Pub Date : 2024-12-01Epub Date: 2024-08-28DOI: 10.1002/nbm.5253
Jiyo S Athertya, Arya Suprana, James Lo, Alecio F Lombardi, Dina Moazamian, Eric Y Chang, Jiang Du, Yajun Ma
Compositional changes can occur in the osteochondral junction (OCJ) during the early stages and progressive disease evolution of knee osteoarthritis (OA). However, conventional magnetic resonance imaging (MRI) sequences are not able to image these regions efficiently because of the OCJ region's rapid signal decay. The development of new sequences able to image and quantify OCJ region is therefore highly desirable. We developed a comprehensive ultrashort echo time (UTE) MRI protocol for quantitative assessment of OCJ region in the knee joint, including UTE variable flip angle technique for T1 mapping, UTE magnetization transfer (UTE-MT) modeling for macromolecular proton fraction (MMF) mapping, UTE adiabatic T1ρ (UTE-AdiabT1ρ) sequence for T1ρ mapping, and multi-echo UTE sequence for T2* mapping. B1 mapping based on the UTE actual flip angle technique was utilized for B1 correction in T1, MMF, and T1ρ measurements. Ten normal and one abnormal cadaveric human knee joints were scanned on a 3T clinical MRI scanner to investigate the feasibility of OCJ imaging using the proposed protocol. Volumetric T1, MMF, T1ρ, and T2* maps of the OCJ, as well as the superficial and full-thickness cartilage regions, were successfully produced using the quantitative UTE imaging protocol. Significantly lower T1, T1ρ, and T2* relaxation times were observed in the OCJ region compared with those observed in both the superficial and full-thickness cartilage regions, whereas MMF showed significantly higher values in the OCJ region. In addition, all four UTE biomarkers showed substantial differences in the OCJ region between normal and abnormal knees. These results indicate that the newly developed 3D quantitative UTE imaging techniques are feasible for T1, MMF, T1ρ, and T2* mapping of knee OCJ, representative of a promising approach for the evaluation of compositional changes in early knee OA.
{"title":"Quantitative ultrashort echo time MR imaging of knee osteochondral junction: An ex vivo feasibility study.","authors":"Jiyo S Athertya, Arya Suprana, James Lo, Alecio F Lombardi, Dina Moazamian, Eric Y Chang, Jiang Du, Yajun Ma","doi":"10.1002/nbm.5253","DOIUrl":"10.1002/nbm.5253","url":null,"abstract":"<p><p>Compositional changes can occur in the osteochondral junction (OCJ) during the early stages and progressive disease evolution of knee osteoarthritis (OA). However, conventional magnetic resonance imaging (MRI) sequences are not able to image these regions efficiently because of the OCJ region's rapid signal decay. The development of new sequences able to image and quantify OCJ region is therefore highly desirable. We developed a comprehensive ultrashort echo time (UTE) MRI protocol for quantitative assessment of OCJ region in the knee joint, including UTE variable flip angle technique for T<sub>1</sub> mapping, UTE magnetization transfer (UTE-MT) modeling for macromolecular proton fraction (MMF) mapping, UTE adiabatic T<sub>1ρ</sub> (UTE-AdiabT<sub>1ρ</sub>) sequence for T<sub>1ρ</sub> mapping, and multi-echo UTE sequence for T<sub>2</sub>* mapping. B<sub>1</sub> mapping based on the UTE actual flip angle technique was utilized for B<sub>1</sub> correction in T<sub>1</sub>, MMF, and T<sub>1ρ</sub> measurements. Ten normal and one abnormal cadaveric human knee joints were scanned on a 3T clinical MRI scanner to investigate the feasibility of OCJ imaging using the proposed protocol. Volumetric T<sub>1</sub>, MMF, T<sub>1ρ</sub>, and T<sub>2</sub>* maps of the OCJ, as well as the superficial and full-thickness cartilage regions, were successfully produced using the quantitative UTE imaging protocol. Significantly lower T<sub>1</sub>, T<sub>1ρ</sub>, and T<sub>2</sub>* relaxation times were observed in the OCJ region compared with those observed in both the superficial and full-thickness cartilage regions, whereas MMF showed significantly higher values in the OCJ region. In addition, all four UTE biomarkers showed substantial differences in the OCJ region between normal and abnormal knees. These results indicate that the newly developed 3D quantitative UTE imaging techniques are feasible for T<sub>1</sub>, MMF, T<sub>1ρ</sub>, and T<sub>2</sub>* mapping of knee OCJ, representative of a promising approach for the evaluation of compositional changes in early knee OA.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5253"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-07DOI: 10.1002/nbm.5231
Nicole Vogt, Felizitas C Wermter, Jasmine Nahrgang, Daniela Storch, Christian Bock
Magnetic resonance imaging (MRI) was applied to determine the sex of polar cod (Boreogadus saida Lepechin, 1774) (Actinopterygii: Gadidae) and to follow the gonadal development in individual animals over time. Individual unanaesthetised fish were transferred to a measurement chamber inside a preclinical 9.4 T MRI scanner and continuously perfused with aerated seawater. A screening procedure at an average of 3.5 h, consisting of a set of MRI scans of different orientations, was repeated every 4 weeks on the same set of reproducing B. saida (n = 10) with a body length of about 20 cm. Adapted multi-slice flow-compensated fast low-angle shot (FcFLASH) and rapid acquisition with relaxation enhancement (RARE) protocols with an in-plane resolution of 313 μm and an acquisition time of 2.5 min were used to visualise the morphology of various organs, including the gonads within the field of view (FOV). The MR images provided high resolution, enabling specific sex determination, calculation of gonad volumes, and determination of oocyte sizes. Gonad maturation was followed over 4 months from November 2021 until shortly before spawning in February 2022. The gonad volume increased by 2.3-25.5% for males and by 11.5-760.7% for females during the observation period. From October to February, the oocyte diameter increased from 427 μm (n = 1) to 1346 ± 27 μm (n = 4). Interestingly, individual oocytes showed changes in MR contrast over time that can be attributed to the morphological development of the oocytes. The results fit well with previous literature data from classical invasive studies. The presented approach has great potential for various ecophysiological applications such as monitoring natural or delayed development of internal organs or sex determination under different environmental conditions.
