Pub Date : 2024-12-01Epub Date: 2024-07-31DOI: 10.1002/nbm.5224
Andrew Frankini, Gaurav Verma, Alan C Seifert, Bradley N Delman, Varun Subramaniam, Priti Balchandani, Akbar Alipour
We aim to assess a straightforward technique to enhance spectral quality in the brain, particularly in the cerebellum, during 7 T MRI scans. This is achieved through a wireless RF array insert designed to mitigate signal dropouts caused by the limited transmit field efficiency in the inferior part of the brain. We recently developed a wireless RF array to improve MRI and 1H-MRS at 7 T by augmenting signal via inductive coupling between the wireless RF array and the MRI coil. In vivo experiments on a Siemens 7 T whole-body human scanner with a Nova 1Tx/32Rx head coil quantified the impact of the dorsal cervical array in improving signal in the posterior fossa, including the cerebellum, where the transmit efficiency of the coil is inherently low. The 1H-MRS experimental protocol consisted of paired acquisition of data sets, both with and without the RF array, using the semi-LASER and SASSI sequences. The overall results indicate that the localized 1H-MRS is improved significantly in the presence of the array. Comparison of in vivo 1H-MRS plots in the presence versus absence of the array demonstrated an average SNR enhancement of a factor of 2.2. LCModel analysis reported reduced Cramér-Rao lower bounds, indicating more confident fits. This wireless RF array can significantly increase detection sensitivity. It may reduce the RF transmission power and data acquisition time for 1H-MRS and MRI applications, specifically at 7 T, where 1H-MRS requires a high-power RF pulse. The array could provide a cost-effective and efficient solution to improve detection sensitivity for human 1H-MRS and MRI in the regions with lower transmit efficiency.
我们旨在评估一种在 7 T 磁共振成像扫描过程中提高大脑(尤其是小脑)光谱质量的直接技术。这是通过无线射频阵列插入来实现的,旨在减轻大脑下部有限的发射场效率造成的信号丢失。我们最近开发了一种无线射频阵列,通过无线射频阵列和磁共振线圈之间的感应耦合增强信号,从而改善 7 T 磁共振成像和 1H-MRS 的效果。在西门子 7 T 全身人体扫描仪和 Nova 1Tx/32Rx 头线圈上进行的活体实验量化了颈背阵列对改善包括小脑在内的后窝信号的影响,线圈在后窝的传输效率本来就很低。1H-MRS 实验方案包括使用半激光和 SASSI 序列成对采集有射频阵列和无射频阵列的数据集。总体结果表明,在有阵列的情况下,局部 1H-MRS 有明显改善。比较有阵列和无阵列时的体内 1H-MRS 图显示,信噪比平均提高了 2.2 倍。LCM 模型分析表明,Cramér-Rao 下限降低,表明拟合更有把握。这种无线射频阵列可以大大提高探测灵敏度。它可以减少 1H-MRS 和磁共振成像应用的射频传输功率和数据采集时间,特别是在 7 T 条件下,因为 1H-MRS 需要高功率射频脉冲。该阵列可以提供一种经济有效的解决方案,在发射效率较低的区域提高人体 1H-MRS 和磁共振成像的检测灵敏度。
{"title":"Improvement of MRS at ultra-high field using a wireless RF array.","authors":"Andrew Frankini, Gaurav Verma, Alan C Seifert, Bradley N Delman, Varun Subramaniam, Priti Balchandani, Akbar Alipour","doi":"10.1002/nbm.5224","DOIUrl":"10.1002/nbm.5224","url":null,"abstract":"<p><p>We aim to assess a straightforward technique to enhance spectral quality in the brain, particularly in the cerebellum, during 7 T MRI scans. This is achieved through a wireless RF array insert designed to mitigate signal dropouts caused by the limited transmit field efficiency in the inferior part of the brain. We recently developed a wireless RF array to improve MRI and <sup>1</sup>H-MRS at 7 T by augmenting signal via inductive coupling between the wireless RF array and the MRI coil. In vivo experiments on a Siemens 7 T whole-body human scanner with a Nova 1Tx/32Rx head coil quantified the impact of the dorsal cervical array in improving signal in the posterior fossa, including the cerebellum, where the transmit efficiency of the coil is inherently low. The <sup>1</sup>H-MRS experimental protocol consisted of paired acquisition of data sets, both with and without the RF array, using the semi-LASER and SASSI sequences. The overall results indicate that the localized <sup>1</sup>H-MRS is improved significantly in the presence of the array. Comparison of in vivo <sup>1</sup>H-MRS plots in the presence versus absence of the array demonstrated an average SNR enhancement of a factor of 2.2. LCModel analysis reported reduced Cramér-Rao lower bounds, indicating more confident fits. This wireless RF array can significantly increase detection sensitivity. It may reduce the RF transmission power and data acquisition time for <sup>1</sup>H-MRS and MRI applications, specifically at 7 T, where <sup>1</sup>H-MRS requires a high-power RF pulse. The array could provide a cost-effective and efficient solution to improve detection sensitivity for human <sup>1</sup>H-MRS and MRI in the regions with lower transmit efficiency.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5224"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical exchange saturation transfer (CEST) MRI at 3 T suffers from low specificity due to overlapping CEST effects from multiple metabolites, while higher field strengths (B0) allow for better separation of Z-spectral "peaks," aiding signal interpretation and quantification. However, data acquisition at higher B0 is restricted by equipment access, field inhomogeneity and safety issues. Herein, we aim to synthesize higher-B0 Z-spectra from readily available data acquired with 3 T clinical scanners using a deep learning framework. Trained with simulation data using models based on Bloch-McConnell equations, this framework comprised two deep neural networks (DNNs) and a singular value decomposition (SVD) module. The first DNN identified B0 shifts in Z-spectra and aligned them to correct frequencies. After B0 correction, the lower-B0 Z-spectra were streamlined to the second DNN, casting into the key feature representations of higher-B0 Z-spectra, obtained through SVD truncation. Finally, the complete higher-B0 Z-spectra were recovered from inverse SVD, given the low-rank property of Z-spectra. This study constructed and validated two models, a phosphocreatine (PCr) model and a pseudo-in-vivo one. Each experimental dataset, including PCr phantoms, egg white phantoms, and in vivo rat brains, was sequentially acquired on a 3 T human and a 9.4 T animal scanner. Results demonstrated that the synthetic 9.4 T Z-spectra were almost identical to the experimental ground truth, showing low RMSE (0.11% ± 0.0013% for seven PCr tubes, 1.8% ± 0.2% for three egg white tubes, and 0.79% ± 0.54% for three rat slices) and high R2 (>0.99). The synthesized amide and NOE contrast maps, calculated using the Lorentzian difference, were also well matched with the experiments. Additionally, the synthesis model exhibited robustness to B0 inhomogeneities, noise, and other acquisition imperfections. In conclusion, the proposed framework enables synthesis of higher-B0 Z-spectra from lower-B0 ones, which may facilitate CEST MRI quantification and applications.
