps were shown to have distinct peaks corresponding to different trapping mechanisms, including matrix dislocations and grain boundaries. For the cryogenically treated sample, an additional peak was also identified and correlated with increased carbide precipitation.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-9"},"PeriodicalIF":6.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00522-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The microstructure-corrosion relationships in laser-welded dissimilar steel-to-aluminium joints 激光焊接异种钢铝接头的微观结构-腐蚀关系
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-11 DOI: 10.1038/s41529-024-00517-y
J. I. Ahuir-Torres, S. Jabar, P. Franciosa, D. Ceglarek, H. R. Kotadia
This study investigated the corrosion behaviour of dissimilar steel-to-aluminium laser-welded conduction, and keyhole mode (partial- and full-penetration) lap joints through electrochemical techniques and advanced microstructural characterisation. The corrosion resistance of the weld was found to be higher than the base materials, primarily due to the presence of cathodic FexAly (η-Fe2Al5, θ-Fe4Al13, β-FeAl) intermetallic compounds (IMCs) with high corrosion potential. The different micro and macro-galvanic corrosion mechanisms were found at various interfaces around the weld, resulting in localised pitting corrosion. The keyhole mode welding showed improved corrosion resistance, primarily attributed to the type, size, and distribution of IMCs.
本研究通过电化学技术和先进的微结构表征方法,研究了异种钢铝激光焊接传导接头和锁孔模式(部分穿透和完全穿透)搭接接头的腐蚀行为。研究发现,焊缝的耐腐蚀性高于母材,这主要是由于存在具有高腐蚀电位的阴极 FexAly(η-Fe2Al5、θ-Fe4Al13、β-FeAl)金属间化合物(IMC)。在焊缝周围的不同界面上发现了不同的微观和宏观电化学腐蚀机制,从而导致局部点蚀。锁孔模式焊接显示出更强的耐腐蚀性,这主要归因于 IMC 的类型、尺寸和分布。
{"title":"The microstructure-corrosion relationships in laser-welded dissimilar steel-to-aluminium joints","authors":"J. I. Ahuir-Torres, S. Jabar, P. Franciosa, D. Ceglarek, H. R. Kotadia","doi":"10.1038/s41529-024-00517-y","DOIUrl":"10.1038/s41529-024-00517-y","url":null,"abstract":"This study investigated the corrosion behaviour of dissimilar steel-to-aluminium laser-welded conduction, and keyhole mode (partial- and full-penetration) lap joints through electrochemical techniques and advanced microstructural characterisation. The corrosion resistance of the weld was found to be higher than the base materials, primarily due to the presence of cathodic FexAly (η-Fe2Al5, θ-Fe4Al13, β-FeAl) intermetallic compounds (IMCs) with high corrosion potential. The different micro and macro-galvanic corrosion mechanisms were found at various interfaces around the weld, resulting in localised pitting corrosion. The keyhole mode welding showed improved corrosion resistance, primarily attributed to the type, size, and distribution of IMCs.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-17"},"PeriodicalIF":6.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00517-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoscale heterogeneities dictate corrosion pathways in a high-strength aluminum alloy 纳米级异质性决定了高强度铝合金的腐蚀途径
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-03 DOI: 10.1038/s41529-024-00520-3
S. Choudhary, R. G. Kelly
Micro-segregation and resulting nanoscale microstructural heterogeneities are unavoidable in wrought 7xxx aluminum alloys produced using current casting and thermomechanical processes. This study demonstrates that these nanoscale heterogeneities significantly impact pit growth in an extruded, age-hardened aluminum alloy 7075-T651. The alloy exhibits a complex microstructure with heterogeneously distributed E-Al18Mg3Cr2 dispersoids, which promote the precipitation of coarse ƞ-Mg(ZnAlCu)2 nanoparticles resulting in the formation of solute-depleted regions both within the grain interior and along the grain boundaries in dispersoid-rich areas. These alterations affect resistance to pit growth at the nanoscale, governing the transition of micro-galvanic sites into large pits with potential for crack initiation. This work underscores the necessity for modifying alloy composition and casting processes to develop superior aluminum alloys for critical applications.
在使用当前铸造和热机械工艺生产的锻造 7xxx 铝合金中,微偏析和由此产生的纳米级微结构异质性是不可避免的。本研究表明,这些纳米级异质性会严重影响挤压时效硬化铝合金 7075-T651 中凹坑的生长。该合金具有复杂的微观结构,其中 E-Al18Mg3Cr2 分散体分布不均,可促进粗ƞ-Mg(ZnAlCu)2 纳米颗粒的沉淀,从而在晶粒内部和分散体富集区的晶界上形成溶质贫化区。这些变化影响了纳米尺度的凹坑生长阻力,制约着微电镀点向大凹坑的过渡,并可能导致裂纹的产生。这项研究强调了改变合金成分和铸造工艺的必要性,以开发出适用于关键应用的优质铝合金。
{"title":"Nanoscale heterogeneities dictate corrosion pathways in a high-strength aluminum alloy","authors":"S. Choudhary, R. G. Kelly","doi":"10.1038/s41529-024-00520-3","DOIUrl":"10.1038/s41529-024-00520-3","url":null,"abstract":"Micro-segregation and resulting nanoscale microstructural heterogeneities are unavoidable in wrought 7xxx aluminum alloys produced using current casting and thermomechanical processes. This study demonstrates that these nanoscale heterogeneities significantly impact pit growth in an extruded, age-hardened aluminum alloy 7075-T651. The alloy exhibits a complex microstructure with heterogeneously distributed E-Al18Mg3Cr2 dispersoids, which promote the precipitation of coarse ƞ-Mg(ZnAlCu)2 nanoparticles resulting in the formation of solute-depleted regions both within the grain interior and along the grain boundaries in dispersoid-rich areas. These alterations affect resistance to pit growth at the nanoscale, governing the transition of micro-galvanic sites into large pits with potential for crack initiation. This work underscores the necessity for modifying alloy composition and casting processes to develop superior aluminum alloys for critical applications.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-10"},"PeriodicalIF":6.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00520-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Materials Degradation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1