{"title":"Tracking gonadal development in fish: An in vivo MRI study on polar cod, Boreogadus saida (Lepechin, 1774).","authors":"Nicole Vogt, Felizitas C Wermter, Jasmine Nahrgang, Daniela Storch, Christian Bock","doi":"10.1002/nbm.5231","DOIUrl":"10.1002/nbm.5231","url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) was applied to determine the sex of polar cod (Boreogadus saida Lepechin, 1774) (Actinopterygii: Gadidae) and to follow the gonadal development in individual animals over time. Individual unanaesthetised fish were transferred to a measurement chamber inside a preclinical 9.4 T MRI scanner and continuously perfused with aerated seawater. A screening procedure at an average of 3.5 h, consisting of a set of MRI scans of different orientations, was repeated every 4 weeks on the same set of reproducing B. saida (n = 10) with a body length of about 20 cm. Adapted multi-slice flow-compensated fast low-angle shot (FcFLASH) and rapid acquisition with relaxation enhancement (RARE) protocols with an in-plane resolution of 313 μm and an acquisition time of 2.5 min were used to visualise the morphology of various organs, including the gonads within the field of view (FOV). The MR images provided high resolution, enabling specific sex determination, calculation of gonad volumes, and determination of oocyte sizes. Gonad maturation was followed over 4 months from November 2021 until shortly before spawning in February 2022. The gonad volume increased by 2.3-25.5% for males and by 11.5-760.7% for females during the observation period. From October to February, the oocyte diameter increased from 427 μm (n = 1) to 1346 ± 27 μm (n = 4). Interestingly, individual oocytes showed changes in MR contrast over time that can be attributed to the morphological development of the oocytes. The results fit well with previous literature data from classical invasive studies. The presented approach has great potential for various ecophysiological applications such as monitoring natural or delayed development of internal organs or sex determination under different environmental conditions.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5231"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-20DOI: 10.1002/nbm.5226
Kyeongseon Min, Beomseok Sohn, Woo Jung Kim, Chae Jung Park, Soohwa Song, Dong Hoon Shin, Kyung Won Chang, Na-Young Shin, Minjun Kim, Hyeong-Geol Shin, Phil Hyu Lee, Jongho Lee
Iron and myelin are primary susceptibility sources in the human brain. These substances are essential for a healthy brain, and their abnormalities are often related to various neurological disorders. Recently, an advanced susceptibility mapping technique, which is referred to as χ-separation (pronounced as "chi"-separation), has been proposed, successfully disentangling paramagnetic iron from diamagnetic myelin. This method provided a new opportunity for generating high-resolution iron and myelin maps of the brain. Utilizing this technique, this study constructs a normative χ-separation atlas from 106 healthy human brains. The resulting atlas provides detailed anatomical structures associated with the distributions of iron and myelin, clearly delineating subcortical nuclei, thalamic nuclei, and white matter fiber bundles. Additionally, susceptibility values in a number of regions of interest are reported along with age-dependent changes. This atlas may have direct applications such as localization of subcortical structures for deep brain stimulation or high-intensity focused ultrasound and also serve as a valuable resource for future research.