3 T 下的化学交换饱和转移(CEST)磁共振成像因多种代谢物的 CEST 效应重叠而导致特异性较低,而较高的场强(B0)可更好地分离 Z 光谱 "峰值",有助于信号解读和量化。然而,在较高的 B0 下获取数据受到设备接入、场不均匀性和安全问题的限制。在此,我们旨在利用深度学习框架,从 3 T 临床扫描仪获取的现成数据中合成更高 B0 的 Z 光谱。该框架由两个深度神经网络(DNN)和一个奇异值分解(SVD)模块组成,使用基于布洛赫-麦康奈尔方程的模型对模拟数据进行训练。第一个 DNN 识别 Z 频谱中的 B0 移位,并将其与正确频率对齐。经过 B0 校正后,低 B0 Z 频谱被精简到第二个 DNN,并通过 SVD 截断获得高 B0 Z 频谱的关键特征表示。最后,鉴于 Z 频谱的低秩属性,通过反 SVD 恢复了完整的高 B0 Z 频谱。本研究构建并验证了两个模型,一个是磷酸肌酸(PCr)模型,另一个是假体内模型。每个实验数据集包括 PCr 假体、蛋白假体和体内大鼠大脑,在 3 T 人体扫描仪和 9.4 T 动物扫描仪上依次获取。结果表明,合成的 9.4 T Z 光谱与实验地面实况几乎一致,显示出较低的 RMSE(7 个 PCr 管为 0.11% ± 0.0013%,3 个蛋白管为 1.8% ± 0.2%,3 个大鼠切片为 0.79% ± 0.54%)和较高的 R2(大于 0.99)。使用洛伦兹差分法计算的合成酰胺和 NOE 对比图也与实验结果十分吻合。此外,合成模型对 B0 不均匀性、噪声和其他采集缺陷具有鲁棒性。总之,所提出的框架能从低 B0 Z 谱合成高 B0 Z 谱,这将有助于 CEST MRI 的量化和应用。
{"title":"Synthesis of higher-B<sub>0</sub> CEST Z-spectra from lower-B<sub>0</sub> data via deep learning and singular value decomposition.","authors":"Mengdi Yan, Chongxue Bie, Wentao Jia, Chuyu Liu, Xiaowei He, Xiaolei Song","doi":"10.1002/nbm.5221","DOIUrl":"10.1002/nbm.5221","url":null,"abstract":"<p><p>Chemical exchange saturation transfer (CEST) MRI at 3 T suffers from low specificity due to overlapping CEST effects from multiple metabolites, while higher field strengths (B<sub>0</sub>) allow for better separation of Z-spectral \"peaks,\" aiding signal interpretation and quantification. However, data acquisition at higher B<sub>0</sub> is restricted by equipment access, field inhomogeneity and safety issues. Herein, we aim to synthesize higher-B<sub>0</sub> Z-spectra from readily available data acquired with 3 T clinical scanners using a deep learning framework. Trained with simulation data using models based on Bloch-McConnell equations, this framework comprised two deep neural networks (DNNs) and a singular value decomposition (SVD) module. The first DNN identified B<sub>0</sub> shifts in Z-spectra and aligned them to correct frequencies. After B<sub>0</sub> correction, the lower-B<sub>0</sub> Z-spectra were streamlined to the second DNN, casting into the key feature representations of higher-B<sub>0</sub> Z-spectra, obtained through SVD truncation. Finally, the complete higher-B<sub>0</sub> Z-spectra were recovered from inverse SVD, given the low-rank property of Z-spectra. This study constructed and validated two models, a phosphocreatine (PCr) model and a pseudo-in-vivo one. Each experimental dataset, including PCr phantoms, egg white phantoms, and in vivo rat brains, was sequentially acquired on a 3 T human and a 9.4 T animal scanner. Results demonstrated that the synthetic 9.4 T Z-spectra were almost identical to the experimental ground truth, showing low RMSE (0.11% ± 0.0013% for seven PCr tubes, 1.8% ± 0.2% for three egg white tubes, and 0.79% ± 0.54% for three rat slices) and high R<sup>2</sup> (>0.99). The synthesized amide and NOE contrast maps, calculated using the Lorentzian difference, were also well matched with the experiments. Additionally, the synthesis model exhibited robustness to B<sub>0</sub> inhomogeneities, noise, and other acquisition imperfections. In conclusion, the proposed framework enables synthesis of higher-B<sub>0</sub> Z-spectra from lower-B<sub>0</sub> ones, which may facilitate CEST MRI quantification and applications.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5221"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-07DOI: 10.1002/nbm.5223
Fadil Ali, Zhaohuan Zhang, Andres Saucedo, Ajin Joy, Vahid Ghodrati, Kim-Lien Nguyen, J Paul Finn, Mark Bydder
Purpose: Balanced steady-state free precession (bSSFP) imaging is susceptible to outflow effects where excited spins leaving the slice as part of the blood stream are misprojected back onto the imaging plane. Previous work proposed using slice-encoding steps to localize these outflow effects from corrupting the target slice, at the expense of prolonged scan time. This present study extends this idea by proposing a means of significantly reducing most of the outflowing signal from the imaged slice using a coil localization method that acquires a slice-encoded calibration scan in addition to the 2D data, without being nearly as time-demanding as our previous method. This coil localization method is titled UNfolding Coil Localized Errors from an imperfect slice profile using a Structured Autocalibration Matrix (UNCLE SAM).
