Pub Date : 2024-12-01Epub Date: 2024-09-03DOI: 10.1002/nbm.5255
Alexs A Matias, Corinna F Serviente, Stephen T Decker, Muhammet Enes Erol, Gaia Giuriato, Yann Le Fur, Rajakumar Nagarajan, David Bendahan, Gwenael Layec
The detection of a secondary inorganic phosphate (Pi) resonance, a possible marker of mitochondrial content in vivo, using phosphorus magnetic resonance spectroscopy (31P-MRS), poses technical challenges at 3 Tesla (T). Overcoming these challenges is imperative for the integration of this biomarker into clinical research. To evaluate the repeatability and reliability of measuring resting skeletal muscle alkaline Pi (Pialk) using with 31P-MRS at 3 T. After an initial set of experiments on five subjects to optimize the sequence, resting 31P-MRS of the quadriceps muscles were acquired on two visits (~4 days apart) using an intra-subjects design, from 13 sedentary to moderately active young male and female adults (22 ± 3 years old) within a whole-body 3 T MR system. Measurement variability attributed to changes in coil position, shimming procedure, and spectral analysis were quantified. 31P-MRS data were acquired with a 31P/-proton (1H) dual-tuned surface coil positioned on the quadriceps using a pulse-acquire sequence. Test-retest absolute and relative repeatability was analyzed using the coefficient of variation (CV) and intra-class correlation coefficients (ICC), respectively. After sequence parameter optimization, Pialk demonstrated high intra-subject repeatability (CV: 10.6 ± 5.4%, ICC: 0.80). Proximo-distal change in coil position along the length of the quadriceps introduced Pialk quantitation variability (CV: 28 ± 5%), due to magnetic field inhomogeneity with more distal coil locations. In contrast, Pialk measurement variability due to repeated shims from the same muscle volume (0.40 ± 0.09mM; CV: 6.6%), and automated spectral processing (0.37 ± 0.01mM; CV: 2.3%), was minor. The quantification of Pialk in skeletal muscle via surface coil 31P-MRS at 3 T demonstrated excellent reproducibility. However, caution is advised against placing the coil at the distal part of the quadriceps to mitigate shimming inhomogeneity.
{"title":"Repeatability of alkaline inorganic phosphate quantification in the skeletal muscle using <sup>31</sup>P-magnetic resonance spectroscopy at 3 T.","authors":"Alexs A Matias, Corinna F Serviente, Stephen T Decker, Muhammet Enes Erol, Gaia Giuriato, Yann Le Fur, Rajakumar Nagarajan, David Bendahan, Gwenael Layec","doi":"10.1002/nbm.5255","DOIUrl":"10.1002/nbm.5255","url":null,"abstract":"<p><p>The detection of a secondary inorganic phosphate (Pi) resonance, a possible marker of mitochondrial content in vivo, using phosphorus magnetic resonance spectroscopy (<sup>31</sup>P-MRS), poses technical challenges at 3 Tesla (T). Overcoming these challenges is imperative for the integration of this biomarker into clinical research. To evaluate the repeatability and reliability of measuring resting skeletal muscle alkaline Pi (Pi<sub>alk</sub>) using with <sup>31</sup>P-MRS at 3 T. After an initial set of experiments on five subjects to optimize the sequence, resting <sup>31</sup>P-MRS of the quadriceps muscles were acquired on two visits (~4 days apart) using an intra-subjects design, from 13 sedentary to moderately active young male and female adults (22 ± 3 years old) within a whole-body 3 T MR system. Measurement variability attributed to changes in coil position, shimming procedure, and spectral analysis were quantified. <sup>31</sup>P-MRS data were acquired with a <sup>31</sup>P/-proton (<sup>1</sup>H) dual-tuned surface coil positioned on the quadriceps using a pulse-acquire sequence. Test-retest absolute and relative repeatability was analyzed using the coefficient of variation (CV) and intra-class correlation coefficients (ICC), respectively. After sequence parameter optimization, Pi<sub>alk</sub> demonstrated high intra-subject repeatability (CV: 10.6 ± 5.4%, ICC: 0.80). Proximo-distal change in coil position along the length of the quadriceps introduced Pi<sub>alk</sub> quantitation variability (CV: 28 ± 5%), due to magnetic field inhomogeneity with more distal coil locations. In contrast, Pi<sub>alk</sub> measurement variability due to repeated shims from the same muscle volume (0.40 ± 0.09mM; CV: 6.6%), and automated spectral processing (0.37 ± 0.01mM; CV: 2.3%), was minor. The quantification of Pi<sub>alk</sub> in skeletal muscle via surface coil 31P-MRS at 3 T demonstrated excellent reproducibility. However, caution is advised against placing the coil at the distal part of the quadriceps to mitigate shimming inhomogeneity.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5255"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-25DOI: 10.1002/nbm.5262