{"title":"A human brain atlas of χ-separation for normative iron and myelin distributions.","authors":"Kyeongseon Min, Beomseok Sohn, Woo Jung Kim, Chae Jung Park, Soohwa Song, Dong Hoon Shin, Kyung Won Chang, Na-Young Shin, Minjun Kim, Hyeong-Geol Shin, Phil Hyu Lee, Jongho Lee","doi":"10.1002/nbm.5226","DOIUrl":"10.1002/nbm.5226","url":null,"abstract":"<p><p>Iron and myelin are primary susceptibility sources in the human brain. These substances are essential for a healthy brain, and their abnormalities are often related to various neurological disorders. Recently, an advanced susceptibility mapping technique, which is referred to as χ-separation (pronounced as \"chi\"-separation), has been proposed, successfully disentangling paramagnetic iron from diamagnetic myelin. This method provided a new opportunity for generating high-resolution iron and myelin maps of the brain. Utilizing this technique, this study constructs a normative χ-separation atlas from 106 healthy human brains. The resulting atlas provides detailed anatomical structures associated with the distributions of iron and myelin, clearly delineating subcortical nuclei, thalamic nuclei, and white matter fiber bundles. Additionally, susceptibility values in a number of regions of interest are reported along with age-dependent changes. This atlas may have direct applications such as localization of subcortical structures for deep brain stimulation or high-intensity focused ultrasound and also serve as a valuable resource for future research.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5226"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-25DOI: 10.1002/nbm.5239
Yohn Taylor, Frederick J Wilson, Mina Kim, Geoff J M Parker
Sensitivity analysis enables the identification of influential parameters and the optimisation of model composition. Such methods have not previously been applied systematically to models describing hyperpolarised 129Xe gas exchange in the lung. Here, we evaluate the current 129Xe gas exchange models to assess their precision for identifying alterations in pulmonary vascular function and lung microstructure. We assess sensitivity using established univariate methods and scatter plots for parameter interactions. We apply them to the model described by Patz et al and the Model of Xenon Exchange (MOXE), examining their ability to measure: i) importance (rank), ii) temporal dependence and iii) interaction effects of each parameter across healthy and diseased ranges. The univariate methods and scatter plot analyses demonstrate consistently similar results for the importance of parameters common to both models evaluated. Alveolar surface area to volume ratio is identified as the parameter to which model signals are most sensitive. The alveolar-capillary barrier thickness is identified as a low-sensitivity parameter for the MOXE model. An acquisition window of at least 200 ms effectively demonstrates model sensitivity to most parameters. Scatter plots reveal interaction effects in both models, impacting output variability and sensitivity. Our sensitivity analysis ranks the parameters within the model described by Patz et al and within the MOXE model. The MOXE model shows low sensitivity to alveolar-capillary barrier thickness, highlighting the need for designing acquisition protocols optimised for the measurement of this parameter. The presence of parameter interaction effects highlights the requirement for care in interpreting model outputs.
{"title":"Sensitivity analysis of models of gas exchange for lung hyperpolarised <sup>129</sup>Xe MR.","authors":"Yohn Taylor, Frederick J Wilson, Mina Kim, Geoff J M Parker","doi":"10.1002/nbm.5239","DOIUrl":"10.1002/nbm.5239","url":null,"abstract":"<p><p>Sensitivity analysis enables the identification of influential parameters and the optimisation of model composition. Such methods have not previously been applied systematically to models describing hyperpolarised <sup>129</sup>Xe gas exchange in the lung. Here, we evaluate the current <sup>129</sup>Xe gas exchange models to assess their precision for identifying alterations in pulmonary vascular function and lung microstructure. We assess sensitivity using established univariate methods and scatter plots for parameter interactions. We apply them to the model described by Patz et al and the Model of Xenon Exchange (MOXE), examining their ability to measure: i) importance (rank), ii) temporal dependence and iii) interaction effects of each parameter across healthy and diseased ranges. The univariate methods and scatter plot analyses demonstrate consistently similar results for the importance of parameters common to both models evaluated. Alveolar surface area to volume ratio is identified as the parameter to which model signals are most sensitive. The alveolar-capillary barrier thickness is identified as a low-sensitivity parameter for the MOXE model. An acquisition window of at least 200 ms effectively demonstrates model sensitivity to most parameters. Scatter plots reveal interaction effects in both models, impacting output variability and sensitivity. Our sensitivity analysis ranks the parameters within the model described by Patz et al and within the MOXE model. The MOXE model shows low sensitivity to alveolar-capillary barrier thickness, highlighting the need for designing acquisition protocols optimised for the measurement of this parameter. The presence of parameter interaction effects highlights the requirement for care in interpreting model outputs.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5239"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-27DOI: 10.1002/nbm.5240
Polina Emeliyanova, Laura M Parkes, Stephen R Williams, Caroline Lea-Carnall
Functional magnetic resonance spectroscopy (fMRS) measures dynamic changes in metabolite concentration in response to neural stimulation. The biophysical basis of these changes remains unclear. One hypothesis suggests that an increase or decrease in the glutamate signal detected by fMRS could be due to neurotransmitter movements between cellular compartments with different T2 relaxation times. Previous studies reporting glutamate (Glu) T2 values have generally sampled at echo times (TEs) within the range of 30-450 ms, which is not adequate to observe a component with short T2 (<20 ms). Here, we acquire MRS measurements for Glu, (t) total creatine (tCr) and total N-acetylaspartate (tNAA) from the visual cortex in 14 healthy participants at a range of TE values between 9.3-280 ms during short blocks (64 s) of flickering checkerboards and rest to examine both the short- and long-T2 components of the curve. We fit monoexponential and biexponential Glu, tCr and tNAA T2 relaxation curves for rest and stimulation and use Akaike information criterion to assess best model fit. We also include power calculations for detection of a 2% shift of Glu between compartments for each TE. Using pooled data over all participants at rest, we observed a short Glu T2-component with T2 = 10 ms and volume fraction of 0.35, a short tCr T2-component with T2 = 26 ms and volume fraction of 0.25 and a short tNAA T2-component around 15 ms with volume fraction of 0.34. No statistically significant change in Glu, tCr and tNAA signal during stimulation was detected at any TE. The volume fractions of short-T2 component between rest and active conditions were not statistically different. This study provides evidence for a short T2-component for Glu, tCr and tNAA but no evidence to support the hypothesis of task-related changes in glutamate distribution between short and long T2 compartments.