Methods: Retrospective and prospective evaluations were carried out. Both featured a 2D acquisition and a separate slice-encoded calibration of the center in-plane -space lines across all desired slice-encoding steps.
Results: Retrospective results featured a slice-by-slice comparison of the slice-encoded images with UNCLE SAM. UNCLE SAM's subtraction from the slice-encoded image was compared with a subtraction from the flow-corrupted 2D image, to demonstrate UNCLE SAM's capability to unfold outflowing spins. UNCLE SAM's comparison with slice encoding showed that UNCLE SAM was able to unfold up to 74% of what slice encoding achieved. Prospective results showed significant reduction in outflow effects with only a marginal increase in scan time from the 2D acquisition.
Conclusions: We developed a method that effectively unfolds most outflowing spins from corrupting the target slice and does not require the explicit use of slice-encoding gradients. This development offers a method to reduce most outflow effects from the target slice within a clinically feasible scan duration compared with the fully sampled slice-encoding technique.
目的:平衡稳态自由前驱(bSSFP)成像容易受到外流效应的影响,即作为血流一部分离开切片的激发自旋被错误地投射回成像平面。之前的研究提出使用切片编码步骤来定位这些外流效应,以免破坏目标切片,但代价是延长扫描时间。本研究对这一想法进行了扩展,提出了一种使用线圈定位方法显著减少成像切片中大部分外流信号的方法,该方法除了获取二维数据外,还获取切片编码校准扫描,而且不像我们之前的方法那样耗时。这种线圈定位方法名为 "使用结构化自动校准矩阵消除不完美切片轮廓中的线圈定位误差"(UNCLE SAM):方法:进行了回顾性和前瞻性评估。方法:分别进行了回顾性和前瞻性评估,二者均采用二维采集,并在所有所需的切片编码步骤中对平面内 k$ k$ 空间中心线进行单独的切片编码校准:回顾性结果包括切片编码图像与 UNCLE SAM 的逐片比较。将 UNCLE SAM 从切片编码图像中减去的结果与从流动破坏的二维图像中减去的结果进行比较,以证明 UNCLE SAM 能够展开外流自旋。UNCLE SAM 与切片编码的比较结果显示,UNCLE SAM 能够展开的旋转量是切片编码的 74%。前瞻性结果显示,外流效应显著减少,而扫描时间仅比二维采集略有增加:我们开发了一种方法,它能有效地展开大部分外流自旋,避免破坏目标切片,而且不需要明确使用切片编码梯度。与全采样切片编码技术相比,该方法能在临床可行的扫描时间内减少目标切片的大部分外流效应。
{"title":"Unfolding coil localized errors from an imperfect slice profile using a structured autocalibration matrix: An application to reduce outflow effects in cine bSSFP imaging.","authors":"Fadil Ali, Zhaohuan Zhang, Andres Saucedo, Ajin Joy, Vahid Ghodrati, Kim-Lien Nguyen, J Paul Finn, Mark Bydder","doi":"10.1002/nbm.5223","DOIUrl":"10.1002/nbm.5223","url":null,"abstract":"<p><strong>Purpose: </strong>Balanced steady-state free precession (bSSFP) imaging is susceptible to outflow effects where excited spins leaving the slice as part of the blood stream are misprojected back onto the imaging plane. Previous work proposed using slice-encoding steps to localize these outflow effects from corrupting the target slice, at the expense of prolonged scan time. This present study extends this idea by proposing a means of significantly reducing most of the outflowing signal from the imaged slice using a coil localization method that acquires a slice-encoded calibration scan in addition to the 2D data, without being nearly as time-demanding as our previous method. This coil localization method is titled UNfolding Coil Localized Errors from an imperfect slice profile using a Structured Autocalibration Matrix (UNCLE SAM).</p><p><strong>Methods: </strong>Retrospective and prospective evaluations were carried out. Both featured a 2D acquisition and a separate slice-encoded calibration of the center in-plane <math><mi>k</mi></math> -space lines across all desired slice-encoding steps.</p><p><strong>Results: </strong>Retrospective results featured a slice-by-slice comparison of the slice-encoded images with UNCLE SAM. UNCLE SAM's subtraction from the slice-encoded image was compared with a subtraction from the flow-corrupted 2D image, to demonstrate UNCLE SAM's capability to unfold outflowing spins. UNCLE SAM's comparison with slice encoding showed that UNCLE SAM was able to unfold up to 74% of what slice encoding achieved. Prospective results showed significant reduction in outflow effects with only a marginal increase in scan time from the 2D acquisition.</p><p><strong>Conclusions: </strong>We developed a method that effectively unfolds most outflowing spins from corrupting the target slice and does not require the explicit use of slice-encoding gradients. This development offers a method to reduce most outflow effects from the target slice within a clinically feasible scan duration compared with the fully sampled slice-encoding technique.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5223"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to optimize the sampling of spin-lock times (TSLs) in quantitative T1ρ mapping for improved reproducibility. Two new TSL sampling schemes were proposed: (i) reproducibility-guided random sampling (RRS) and (ii) reproducibility-guided optimal sampling (ROS). They were compared to the existing linear sampling (LS) and precision-guided sampling (PS) schemes for T1ρ reproducibility through numerical simulations, phantom experiments, and volunteer studies. Each study evaluated the four sampling schemes with three commonly used T1ρ preparations based on composite and balanced spin-locking. Additionally, the phantom and volunteer studies investigated the impact of B0 and B1 field inhomogeneities on T1ρ reproducibility, respectively. The reproducibility was assessed using the coefficient of variation (CoV) by repeating the T1ρ measurements eight times for phantom experiments and five times for volunteer studies. Numerical simulations resulted in lower mean CoVs for the proposed RRS (1.74%) and ROS (0.68%) compared to LS (2.93%) and PS (3.68%). In the phantom study, the mean CoVs were also lower for RRS (2.7%) and ROS (2.6%) compared to LS (4.1%) and PS (3.1%). Furthermore, the mean CoVs of the proposed RRS and ROS were statistically lower (P < 0.001) compared to existing LS and PS schemes at a B1 offset of 20%. In the volunteer study, consistently lower mean CoVs were observed in bilateral thigh muscles for RRS (9.3%) and ROS (9.2%) compared to LS (10.9%) and PS (10.2%), and the difference was more prominent at B0 offsets higher than 50 Hz. The proposed sampling schemes improve the reproducibility of quantitative T1ρ mapping by optimizing the selection of TSLs. This improvement is especially beneficial for longitudinal studies that track and monitor disease progression and treatment response.