Jingjia Chen, Chenchan Huang, Krishna Shanbhogue, Ding Xia, Mary Bruno, Yuhui Huang, Kai Tobias Block, Hersh Chandarana, Li Feng
Respiratory motion-induced image blurring and artifacts can compromise image quality in dynamic contrast-enhanced MRI (DCE-MRI) of the liver. Despite remarkable advances in respiratory motion detection and compensation in past years, these techniques have not yet seen widespread clinical adoption. The accuracy of image-based motion detection can be especially compromised in the presence of contrast enhancement and/or in situations involving deep and/or irregular breathing patterns. This work proposes a framework that combines GRASP-Pro (Golden-angle RAdial Sparse Parallel MRI with imProved performance) MRI with a new radial sampling scheme called navi-stack-of-stars for free-breathing DCE-MRI of the liver without the need for explicit respiratory motion compensation. A prototype 3D golden-angle radial sequence with a navi-stack-of-stars sampling scheme that intermittently acquires a 2D navigator was implemented. Free-breathing DCE-MRI of the liver was conducted in 24 subjects at 3T including 17 volunteers and 7 patients. GRASP-Pro reconstruction was performed with a temporal resolution of 0.34-0.45 s per volume, whereas standard GRASP reconstruction was performed with a temporal resolution of 15 s per volume. Motion compensation was not performed in all image reconstruction tasks. Liver images in different contrast phases from both GRASP and GRASP-Pro reconstructions were visually scored by two experienced abdominal radiologists for comparison. The nonparametric paired two-tailed Wilcoxon signed-rank test was used to compare image quality scores, and the Cohen's kappa coefficient was calculated to evaluate the inter-reader agreement. GRASP-Pro MRI with sub-second temporal resolution consistently received significantly higher image quality scores (P < 0.05) than standard GRASP MRI throughout all contrast enhancement phases and across all assessment categories. There was a substantial inter-reader agreement for all assessment categories (ranging from 0.67 to 0.89). The proposed technique using GRASP-Pro reconstruction with navi-stack-of-stars sampling holds great promise for free-breathing DCE-MRI of the liver without respiratory motion compensation.
{"title":"DCE-MRI of the liver with sub-second temporal resolution using GRASP-Pro with navi-stack-of-stars sampling.","authors":"Jingjia Chen, Chenchan Huang, Krishna Shanbhogue, Ding Xia, Mary Bruno, Yuhui Huang, Kai Tobias Block, Hersh Chandarana, Li Feng","doi":"10.1002/nbm.5262","DOIUrl":"10.1002/nbm.5262","url":null,"abstract":"<p><p>Respiratory motion-induced image blurring and artifacts can compromise image quality in dynamic contrast-enhanced MRI (DCE-MRI) of the liver. Despite remarkable advances in respiratory motion detection and compensation in past years, these techniques have not yet seen widespread clinical adoption. The accuracy of image-based motion detection can be especially compromised in the presence of contrast enhancement and/or in situations involving deep and/or irregular breathing patterns. This work proposes a framework that combines GRASP-Pro (Golden-angle RAdial Sparse Parallel MRI with imProved performance) MRI with a new radial sampling scheme called navi-stack-of-stars for free-breathing DCE-MRI of the liver without the need for explicit respiratory motion compensation. A prototype 3D golden-angle radial sequence with a navi-stack-of-stars sampling scheme that intermittently acquires a 2D navigator was implemented. Free-breathing DCE-MRI of the liver was conducted in 24 subjects at 3T including 17 volunteers and 7 patients. GRASP-Pro reconstruction was performed with a temporal resolution of 0.34-0.45 s per volume, whereas standard GRASP reconstruction was performed with a temporal resolution of 