{"title":"Evidence for biexponential glutamate T<sub>2</sub> relaxation in human visual cortex at 3T: A functional MRS study.","authors":"Polina Emeliyanova, Laura M Parkes, Stephen R Williams, Caroline Lea-Carnall","doi":"10.1002/nbm.5240","DOIUrl":"10.1002/nbm.5240","url":null,"abstract":"<p><p>Functional magnetic resonance spectroscopy (fMRS) measures dynamic changes in metabolite concentration in response to neural stimulation. The biophysical basis of these changes remains unclear. One hypothesis suggests that an increase or decrease in the glutamate signal detected by fMRS could be due to neurotransmitter movements between cellular compartments with different T<sub>2</sub> relaxation times. Previous studies reporting glutamate (Glu) T<sub>2</sub> values have generally sampled at echo times (TEs) within the range of 30-450 ms, which is not adequate to observe a component with short T<sub>2</sub> (<20 ms). Here, we acquire MRS measurements for Glu, (t) total creatine (tCr) and total N-acetylaspartate (tNAA) from the visual cortex in 14 healthy participants at a range of TE values between 9.3-280 ms during short blocks (64 s) of flickering checkerboards and rest to examine both the short- and long-T<sub>2</sub> components of the curve. We fit monoexponential and biexponential Glu, tCr and tNAA T<sub>2</sub> relaxation curves for rest and stimulation and use Akaike information criterion to assess best model fit. We also include power calculations for detection of a 2% shift of Glu between compartments for each TE. Using pooled data over all participants at rest, we observed a short Glu T<sub>2</sub>-component with T<sub>2</sub> = 10 ms and volume fraction of 0.35, a short tCr T<sub>2</sub>-component with T<sub>2</sub> = 26 ms and volume fraction of 0.25 and a short tNAA T<sub>2</sub>-component around 15 ms with volume fraction of 0.34. No statistically significant change in Glu, tCr and tNAA signal during stimulation was detected at any TE. The volume fractions of short-T<sub>2</sub> component between rest and active conditions were not statistically different. This study provides evidence for a short T<sub>2</sub>-component for Glu, tCr and tNAA but no evidence to support the hypothesis of task-related changes in glutamate distribution between short and long T<sub>2</sub> compartments.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5240"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, diffusion models have made significant progress in accelerating magnetic resonance imaging. Nevertheless, it still has inherent limitations, such as prolonged iteration times and sluggish convergence rates. In this work, we present a novel generalized map generation model based on mean-reverting SDE, called GM-SDE, to alleviate these shortcomings. Notably, the core idea of GM-SDE is optimizing the initial values of the iterative algorithm. Specifically, the training process of GM-SDE diffuses the original k-space data to an intermediary degraded state with fixed Gaussian noise, while the reconstruction process generates the data by reversing this process. Based on the generalized map, three variants of GM-SDE are proposed to learn k-space data with different structural characteristics to improve the effectiveness of model training. GM-SDE also exhibits flexibility, as it can be integrated with traditional constraints, thereby further enhancing its overall performance. Experimental results showed that the proposed method can reduce reconstruction time and deliver excellent image reconstruction capabilities compared to the complete diffusion-based method.