{"title":"Novel spin-lock time sampling strategies for improved reproducibility in quantitative T1ρ mapping.","authors":"Sandeep Panwar Jogi, Qi Peng, Ramin Jafari, Ricardo Otazo, Can Wu","doi":"10.1002/nbm.5244","DOIUrl":"10.1002/nbm.5244","url":null,"abstract":"<p><p>This study aimed to optimize the sampling of spin-lock times (TSLs) in quantitative T1ρ mapping for improved reproducibility. Two new TSL sampling schemes were proposed: (i) reproducibility-guided random sampling (RRS) and (ii) reproducibility-guided optimal sampling (ROS). They were compared to the existing linear sampling (LS) and precision-guided sampling (PS) schemes for T1ρ reproducibility through numerical simulations, phantom experiments, and volunteer studies. Each study evaluated the four sampling schemes with three commonly used T1ρ preparations based on composite and balanced spin-locking. Additionally, the phantom and volunteer studies investigated the impact of B<sub>0</sub> and B<sub>1</sub> field inhomogeneities on T1ρ reproducibility, respectively. The reproducibility was assessed using the coefficient of variation (CoV) by repeating the T1ρ measurements eight times for phantom experiments and five times for volunteer studies. Numerical simulations resulted in lower mean CoVs for the proposed RRS (1.74%) and ROS (0.68%) compared to LS (2.93%) and PS (3.68%). In the phantom study, the mean CoVs were also lower for RRS (2.7%) and ROS (2.6%) compared to LS (4.1%) and PS (3.1%). Furthermore, the mean CoVs of the proposed RRS and ROS were statistically lower (P < 0.001) compared to existing LS and PS schemes at a B<sub>1</sub> offset of 20%. In the volunteer study, consistently lower mean CoVs were observed in bilateral thigh muscles for RRS (9.3%) and ROS (9.2%) compared to LS (10.9%) and PS (10.2%), and the difference was more prominent at B<sub>0</sub> offsets higher than 50 Hz. The proposed sampling schemes improve the reproducibility of quantitative T1ρ mapping by optimizing the selection of TSLs. This improvement is especially beneficial for longitudinal studies that track and monitor disease progression and treatment response.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5244"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work proposes MP-Grasp4D (magnetization-prepared golden-angle radial sparse parallel 4D) MRI, a free-breathing, inversion recovery (IR)-prepared, time-resolved 4D MRI technique with improved T1-weighted contrast. MP-Grasp4D MRI acquisition incorporates IR preparation into a radial gradient echo sequence. MP-Grasp4D employs a golden-angle navi-stack-of-stars sampling scheme, where imaging data of rotating radial stacks and navigator stacks (acquired at a consistent rotation angle) are alternately acquired. The navigator stacks are used to estimate a temporal basis for low-rank subspace-constrained reconstruction. This allows for the simultaneous capture of both IR-induced contrast changes and respiratory motion. One temporal frame of the imaging volume in MP-Grasp4D MRI is reconstructed from a single stack and an adjacent navigator stack on average, resulting in a nominal temporal resolution of 0.16 seconds per volume. Images corresponding to the optimal inversion time (TI) can be retrospectively selected for providing the best image contrast. Reader studies were conducted to assess the performance of MP-Grasp4D MRI in liver imaging across 30 subjects in comparison with standard Grasp4D MRI without IR preparation. MP-Grasp4D MRI received significantly higher scores (P < 0.05) than Grasp4D in all assessment categories. There was a moderate to almost perfect agreement (kappa coefficient from 0.42 to 0.9) between the two readers for image quality assessment. When the scan time is reduced, MP-Grasp4D MRI preserves image contrast and quality, demonstrating additional acceleration capability. MP-Grasp4D MRI improves T1-weighted contrast for free-breathing time-resolved 4D MRI and eliminates the need for explicit motion compensation. This method is expected to be valuable in different MRI applications such as MR-guided radiotherapy.