15 s per volume. Motion compensation was not performed in all image reconstruction tasks. Liver images in different contrast phases from both GRASP and GRASP-Pro reconstructions were visually scored by two experienced abdominal radiologists for comparison. The nonparametric paired two-tailed Wilcoxon signed-rank test was used to compare image quality scores, and the Cohen's kappa coefficient was calculated to evaluate the inter-reader agreement. GRASP-Pro MRI with sub-second temporal resolution consistently received significantly higher image quality scores (P < 0.05) than standard GRASP MRI throughout all contrast enhancement phases and across all assessment categories. There was a substantial inter-reader agreement for all assessment categories (ranging from 0.67 to 0.89). The proposed technique using GRASP-Pro reconstruction with navi-stack-of-stars sampling holds great promise for free-breathing DCE-MRI of the liver without respiratory motion compensation.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5262"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-05DOI: 10.1002/nbm.5271
Alixander S Khan, Mary A McLean, Joshua D Kaggie, Ines Horvat-Menih, Tomasz Matys, Rolf F Schulte, Matthew J Locke, Ashley Grimmer, Pascal Wodtke, Elizabeth Latimer, Amy Frary, Martin J Graves, Ferdia A Gallagher
Hyperpolarized carbon-13 (13C) magnetic resonance imaging (MRI) has shown promise for non-invasive assessment of the cerebral metabolism of [1-13C]pyruvate in both healthy volunteers and patients. The exchange of pyruvate to lactate catalysed by lactate dehydrogenase (LDH) and that of pyruvate flux to bicarbonate through pyruvate dehydrogenase (PDH) are the most widely studied reactions in vivo. Here we show the potential of the technique to probe additional enzymatic activity within the brain. Approximately 50 s after intravenous injection of hyperpolarized pyruvate, high-flip-angle pulses were used to detect cerebral 13C-labelled carbon dioxide (13CO2), in addition to the 13C-bicarbonate (H13CO3-) subsequently formed by carbonic anhydrase (CA). Brain pH measurements, which were weighted towards the extracellular compartment, were calculated from the ratio of H13CO3- to 13CO2 in seven volunteers using the Henderson-Hasselbalch equation, demonstrating an average pH ± SD of 7.40 ± 0.02, with inter-observer reproducibility of 0.04. In addition, hyperpolarized [1-13C]aspartate was also detected, demonstrating irreversible pyruvate carboxylation to oxaloacetate by pyruvate carboxylase (PC) and subsequent transamination by aspartate aminotransferase (AST), with the average flux being on average 11% ± 3% of that through PDH. A hyperpolarized [1-13C]alanine signal was also detected, but this was localized to extracranial muscle tissue in keeping with skeletal alanine aminotransferase (ALT) activity. The results demonstrate the potential of hyperpolarized 13C-MRI to assess cerebral and extracerebral [1-13C]pyruvate metabolism in addition to LDH and PDH activity. Non-invasive measurements of brain pH could be particularly important in assessing cerebral pathology given the wide range of disease processes that alter acid-base balance.
{"title":"Measuring cerebral enzymatic activity, brain pH and extracranial muscle metabolism with hyperpolarized <sup>13</sup>C-pyruvate.","authors":"Alixander S Khan, Mary A McLean, Joshua D Kaggie, Ines Horvat-Menih, Tomasz Matys, Rolf F Schulte, Matthew J Locke, Ashley Grimmer, Pascal Wodtke, Elizabeth Latimer, Amy Frary, Martin J Graves, Ferdia A Gallagher","doi":"10.1002/nbm.5271","DOIUrl":"10.1002/nbm.5271","url":null,"abstract":"<p><p>Hyperpolarized carbon-13 (<sup>13</sup>C) magnetic resonance imaging (MRI) has shown promise for non-invasive assessment of the cerebral metabolism of [1-<sup>13</sup>C]pyruvate in both healthy volunteers and patients. The exchange of pyruvate to lactate catalysed by lactate dehydrogenase (LDH) and that of pyruvate flux to bicarbonate through pyruvate dehydrogenase (PDH) are the most widely studied reactions in vivo. Here we show the potential of the technique to probe additional enzymatic activity within the brain. Approximately 50 s after intravenous injection of hyperpolarized pyruvate, high-flip-angle pulses were used to detect cerebral <sup>13</sup>C-labelled carbon dioxide (<sup>13</sup>CO<sub>2</sub>), in addition to the <sup>13</sup>C-bicarbonate (H<sup>13</sup>CO<sub>3</sub> <sup>-</sup>) subsequently formed by carbonic anhydrase (CA). Brain pH measurements, which were weighted towards the extracellular compartment, were calculated from the ratio of H<sup>13</sup>CO<sub>3</sub> <sup>-</sup> to <sup>13</sup>CO<sub>2</sub> in seven volunteers using the Henderson-Hasselbalch equation, demonstrating an average pH ± SD of 7.40 ± 0.02, with inter-observer reproducibility of 0.04. In addition, hyperpolarized [1-<sup>13</sup>C]aspartate was also detected, demonstrating irreversible pyruvate carboxylation to oxaloacetate by pyruvate carboxylase (PC) and subsequent transamination by aspartate aminotransferase (AST), with the average flux being on average 11% ± 3% of that through PDH. A hyperpolarized [1-<sup>13</sup>C]alanine signal was also detected, but this was localized to extracranial muscle tissue in keeping with skeletal alanine aminotransferase (ALT) activity. The results demonstrate the potential of hyperpolarized <sup>13</sup>C-MRI to assess cerebral and extracerebral [1-<sup>13</sup>C]pyruvate metabolism in addition to LDH and PDH activity. Non-invasive measurements of brain pH could be particularly important in assessing cerebral pathology given the wide range of disease processes that alter acid-base balance.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5271"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-08DOI: 10.1002/nbm.5243
Frances Daniels, Efraín Torres, Frances Lawrenz, Susan M Wolf, Francis X Shen
Deployment of new, more portable, and less costly neuroimaging technologies such as portable magnetoencephalography, electroencephalography, positron emission tomography, functional near-infrared spectroscopy, high-density diffuse optical tomography, and magnetic resonance imaging is advancing rapidly. Given this trajectory toward increasing use of neuroimaging outside the hospital, we sought to identify ethical, legal, and societal implications (ELSI) of these new technologies by understanding the perspectives of those scientists and engineers developing and implementing portable neuroimaging technologies in the United States, Europe, and Asia. Based on a literature review, we identified and contacted 19 potential interviewees and then conducted 11 semi-structured interviews in English by Zoom. Analysis of the interviews revealed key themes and ELSI issues. Developers reported that without proper ELSI guidance, portable and accessible neuroimaging technology could be misused, fail to comply with applicable regulation and policy, and ultimately fall short in its mission to provide neuroimaging for the world. Our interviews suggested that ELSI guidance should address differences between imaging modalities because they vary in capability, limitations, and likelihood of generating incidental findings.
{"title":"Scientists' perspectives on ethical issues in research with emerging portable neuroimaging technology: The need for guidance on ethical, legal, and societal implications (ELSI).","authors":"Frances Daniels, Efraín Torres, Frances Lawrenz, Susan M Wolf, Francis X Shen","doi":"10.1002/nbm.5243","DOIUrl":"10.1002/nbm.5243","url":null,"abstract":"<p><p>Deployment of new, more portable, and less costly neuroimaging technologies such as portable magnetoencephalography, electroencephalography, positron emission tomography, functional near-infrared spectroscopy, high-density diffuse optical tomography, and magnetic resonance imaging is advancing rapidly. Given this trajectory toward increasing use of neuroimaging outside the hospital, we sought to identify ethical, legal, and societal implications (ELSI) of these new technologies by understanding the perspectives of those scientists and engineers developing and implementing portable neuroimaging technologies in the United States, Europe, and Asia. Based on a literature review, we identified and contacted 19 potential interviewees and then conducted 11 semi-structured interviews in English by Zoom. Analysis of the interviews revealed key themes and ELSI issues. Developers reported that without proper ELSI guidance, portable and accessible neuroimaging technology could be misused, fail to comply with applicable regulation and policy, and ultimately fall short in its mission to provide neuroimaging for the world. Our interviews suggested that ELSI guidance should address differences between imaging modalities because they vary in capability, limitations, and likelihood of generating incidental findings.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5243"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-31DOI: 10.1002/nbm.5235