近年来,扩散模型在加速磁共振成像方面取得了重大进展。然而,它仍然存在固有的局限性,如迭代时间长、收敛速度慢等。在这项工作中,我们提出了一种基于均值回复 SDE 的新型广义地图生成模型,称为 GM-SDE,以缓解这些缺陷。值得注意的是,GM-SDE 的核心思想是优化迭代算法的初始值。具体来说,GM-SDE 的训练过程是将原始的 k 空间数据扩散到带有固定高斯噪声的中间退化状态,而重建过程则通过逆转这一过程生成数据。在广义图的基础上,提出了 GM-SDE 的三种变体,以学习具有不同结构特征的 k 空间数据,从而提高模型训练的有效性。GM-SDE 还具有灵活性,可以与传统的约束条件相结合,从而进一步提高其整体性能。实验结果表明,与完全基于扩散的方法相比,所提出的方法可以缩短重建时间,并提供出色的图像重建能力。
{"title":"Diffusion model based on generalized map for accelerated MRI.","authors":"Zengwei Xiao, Yujuan Lu, Binzhong He, Pinhuang Tan, Shanshan Wang, Xiaoling Xu, Qiegen Liu","doi":"10.1002/nbm.5232","DOIUrl":"10.1002/nbm.5232","url":null,"abstract":"<p><p>In recent years, diffusion models have made significant progress in accelerating magnetic resonance imaging. Nevertheless, it still has inherent limitations, such as prolonged iteration times and sluggish convergence rates. In this work, we present a novel generalized map generation model based on mean-reverting SDE, called GM-SDE, to alleviate these shortcomings. Notably, the core idea of GM-SDE is optimizing the initial values of the iterative algorithm. Specifically, the training process of GM-SDE diffuses the original k-space data to an intermediary degraded state with fixed Gaussian noise, while the reconstruction process generates the data by reversing this process. Based on the generalized map, three variants of GM-SDE are proposed to learn k-space data with different structural characteristics to improve the effectiveness of model training. GM-SDE also exhibits flexibility, as it can be integrated with traditional constraints, thereby further enhancing its overall performance. Experimental results showed that the proposed method can reduce reconstruction time and deliver excellent image reconstruction capabilities compared to the complete diffusion-based method.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5232"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-21DOI: 10.1002/nbm.5241
Eulalia Serés Roig
This work aims to develop and implement a pulse-acquire sequence for three-dimensional (3D) single-voxel localized 13C MRS in humans at 7 T, in conjunction with bilevel broadband 1H decoupling, and to test its feasibility in vitro and in vivo in human calf muscle with emphasis on the detection of glycogen C1-C6. A localization scheme suitable for measuring fast-relaxing 13C signals in humans at 7 T was developed and implemented using the outer volume suppression (OVS) and one-dimensional image selected in vivo spectroscopy (ISIS-1D) schemes, similar to that which was previously reported in humans at 4 T. The 3D 13C localization scheme was followed by uniform 13C adiabatic excitation, all complemented with an option for bilevel broadband 1H decoupling to improve both 13C sensitivity and spectral resolution at 7 T. The performance of the pulse-acquire sequence was investigated in vitro on phantoms and in vivo in the human calf muscle of three healthy volunteers, while measuring glycogen C1-C6. In addition, T1 and T2 of glycogen C1-C6 were measured in vitro at 7 T, as well as T1 of glycogen C1 in vivo. The glycerol C2 and C1,3 lipid resonances were efficiently suppressed in vitro at 7 T using the OVS and ISIS-1D schemes, allowing distinct detection of glycogen C2-C6. While some glycerol remained in calf muscle in vivo, the intense lipid at 130 ppm was efficiently suppressed. The 13C sensitivity and spectral resolution of glycogen C1-C6 in vitro and glycogen C1 in vivo were improved at 7 T using bilevel broadband 1H decoupling. The T1 and T2 of glycogen C1-C6 in vitro at 7 T were consistent compared with those at 8.5 T, while the T1 of glycogen C1 in vivo at 7 T resulted similar to that in vitro. Localized 13C MRS is feasible in human calf muscle in vivo at 7 T, and this will allow further extension of this method for 13C MRS measurements such as in the brain.