{"title":"Free-breathing time-resolved 4D MRI with improved T1-weighting contrast.","authors":"Jingjia Chen, Ding Xia, Chenchan Huang, Krishna Shanbhogue, Hersh Chandarana, Li Feng","doi":"10.1002/nbm.5247","DOIUrl":"10.1002/nbm.5247","url":null,"abstract":"<p><p>This work proposes MP-Grasp4D (magnetization-prepared golden-angle radial sparse parallel 4D) MRI, a free-breathing, inversion recovery (IR)-prepared, time-resolved 4D MRI technique with improved T1-weighted contrast. MP-Grasp4D MRI acquisition incorporates IR preparation into a radial gradient echo sequence. MP-Grasp4D employs a golden-angle navi-stack-of-stars sampling scheme, where imaging data of rotating radial stacks and navigator stacks (acquired at a consistent rotation angle) are alternately acquired. The navigator stacks are used to estimate a temporal basis for low-rank subspace-constrained reconstruction. This allows for the simultaneous capture of both IR-induced contrast changes and respiratory motion. One temporal frame of the imaging volume in MP-Grasp4D MRI is reconstructed from a single stack and an adjacent navigator stack on average, resulting in a nominal temporal resolution of 0.16 seconds per volume. Images corresponding to the optimal inversion time (TI) can be retrospectively selected for providing the best image contrast. Reader studies were conducted to assess the performance of MP-Grasp4D MRI in liver imaging across 30 subjects in comparison with standard Grasp4D MRI without IR preparation. MP-Grasp4D MRI received significantly higher scores (P < 0.05) than Grasp4D in all assessment categories. There was a moderate to almost perfect agreement (kappa coefficient from 0.42 to 0.9) between the two readers for image quality assessment. When the scan time is reduced, MP-Grasp4D MRI preserves image contrast and quality, demonstrating additional acceleration capability. MP-Grasp4D MRI improves T1-weighted contrast for free-breathing time-resolved 4D MRI and eliminates the need for explicit motion compensation. This method is expected to be valuable in different MRI applications such as MR-guided radiotherapy.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5247"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-26DOI: 10.1002/nbm.5251
Yinghao Li, Wei Li, Adrian Paez, Di Cao, Yuanqi Sun, Chunming Gu, Kaihua Zhang, Xinyuan Miao, Peiying Liu, Wenbo Li, Jay J Pillai, Hanzhang Lu, Peter C M van Zijl, Christopher Earley, Xu Li, Jun Hua
Iron Dextran is a widely used iron oxide compound to treat iron-deficiency anemia patients in the clinic. Similar to other iron oxide compounds such as Ferumoxytol, it can also be used off-label as an intravascular magnetic resonance imaging (MRI) contrast agent due to its strong iron-induced T2 and T2* shortening effects. In this study, we seek to evaluate the feasibility of using Iron Dextran enhanced multi-echo susceptibility weighted imaging (SWI) MRI at 7T to image arterial and venous blood vessels in the human brain. Phantom experiments were performed to measure the r2* relaxivity for Iron Dextran in blood, based on which the SWI sequence was optimized. Pre- and post-infusion MR images were acquired in human subjects from which maps of arteries and veins were extracted. The post-contrast SWI images showed enhanced susceptibility difference between blood and the surrounding tissue in both arteries and veins. Our results showed that the proposed Iron Dextran enhanced multi-echo SWI approach allowed the visualization of blood vessels with diameters down to ~100 μm, including small blood vessels supplying and draining small brain structures such as the hippocampus. We conclude that Iron Dextran can be an alternative iron-based MRI contrast agent for blood vessel imaging in the human brain.
{"title":"Imaging arterial and venous vessels using Iron Dextran enhanced multi-echo 3D gradient echo MRI at 7T.","authors":"Yinghao Li, Wei Li, Adrian Paez, Di Cao, Yuanqi Sun, Chunming Gu, Kaihua Zhang, Xinyuan Miao, Peiying Liu, Wenbo Li, Jay J Pillai, Hanzhang Lu, Peter C M van Zijl, Christopher Earley, Xu Li, Jun Hua","doi":"10.1002/nbm.5251","DOIUrl":"10.1002/nbm.5251","url":null,"abstract":"<p><p>Iron Dextran is a widely used iron oxide compound to treat iron-deficiency anemia patients in the clinic. Similar to other iron oxide compounds such as Ferumoxytol, it can also be used off-label as an intravascular magnetic resonance imaging (MRI) contrast agent due to its strong iron-induced T2 and T2* shortening effects. In this study, we seek to evaluate the feasibility of using Iron Dextran enhanced multi-echo susceptibility weighted imaging (SWI) MRI at 7T to image arterial and venous blood vessels in the human brain. Phantom experiments were performed to measure the r2* relaxivity for Iron Dextran in blood, based on which the SWI sequence was optimized. Pre- and post-infusion MR images were acquired in human subjects from which maps of arteries and veins were extracted. The post-contrast SWI images showed enhanced susceptibility difference between blood and the surrounding tissue in both arteries and veins. Our results showed that the proposed Iron Dextran enhanced multi-echo SWI approach allowed the visualization of blood vessels with diameters down to ~100 μm, including small blood vessels supplying and draining small brain structures such as the hippocampus. We conclude that Iron Dextran can be an alternative iron-based MRI contrast agent for blood vessel imaging in the human brain.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5251"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-02DOI: 10.1002/nbm.5254
Greg Hong, Tina Khazaee, Santiago F Cobos, Spencer D Christiansen, Junmin Liu, Maria Drangova, David W Holdsworth
Calcium sulfate is an established carrier for localized drug delivery, but a means to non-invasively measure drug release, which would improve our understanding of localized delivery, remains an unmet need. We aim to quantitatively estimate the diffusion-controlled release of small molecules loaded into a calcium sulfate carrier through a gadobutrol-based contrast agent, which acts as a surrogate small molecule. A central cylindrical core made of calcium sulfate, either alone or within a metal scaffold, is loaded with contrast agents that release into agar. Multi-echo scans are acquired at multiple time points over 4 weeks and processed into R2* and quantitative susceptibility mapping (QSM) maps. Mean R2* values are fit to a known drug delivery model, which are then compared with the decrease in core QSM. Fitting R2* measurements of calcium sulfate core while constraining constants to a drug release model results in an R2-value of 0.991, yielding a diffusion constant of 4.59 × 10-11 m2 s-1. Incorporating the carrier within a metal scaffold results in a slower release. QSM shows the resulting loss of susceptibility in the non-metal core but is unreliable around metal. R2* characterizes the released gadobutrol, and QSM detects the resulting decrease in core susceptibility. The addition of a porous metal scaffold slows the release of gadobutrol, as expected.