Pietro Bontempi, Sabrina Marangoni, Lucia Cazzoletti, Albulena Bajrami, Bruno Giometto, Paolo Farace, Umberto Rozzanigo
The purpose of this study is to demonstrate that T2-weighted imaging with very long echo time (TE > 300 ms) can provide relevant information in neurodegenerative/inflammatory disorder. Twenty patients affected by relapsing-remitting multiple sclerosis with stable disease course underwent 1.5 T 3D FLAIR, 3D T1-weighted, and a multi-echo sequence with 32 echoes (TE = 10-320 ms). Focal lesions (FL) were identified on FLAIR. T1-images were processed to segment deep gray matter (dGM), white matter (WM), FL sub-volumes with T1 hypo-intensity (T1FL), and dGM volumes (atrophy). Clinical-radiological parameters included Expanded Disability Status Scale (EDSS), disease duration, patient age, T1FL, and dGM atrophy. Correlation analysis was performed between the mean signal intensity (SI) computed on the non-lesional dGM and WM at different TE versus the clinical-radiological parameters. Multivariable linear regressions were fitted to the data to assess the association between the dependent variable EDSS and the independent variables obtained by T1FL lesion load and the mean SI of dGM and WM at the different TE. A clear trend is observed, with a systematic strengthening of the significance of the correlation at longer TE for all the relationships with the clinical-radiological parameters, becoming significant (p < 0.05) for EDSS, T1FL volumes, and dGM atrophy. Multivariable linear regressions show that at shorter TE, the SI of the T2-weighted sequences is not relevant for describing the EDSS variability while the T1FL volumes are relevant, and vice versa, at very-long TEs (around 300 ms); the SI of the T2-weighted sequences significantly (p < 0.05) describes the EDSS variability. By very long TE, the SI primarily originates from water with a T2 longer than 250 ms and/or free water, which may be arising from the perivascular space (PVS). Very-long T2-weighting might detect dilated PVS and represent an unexplored MR approach in neurofluid imaging of neurodegenerative/inflammatory diseases.
本研究旨在证明超长回波时间(TE > 300 ms)的 T2 加权成像可为神经退行性疾病/炎症性疾病提供相关信息。20名病程稳定的复发性多发性硬化症患者接受了1.5 T三维FLAIR、三维T1加权和32次回波(TE = 10-320毫秒)的多回波序列检查。在 FLAIR 上确定病灶(FL)。对T1图像进行处理,以分割深部灰质(dGM)、白质(WM)、T1低强度的FL亚体积(T1FL)和dGM体积(萎缩)。临床放射学参数包括残疾状况扩展量表(EDSS)、病程、患者年龄、T1FL和dGM萎缩。在不同TE下计算的非病变dGM和WM的平均信号强度(SI)与临床放射学参数之间进行了相关性分析。对数据进行了多变量线性回归拟合,以评估因变量 EDSS 与自变量 T1FL 病变负荷以及不同 TE 下 dGM 和 WM 的平均 SI 之间的关联。可以观察到一个明显的趋势,即在较长的 TE 下,所有临床放射学参数之间的相关性都有系统性的加强,变得显著(p
{"title":"Very-long T2-weighted imaging of the non-lesional brain tissue in multiple sclerosis patients.","authors":"Pietro Bontempi, Sabrina Marangoni, Lucia Cazzoletti, Albulena Bajrami, Bruno Giometto, Paolo Farace, Umberto Rozzanigo","doi":"10.1002/nbm.5235","DOIUrl":"10.1002/nbm.5235","url":null,"abstract":"<p><p>The purpose of this study is to demonstrate that T2-weighted imaging with very long echo time (TE > 300 ms) can provide relevant information in neurodegenerative/inflammatory disorder. Twenty patients affected by relapsing-remitting multiple sclerosis with stable disease course underwent 1.5 T 3D FLAIR, 3D T1-weighted, and a multi-echo sequence with 32 echoes (TE = 10-320 ms). Focal lesions (FL) were identified on FLAIR. T1-images were processed to segment deep gray matter (dGM), white matter (WM), FL sub-volumes with T1 hypo-intensity (T1FL), and dGM volumes (atrophy). Clinical-radiological parameters included Expanded Disability Status Scale (EDSS), disease duration, patient age, T1FL, and dGM atrophy. Correlation analysis was performed between the mean signal intensity (SI) computed on the non-lesional dGM and WM at different TE versus the clinical-radiological parameters. Multivariable linear regressions were fitted to the data to assess the association between the dependent variable EDSS and the independent variables obtained by T1FL lesion load and the