这项研究旨在开发和实施一种脉冲获取序列,用于在 7 T 下结合双腔宽带 1H 去耦在人体中进行三维(3D)单象素定位 13C MRS,并在人体小腿肌肉中测试其在体外和体内的可行性,重点是检测糖原 C1-C6。利用外体积抑制(OVS)和一维图像选择活体光谱(ISIS-1D)方案,开发并实施了一种适合于在 7 T 下测量人体快速松弛 13C 信号的定位方案,该方案与之前在 4 T 下的人体报道类似。在三维 13C 定位方案之后是均匀的 13C 绝热激发,并辅以双级宽带 1H 去耦选项,以提高 7 T 下的 13C 敏感性和光谱分辨率。在体外模型和三名健康志愿者的人体小腿肌肉中研究了脉冲获取序列的性能,同时测量了糖原 C1-C6。此外,还在体外以 7 T 测量了糖原 C1-C6 的 T1 和 T2,以及体内糖原 C1 的 T1。使用 OVS 和 ISIS-1D 方案在 7 T 下有效抑制了体外的甘油 C2 和 C1,3 脂质共振,从而实现了对糖原 C2-C6 的清晰检测。虽然体内小牛肌肉中仍有一些甘油,但 130 ppm 处的强脂共振被有效抑制。在 7 T 条件下,使用双级宽带 1H 去耦技术提高了体外糖原 C1-C6 和体内糖原 C1 的 13C 敏感度和光谱分辨率。7 T 下体外糖原 C1-C6 的 T1 和 T2 与 8.5 T 下一致,而 7 T 下体内糖原 C1 的 T1 与体外相似。在 7 T 下对人体小腿肌肉进行定位 13C MRS 是可行的,这将使这种方法进一步扩展到 13C MRS 测量,例如在大脑中的测量。
{"title":"Toward structure and metabolism of glycogen C<sub>1</sub>-C<sub>6</sub> in humans at 7 T by localized <sup>13</sup>C MRS using low-power bilevel broadband <sup>1</sup>H decoupling.","authors":"Eulalia Serés Roig","doi":"10.1002/nbm.5241","DOIUrl":"10.1002/nbm.5241","url":null,"abstract":"<p><p>This work aims to develop and implement a pulse-acquire sequence for three-dimensional (3D) single-voxel localized <sup>13</sup>C MRS in humans at 7 T, in conjunction with bilevel broadband <sup>1</sup>H decoupling, and to test its feasibility in vitro and in vivo in human calf muscle with emphasis on the detection of glycogen C<sub>1</sub>-C<sub>6</sub>. A localization scheme suitable for measuring fast-relaxing <sup>13</sup>C signals in humans at 7 T was developed and implemented using the outer volume suppression (OVS) and one-dimensional image selected in vivo spectroscopy (ISIS-1D) schemes, similar to that which was previously reported in humans at 4 T. The 3D <sup>13</sup>C localization scheme was followed by uniform <sup>13</sup>C adiabatic excitation, all complemented with an option for bilevel broadband <sup>1</sup>H decoupling to improve both <sup>13</sup>C sensitivity and spectral resolution at 7 T. The performance of the pulse-acquire sequence was investigated in vitro on phantoms and in vivo in the human calf muscle of three healthy volunteers, while measuring glycogen C<sub>1</sub>-C<sub>6</sub>. In addition, T<sub>1</sub> and T<sub>2</sub> of glycogen C<sub>1</sub>-C<sub>6</sub> were measured in vitro at 7 T, as well as T<sub>1</sub> of glycogen C<sub>1</sub> in vivo. The glycerol C<sub>2</sub> and C<sub>1,3</sub> lipid resonances were efficiently suppressed in vitro at 7 T using the OVS and ISIS-1D schemes, allowing distinct detection of glycogen C<sub>2</sub>-C<sub>6</sub>. While some glycerol remained in calf muscle in vivo, the intense lipid at 130 ppm was efficiently suppressed. The <sup>13</sup>C sensitivity and spectral resolution of glycogen C<sub>1</sub>-C<sub>6</sub> in vitro and glycogen C<sub>1</sub> in vivo were improved at 7 T using bilevel broadband <sup>1</sup>H decoupling. The T<sub>1</sub> and T<sub>2</sub> of glycogen C<sub>1</sub>-C<sub>6</sub> in vitro at 7 T were consistent compared with those at 8.5 T, while the T<sub>1</sub> of glycogen C<sub>1</sub> in vivo at 7 T resulted similar to that in vitro. Localized <sup>13</sup>C MRS is feasible in human calf muscle in vivo at 7 T, and this will allow further extension of this method for <sup>13</sup>C MRS measurements such as in the brain.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5241"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-04DOI: 10.1002/nbm.5248
Haoan Xu, Wen Shi, Jiwei Sun, Tianshu Zheng, Xinyi Xu, Cong Sun, Sun Yi, Guangbin Wang, Dan Wu
Slice-to-volume registration and super-resolution reconstruction are commonly used to generate 3D volumes of the fetal brain from 2D stacks of slices acquired in multiple orientations. A critical initial step in this pipeline is to select one stack with the minimum motion among all input stacks as a reference for registration. An accurate and unbiased motion assessment (MA) is thus crucial for successful selection. Here, we presented an MA method that determines the minimum motion stack based on 3D low-rank approximation using CANDECOMP/PARAFAC (CP) decomposition. Compared to the current 2D singular value decomposition (SVD) based method that requires flattening stacks into matrices to obtain ranks, in which the spatial information is lost, the CP-based method can factorize 3D stack into low-rank and sparse components in a computationally efficient manner. The difference between the original stack and its low-rank approximation was proposed as the motion indicator. Experiments on linearly and randomly simulated motion illustrated that CP demonstrated higher sensitivity in detecting small motion with a lower baseline bias, and achieved a higher assessment accuracy of 95.45% in identifying the minimum motion stack, compared to the SVD-based method with 58.18%. CP also showed superior motion assessment capabilities in real-data evaluations. Additionally, combining CP with the existing SRR-SVR pipeline significantly improved 3D volume reconstruction. The results indicated that our proposed CP showed superior performance compared to SVD-based methods with higher sensitivity to motion, assessment accuracy, and lower baseline bias, and can be used as a prior step to improve fetal brain reconstruction.