{"title":"Characterizing diffusion-controlled release of small-molecules using quantitative MRI in view of applications to orthopedic infection.","authors":"Greg Hong, Tina Khazaee, Santiago F Cobos, Spencer D Christiansen, Junmin Liu, Maria Drangova, David W Holdsworth","doi":"10.1002/nbm.5254","DOIUrl":"10.1002/nbm.5254","url":null,"abstract":"<p><p>Calcium sulfate is an established carrier for localized drug delivery, but a means to non-invasively measure drug release, which would improve our understanding of localized delivery, remains an unmet need. We aim to quantitatively estimate the diffusion-controlled release of small molecules loaded into a calcium sulfate carrier through a gadobutrol-based contrast agent, which acts as a surrogate small molecule. A central cylindrical core made of calcium sulfate, either alone or within a metal scaffold, is loaded with contrast agents that release into agar. Multi-echo scans are acquired at multiple time points over 4 weeks and processed into R2* and quantitative susceptibility mapping (QSM) maps. Mean R2* values are fit to a known drug delivery model, which are then compared with the decrease in core QSM. Fitting R2* measurements of calcium sulfate core while constraining constants to a drug release model results in an R<sup>2</sup>-value of 0.991, yielding a diffusion constant of 4.59 × 10<sup>-11</sup> m<sup>2</sup> s<sup>-1</sup>. Incorporating the carrier within a metal scaffold results in a slower release. QSM shows the resulting loss of susceptibility in the non-metal core but is unreliable around metal. R2* characterizes the released gadobutrol, and QSM detects the resulting decrease in core susceptibility. The addition of a porous metal scaffold slows the release of gadobutrol, as expected.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5254"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-04DOI: 10.1002/nbm.5216
Jonathan Stelter, Kilian Weiss, Lisa Steinhelfer, Veronika Spieker, Elizabeth Huaroc Moquillaza, Weitong Zhang, Marcus R Makowski, Julia A Schnabel, Bernhard Kainz, Rickmer F Braren, Dimitrios C Karampinos
<p><strong>Purpose: </strong>To develop and validate a data acquisition scheme combined with a motion-resolved reconstruction and dictionary-matching-based parameter estimation to enable free-breathing isotropic resolution self-navigated whole-liver simultaneous water-specific <math><msub><mtext>T</mtext> <mtext>1</mtext></msub> </math> ( <math><msub><mtext>wT</mtext> <mtext>1</mtext></msub> </math> ) and <math><msub><mtext>T</mtext> <mtext>2</mtext></msub> </math> ( <math><msub><mtext>wT</mtext> <mtext>2</mtext></msub> </math> ) mapping for the characterization of diffuse and oncological liver diseases.</p><p><strong>Methods: </strong>The proposed data acquisition consists of a magnetization preparation pulse and a two-echo gradient echo readout with a radial stack-of-stars trajectory, repeated with different preparations to achieve different <math><msub><mtext>T</mtext> <mtext>1</mtext></msub> </math> and <math><msub><mtext>T</mtext> <mtext>2</mtext></msub> </math> contrasts in a fixed acquisition time of 6 min. Regularized reconstruction was performed using self-navigation to account for motion during the free-breathing acquisition, followed by water-fat separation. Bloch simulations of the sequence were applied to optimize the sequence timing for <math> <msub><mrow><mi>B</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </math> insensitivity at 3 T, to correct for relaxation-induced blurring, and to map <math><msub><mtext>T</mtext> <mtext>1</mtext></msub> </math> and <math><msub><mtext>T</mtext> <mtext>2</mtext></msub> </math> using a dictionary. The proposed method was validated on a water-fat phantom with varying relaxation properties and in 10 volunteers against imaging and spectroscopy reference values. The performance and robustness of the proposed method were evaluated in five patients with abdominal pathologies.</p><p><strong>Results: </strong>Simulations demonstrate good <math> <msub><mrow><mi>B</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </math> insensitivity of the proposed method in measuring <math><msub><mtext>T</mtext> <mtext>1</mtext></msub> </math> and <math><msub><mtext>T</mtext> <mtext>2</mtext></msub> </math> values. The proposed method produces co-registered <math><msub><mtext>wT</mtext> <mtext>1</mtext></msub> </math> and <math><msub><mtext>wT</mtext> <mtext>2</mtext></msub> </math> maps with a good agreement with reference methods (phantom: <math><msub><mtext>wT</mtext> <mtext>1</mtext></msub> <mo>=</mo> <mn>1</mn> <mo>.</mo> <mn>02</mn> <mspace></mspace> <msub><mtext>wT</mtext> <mtext>1,ref</mtext></msub> <mo>-</mo> <mn>8</mn> <mo>.</mo> <mn>93</mn> <mspace></mspace> <mtext>ms</mtext> <mo>,</mo> <msup><mi>R</mi> <mn>2</mn></msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>991</mn></math> ; <math><msub><mtext>wT</mtext> <mn>2</mn></msub> <mo>=</mo> <mn>1</mn> <mo>.</mo> <mn>03</mn> <mspace></mspace> <msub><mtext>wT</mtext> <mtext>2,ref</mtext></msub> <mo>+</mo> <mn>0</mn> <mo>.</mo> <mn>73</mn> <mspace></mspace> <mtext>ms</mtext> <mo