{"title":"A motion assessment method for reference stack selection in fetal brain MRI reconstruction based on tensor rank approximation.","authors":"Haoan Xu, Wen Shi, Jiwei Sun, Tianshu Zheng, Xinyi Xu, Cong Sun, Sun Yi, Guangbin Wang, Dan Wu","doi":"10.1002/nbm.5248","DOIUrl":"10.1002/nbm.5248","url":null,"abstract":"<p><p>Slice-to-volume registration and super-resolution reconstruction are commonly used to generate 3D volumes of the fetal brain from 2D stacks of slices acquired in multiple orientations. A critical initial step in this pipeline is to select one stack with the minimum motion among all input stacks as a reference for registration. An accurate and unbiased motion assessment (MA) is thus crucial for successful selection. Here, we presented an MA method that determines the minimum motion stack based on 3D low-rank approximation using CANDECOMP/PARAFAC (CP) decomposition. Compared to the current 2D singular value decomposition (SVD) based method that requires flattening stacks into matrices to obtain ranks, in which the spatial information is lost, the CP-based method can factorize 3D stack into low-rank and sparse components in a computationally efficient manner. The difference between the original stack and its low-rank approximation was proposed as the motion indicator. Experiments on linearly and randomly simulated motion illustrated that CP demonstrated higher sensitivity in detecting small motion with a lower baseline bias, and achieved a higher assessment accuracy of 95.45% in identifying the minimum motion stack, compared to the SVD-based method with 58.18%. CP also showed superior motion assessment capabilities in real-data evaluations. Additionally, combining CP with the existing SRR-SVR pipeline significantly improved 3D volume reconstruction. The results indicated that our proposed CP showed superior performance compared to SVD-based methods with higher sensitivity to motion, assessment accuracy, and lower baseline bias, and can be used as a prior step to improve fetal brain reconstruction.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5248"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-04DOI: 10.1002/nbm.5234
Grace Hutchinson, Jeromy Thotland, Pramod K Pisharady, Michael Garwood, Christophe Lenglet, Risto A Kauppinen
Understanding the effects of white matter (WM) axon fibre microstructure on T1 relaxation is important for neuroimaging. Here, we have studied the interrelationship between T1 and axon fibre configurations at 3T and 7T. T1 and S0 (=signal intensity at zero TI) were computed from MP2RAGE images acquired with six inversion recovery times. Multishell diffusion MRI images were analysed for fractional anisotropy (FA); MD; V1; the volume fractions for the first (f1), second (f2) and third (f3) fibre configuration; and fibre density cross-section images for the first (fdc1), second (fdc2) and third (fdc3) fibres. T1 values were plotted as a function of FA, f1, f2, f3, fdc1, fdc2 and fdc3 to examine interrelationships between the longitudinal relaxation and the diffusion MRI microstructural measures. T1 values decreased with increasing FA, f1 and f2 in a nonlinear fashion. At low FA values (from 0.2 to 0.4), a steep shortening of T1 was followed by a shallow shortening by 6%-10% at both fields. The steep shortening was associated with decreasing S0 and MD. T1 also decreased with increasing fdc1 values in a nonlinear fashion. Instead, only a small T1 change as a function of either f3 or fdc3 was observed. In WM areas selected by fdc1 only masks, T1 was shorter than in those with fdc2/fdc3. In WM areas with high single fibre populations, as delineated by f1/fdc1 masks, T1 was shorter than in tissue with high complex fibre configurations, as segmented by f2/fdc2 or f3/fdc3 masks. T1 differences between these WM areas are attributable to combined effects by T1 anisotropy and lowered FA. The current data show strong interrelationships between T1, axon fibre configuration and orientation in healthy WM. It is concluded that diffusion MRI microstructural measures are essential in the effort to interpret quantitative T1 images in terms of tissue state in health and disease.
{"title":"T1 relaxation and axon fibre configuration in human white matter.","authors":"Grace Hutchinson, Jeromy Thotland, Pramod K Pisharady, Michael Garwood, Christophe Lenglet, Risto A Kauppinen","doi":"10.1002/nbm.5234","DOIUrl":"10.1002/nbm.5234","url":null,"abstract":"<p><p>Understanding the effects of white matter (WM) axon fibre microstructure on T1 relaxation is important for neuroimaging. Here, we have studied the interrelationship between T1 and axon fibre configurations at 3T and 7T. T1 and S0 (=signal intensity at zero TI) were computed from MP2RAGE images acquired with six inversion recovery times. Multishell diffusion MRI images were analysed for fractional anisotropy (FA); MD; V1; the volume fractions for the first (f<sub>1</sub>), second (f<sub>2</sub>) and third (f<sub>3</sub>) fibre configuration; and fibre density cross-section images for the first (fdc<sub>1</sub>), second (fdc<sub>2</sub>) and third (fdc<sub>3</sub>) fibres. T1 values were plotted as a function of FA, f<sub>1</sub>, f<sub>2</sub>, f<sub>3</sub>, fdc<sub>1</sub>, fdc<sub>2</sub> and fdc<sub>3</sub> to examine interrelationships between the longitudinal relaxation and the diffusion MRI microstructural measures. T1 values decreased with increasing FA, f<sub>1</sub> and f<sub>2</sub> in a nonlinear fashion. At low FA values (from 0.2 to 0.4), a steep shortening of T1 was followed by a shallow shortening by 6%-10% at both fields. The steep shortening was associated with decreasing S0 and MD. T1 also decreased with increasing fdc<sub>1</sub> values in a nonlinear fashion. Instead, only a small T1 change as a function of either f<sub>3</sub> or fdc<sub>3</sub> was observed. In WM areas selected by fdc<sub>1</sub> only masks, T1 was shorter than in those with fdc<sub>2</sub>/fdc<sub>3</sub>. In WM areas with high single fibre populations, as delineated by f<sub>1</sub>/fdc<sub>1</sub> masks, T1 was shorter than in tissue with high complex fibre configurations, as segmented by f<sub>2</sub>/fdc<sub>2</sub> or f<sub>3</sub>/fdc<sub>3</sub> masks. T1 differences between these WM areas are attributable to combined effects by T1 anisotropy and lowered FA. The current data show strong interrelationships between T1, axon fibre configuration and orientation in healthy WM. It is concluded that diffusion MRI microstructural measures are essential in the effort to interpret quantitative T1 images in terms of tissue state in health and disease.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5234"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leukemia is a group of blood cancers that are classified in four major classes. Within these four classes, many different subtypes exists with similar origin, genetic mutations, and level of maturity, which can make them difficult to distinguish. Despite their similarities, they might respond differently to treatment, and therefore distinguishing between them is of crucial importance. A deranged metabolic phenotype (Warburg effect) is often seen in cancer cells, leukemia cells included, and is increasingly a target for improved diagnosis and treatment. In this study, hyperpolarized 13C NMR spectroscopy was used to characterize the metabolic signatures of the six leukemia cell lines ML-1, CCRF-CEM, THP-1, MOLT-4, HL-60, and K562. This was done using [1-13C]pyruvate and [1-13C]alanine as bioprobes for downstream metabolite quantification and kinetic analysis on cultured cells with and without 2-deoxy-D-glucose treatment. The metabolic signatures of similar leukemia subtypes could be readily distinguished. This includes ML-1 and THP-1, which are of the similar M4 and M5 AML subtypes, CCRF-CEM and MOLT-4, which are of the similar T-ALL lineage at different maturation states, and HL-60 and K562, which are of the closely related M1 and M2 AML subtypes. The data presented here demonstrate the potential of hyperpolarized 13C NMR spectroscopy as a method to differentiate between leukemia subtypes of similar origin. Combining this method with bioreactor setups could potentially allow for better leukemia disease management as metabolic signatures could be acquired from a single biopsy through repeated experimentation and intervention.
{"title":"Differentiating leukemia subtypes based on metabolic signatures using hyperpolarized <sup>13</sup>C NMR.","authors":"Nichlas Vous Christensen, Christoffer Laustsen, Lotte Bonde Bertelsen","doi":"10.1002/nbm.5264","DOIUrl":"10.1002/nbm.5264","url":null,"abstract":"<p><p>Leukemia is a group of blood cancers that are classified in four major classes. Within these four classes, many different subtypes exists with similar origin, genetic mutations, and level of maturity, which can make them difficult to distinguish. Despite their similarities, they might respond differently to treatment, and therefore distinguishing between them is of crucial importance. A deranged metabolic phenotype (Warburg effect) is often seen in cancer cells, leukemia cells included, and is increasingly a target for improved diagnosis and treatment. In this study, hyperpolarized <sup>13</sup>C NMR spectroscopy was used to characterize the metabolic signatures of the six leukemia cell lines ML-1, CCRF-CEM, THP-1, MOLT-4, HL-60, and K562. This was done using [1-<sup>13</sup>C]pyruvate and [1-<sup>13</sup>C]alanine as bioprobes for downstream metabolite quantification and kinetic analysis on cultured cells with and without 2-deoxy-D-glucose treatment. The metabolic signatures of similar leukemia subtypes could be readily distinguished. This includes ML-1 and THP-1, which are of the similar M4 and M5 AML subtypes, CCRF-CEM and MOLT-4, which are of the similar T-ALL lineage at different maturation states, and HL-60 and K562, which are of the closely related M1 and M2 AML subtypes. The data presented here demonstrate the potential of hyperpolarized <sup>13</sup>C NMR spectroscopy as a method to differentiate between leukemia subtypes of similar origin. Combining this method with bioreactor setups could potentially allow for better leukemia disease management as metabolic signatures could be acquired from a single biopsy through repeated experimentation and intervention.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5264"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}