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Simultaneous whole-liver water <ns0:math><ns0:msub><ns0:mtext>T</ns0:mtext> <ns0:mtext>1</ns0:mtext></ns0:msub> </ns0:math> and <ns0:math><ns0:msub><ns0:mtext>T</ns0:mtext> <ns0:mtext>2</ns0:mtext></ns0:msub> </ns0:math> mapping with isotropic resolution during free-breathing.","authors":"Jonathan Stelter, Kilian Weiss, Lisa Steinhelfer, Veronika Spieker, Elizabeth Huaroc Moquillaza, Weitong Zhang, Marcus R Makowski, Julia A Schnabel, Bernhard Kainz, Rickmer F Braren, Dimitrios C Karampinos","doi":"10.1002/nbm.5216","DOIUrl":"10.1002/nbm.5216","url":null,"abstract":"<p><strong>Purpose: </strong>To develop and validate a data acquisition scheme combined with a motion-resolved reconstruction and dictionary-matching-based parameter estimation to enable free-breathing isotropic resolution self-navigated whole-liver simultaneous water-specific <math><msub><mtext>T</mtext> <mtext>1</mtext></msub> </math> ( <math><msub><mtext>wT</mtext> <mtext>1</mtext></msub> </math> ) and <math><msub><mtext>T</mtext> <mtext>2</mtext></msub> </math> ( <math><msub><mtext>wT</mtext> <mtext>2</mtext></msub> </math> ) mapping for the characterization of diffuse and oncological liver diseases.</p><p><strong>Methods: </strong>The proposed data acquisition consists of a magnetization preparation pulse and a two-echo gradient echo readout with a radial stack-of-stars trajectory, repeated with different preparations to achieve different <math><msub><mtext>T</mtext> <mtext>1</mtext></msub> </math> and <math><msub><mtext>T</mtext> <mtext>2</mtext></msub> </math> contrasts in a fixed acquisition time of 6 min. Regularized reconstruction was performed using self-navigation to account for motion during the free-breathing acquisition, followed by water-fat separation. Bloch simulations of the sequence were applied to optimize the sequence timing for <math> <msub><mrow><mi>B</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </math> insensitivity at 3 T, to correct for relaxation-induced blurring, and to map <math><msub><mtext>T</mtext> <mtext>1</mtext></msub> </math> and <math><msub><mtext>T</mtext> <mtext>2</mtext></msub> </math> using a dictionary. The proposed method was validated on a water-fat phantom with varying relaxation properties and in 10 volunteers against imaging and spectroscopy reference values. The performance and robustness of the proposed method were evaluated in five patients with abdominal pathologies.</p><p><strong>Results: </strong>Simulations demonstrate good <math> <msub><mrow><mi>B</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </math> insensitivity of the proposed method in measuring <math><msub><mtext>T</mtext> <mtext>1</mtext></msub> </math> and <math><msub><mtext>T</mtext> <mtext>2</mtext></msub> </math> values. The proposed method produces co-registered <math><msub><mtext>wT</mtext> <mtext>1</mtext></msub> </math> and <math><msub><mtext>wT</mtext> <mtext>2</mtext></msub> </math> maps with a good agreement with reference methods (phantom: <math><msub><mtext>wT</mtext> <mtext>1</mtext></msub> <mo>=</mo> <mn>1</mn> <mo>.</mo> <mn>02</mn> <mspace></mspace> <msub><mtext>wT</mtext> <mtext>1,ref</mtext></msub> <mo>-</mo> <mn>8</mn> <mo>.</mo> <mn>93</mn> <mspace></mspace> <mtext>ms</mtext> <mo>,</mo> <msup><mi>R</mi> <mn>2</mn></msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>991</mn></math> ; <math><msub><mtext>wT</mtext> <mn>2</mn></msub> <mo>=</mo> <mn>1</mn> <mo>.</mo> <mn>03</mn> <mspace></mspace> <msub><mtext>wT</mtext> <mtext>2,ref</mtext></msub> <mo>+</mo> <mn>0</mn> <mo>.</mo> <mn>73</mn> <mspace></mspace> <mtext>ms</mtext> <mo","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5216"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-13DOI: 10.1002/nbm.5227
Dylan Miller, Cory Efird, Kevin Grant Solar, Christian Beaulieu, Dana Cobzas
Diffusion tensor imaging (DTI) can provide unique contrast and insight into microstructural changes with age or disease of the hippocampus, although it is difficult to measure the hippocampus because of its comparatively small size, location, and shape. This has been markedly improved by the advent of a clinically feasible 1-mm isotropic resolution 6-min DTI protocol at 3 T of the hippocampus with limited brain coverage of 20 axial-oblique slices aligned along its long axis. However, manual segmentation is too laborious for large population studies, and it cannot be automatically segmented directly on the diffusion images using traditional T1 or T2 image-based methods because of the limited brain coverage and different contrast. An automatic method is proposed here that segments the hippocampus directly on high-resolution diffusion images based on an extension of well-known deep learning architectures like UNet and UNet++ by including additional dense residual connections. The method was trained on 100 healthy participants with previously performed manual segmentation on the 1-mm DTI, then evaluated on typical healthy participants (n = 53), yielding an excellent voxel overlap with a Dice score of ~ 0.90 with manual segmentation; notably, this was comparable with the inter-rater reliability of manually delineating the hippocampus on diffusion magnetic resonance imaging (MRI) (Dice score of 0.86). This method also generalized to a different DTI protocol with 36% fewer acquisitions. It was further validated by showing similar age trajectories of volumes, fractional anisotropy, and mean diffusivity from manual segmentations in one cohort (n = 153, age 5-74 years) with automatic segmentations from a second cohort without manual segmentations (n = 354, age 5-90 years). Automated high-resolution diffusion MRI segmentation of the hippocampus will facilitate large cohort analyses and, in future research, needs to be evaluated on patient groups.
{"title":"Automatic deep learning segmentation of the hippocampus on high-resolution diffusion magnetic resonance imaging and its application to the healthy lifespan.","authors":"Dylan Miller, Cory Efird, Kevin Grant Solar, Christian Beaulieu, Dana Cobzas","doi":"10.1002/nbm.5227","DOIUrl":"10.1002/nbm.5227","url":null,"abstract":"<p><p>Diffusion tensor imaging (DTI) can provide unique contrast and insight into microstructural changes with age or disease of the hippocampus, although it is difficult to measure the hippocampus because of its comparatively small size, location, and shape. This has been markedly improved by the advent of a clinically feasible 1-mm isotropic resolution 6-min DTI protocol at 3 T of the hippocampus with limited brain coverage of 20 axial-oblique slices aligned along its long axis. However, manual segmentation is too laborious for large population studies, and it cannot be automatically segmented directly on the diffusion images using traditional T<sub>1</sub> or T<sub>2</sub> image-based methods because of the limited brain coverage and different contrast. An automatic method is proposed here that segments the hippocampus directly on high-resolution diffusion images based on an extension of well-known deep learning architectures like UNet and UNet++ by including additional dense residual connections. The method was trained on 100 healthy participants with previously performed manual segmentation on the 1-mm DTI, then evaluated on typical healthy participants (n = 53), yielding an excellent voxel overlap with a Dice score of ~ 0.90 with manual segmentation; notably, this was comparable with the inter-rater reliability of manually delineating the hippocampus on diffusion magnetic resonance imaging (MRI) (Dice score of 0.86). This method also generalized to a different DTI protocol with 36% fewer acquisitions. It was further validated by showing similar age trajectories of volumes, fractional anisotropy, and mean diffusivity from manual segmentations in one cohort (n = 153, age 5-74 years) with automatic segmentations from a second cohort without manual segmentations (n = 354, age 5-90 years). Automated high-resolution diffusion MRI segmentation of the hippocampus will facilitate large cohort analyses and, in future research, needs to be evaluated on patient groups.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5227"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-18DOI: 10.1002/nbm.5237
Saeed Jerban, Hamidreza Shaterian Mohammadi, Jiyo S Athertya, Amir Masoud Afsahi, Niloofar Shojaeiadib, Dina Moazamian, Samuel R Ward, Gina Woods, Christine B Chung, Jiang Du, Eric Y Chang
Magnetization transfer (MT) magnetic resonance imaging (MRI) can be used to estimate the fraction of water and macromolecular proton pools in tissues. MT modeling paired with ultrashort echo time acquisition (UTE-MT modeling) has been proposed to improve the evaluation of the myotendinous junction and fibrosis in muscle tissues, which the latter increases with aging. This study aimed to determine if the UTE-MT modeling technique is sensitive to age-related changes in the skeletal muscles of the lower leg. Institutional review board approval was obtained, and all recruited subjects provided written informed consent. The legs of 31 healthy younger (28.1 ± 6.1 years old, BMI = 22.3 ± 3.5) and 20 older (74.7 ± 5.5 years old, BMI = 26.7 ± 5.9) female subjects were imaged using UTE sequences on a 3 T MRI scanner. MT ratio (MTR), macromolecular fraction (MMF), macromolecular T2 (T2-MM), and water T2 (T2-W) were calculated using UTE-MT modeling for the anterior tibialis (ATM), posterior tibialis (PTM), soleus (SM), and combined lateral muscles. Results were compared between groups using the Wilcoxon rank sum test. Three independent observers selected regions of interest (ROIs) and processed UTE-MRI images separately, and the intraclass correlation coefficient (ICC) was calculated for a reproducibility study. Significantly lower mean MTR and MMF values were present in the older compared with the younger group in all studied lower leg muscles. T2-MM showed significantly lower values in the older group only for PTM and SM muscles. In contrast, T2-W showed significantly higher values in the older group. The age-related differences were more pronounced for MMF (-17 to -19%) and T2-W (+20 to 47%) measurements in all muscle groups compared with other investigated MR measures. ICCs were higher than 0.93, indicating excellent consistency between the ROI selection and MRI measurements of independent readers. As demonstrated by significant differences between younger and older groups, this research emphasizes the potential of UTE-MT MRI techniques in evaluating age-related skeletal muscle changes.
{"title":"Significant age-related differences between lower leg muscles of older and younger female subjects detected by ultrashort echo time magnetization transfer modeling.","authors":"Saeed Jerban, Hamidreza Shaterian Mohammadi, Jiyo S Athertya, Amir Masoud Afsahi, Niloofar Shojaeiadib, Dina Moazamian, Samuel R Ward, Gina Woods, Christine B Chung, Jiang Du, Eric Y Chang","doi":"10.1002/nbm.5237","DOIUrl":"10.1002/nbm.5237","url":null,"abstract":"<p><p>Magnetization transfer (MT) magnetic resonance imaging (MRI) can be used to estimate the fraction of water and macromolecular proton pools in tissues. MT modeling paired with ultrashort echo time acquisition (UTE-MT modeling) has been proposed to improve the evaluation of the myotendinous junction and fibrosis in muscle tissues, which the latter increases with aging. This study aimed to determine if the UTE-MT modeling technique is sensitive to age-related changes in the skeletal muscles of the lower leg. Institutional review board approval was obtained, and all recruited subjects provided written informed consent. The legs of 31 healthy younger (28.1 ± 6.1 years old, BMI = 22.3 ± 3.5) and 20 older (74.7 ± 5.5 years old, BMI = 26.7 ± 5.9) female subjects were imaged using UTE sequences on a 3 T MRI scanner. MT ratio (MTR), macromolecular fraction (MMF), macromolecular T2 (T2-MM), and water T2 (T2-W) were calculated using UTE-MT modeling for the anterior tibialis (ATM), posterior tibialis (PTM), soleus (SM), and combined lateral muscles. Results were compared between groups using the Wilcoxon rank sum test. Three independent observers selected regions of interest (ROIs) and processed UTE-MRI images separately, and the intraclass correlation coefficient (ICC) was calculated for a reproducibility study. Significantly lower mean MTR and MMF values were present in the older compared with the younger group in all studied lower leg muscles. T2-MM showed significantly lower values in the older group only for PTM and SM muscles. In contrast, T2-W showed significantly higher values in the older group. The age-related differences were more pronounced for MMF (-17 to -19%) and T2-W (+20 to 47%) measurements in all muscle groups compared with other investigated MR measures. ICCs were higher than 0.93, indicating excellent consistency between the ROI selection and MRI measurements of independent readers. As demonstrated by significant differences between younger and older groups, this research emphasizes the potential of UTE-MT MRI techniques in evaluating age-related skeletal muscle changes.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5237"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}