mean SI of dGM and WM at the different TE. A clear trend is observed, with a systematic strengthening of the significance of the correlation at longer TE for all the relationships with the clinical-radiological parameters, becoming significant (p < 0.05) for EDSS, T1FL volumes, and dGM atrophy. Multivariable linear regressions show that at shorter TE, the SI of the T2-weighted sequences is not relevant for describing the EDSS variability while the T1FL volumes are relevant, and vice versa, at very-long TEs (around 300 ms); the SI of the T2-weighted sequences significantly (p < 0.05) describes the EDSS variability. By very long TE, the SI primarily originates from water with a T2 longer than 250 ms and/or free water, which may be arising from the perivascular space (PVS). Very-long T2-weighting might detect dilated PVS and represent an unexplored MR approach in neurofluid imaging of neurodegenerative/inflammatory diseases.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5235"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to develop an ensemble learning (EL) method based on magnetic resonance (MR) radiomic features to preoperatively differentiate intracranial extraventricular ependymoma (IEE) from glioblastoma (GBM). This retrospective study enrolled patients with histopathologically confirmed IEE and GBM from June 2016 to June 2021. Radiomics features were extracted from T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) sequence images, and classification models were constructed using EL methods and logistic regression (LR). The efficiency of the models was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis. The combined EL model, based on clinical parameters and radiomic features from T1WI and T2WI images, demonstrated good discriminative ability, achieving an area under the receiver operating characteristics curve (AUC) of 0.96 (95% CI 0.94-0.98), a specificity of 0.84, an accuracy of 0.92, and a sensitivity of 0.95 in the training set, and an AUC of 0.89 (95% CI 0.83-0.94), a specificity of 0.83, an accuracy of 0.81, and a sensitivity of 0.74 in the validation set. The discriminative efficacy of the EL model was significantly higher than that of the LR model. Favorable calibration performance and clinical applicability for the EL model were observed. The EL model combining preoperative MR-based tumor radiomics and clinical data showed high accuracy and sensitivity in differentiating IEE from GBM preoperatively, which may potentially assist in clinical management of these brain tumors.
本研究旨在开发一种基于磁共振(MR)放射学特征的集合学习(EL)方法,用于术前区分颅内室外上皮瘤(IEE)和胶质母细胞瘤(GBM)。这项回顾性研究招募了2016年6月至2021年6月经组织病理学确诊的IEE和GBM患者。研究人员从T1加权成像(T1WI)和T2加权成像(T2WI)序列图像中提取了放射组学特征,并使用EL方法和逻辑回归(LR)构建了分类模型。利用接收者操作特征曲线(ROC)、校准曲线和决策曲线分析评估了模型的效率。基于 T1WI 和 T2WI 图像的临床参数和放射学特征的组合 EL 模型显示出良好的分辨能力,接收器操作特征曲线下面积(AUC)达到 0.96(95% CI 0.94-0.98),特异性为 0.84,准确性为 0.92,灵敏度为 0.95;验证集的 AUC 为 0.89(95% CI 0.83-0.94),特异性为 0.83,准确性为 0.81,灵敏度为 0.74。EL模型的判别效力明显高于LR模型。EL模型具有良好的校准性能和临床适用性。结合术前基于磁共振的肿瘤放射组学和临床数据的EL模型在术前区分IEE和GBM方面显示出较高的准确性和灵敏度,这可能有助于这些脑肿瘤的临床治疗。
{"title":"Ensemble learning-based pretreatment MRI radiomic model for distinguishing intracranial extraventricular ependymoma from glioblastoma multiforme.","authors":"Haoling He, Qianyan Long, Liyan Li, Yan Fu, Xueying Wang, Yuhong Qin, Muliang Jiang, Zeming Tan, Xiaoping Yi, Bihong T Chen","doi":"10.1002/nbm.5242","DOIUrl":"10.1002/nbm.5242","url":null,"abstract":"<p><p>This study aims to develop an ensemble learning (EL) method based on magnetic resonance (MR) radiomic features to preoperatively differentiate intracranial extraventricular ependymoma (IEE) from glioblastoma (GBM). This retrospective study enrolled patients with histopathologically confirmed IEE and GBM from June 2016 to June 2021. Radiomics features were extracted from T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) sequence images, and classification models were constructed using EL methods and logistic regression (LR). The efficiency of the models was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis. The combined EL model, based on clinical parameters and radiomic features from T1WI and T2WI images, demonstrated good discriminative ability, achieving an area under the receiver operating characteristics curve (AUC) of 0.96 (95% CI 0.94-0.98), a specificity of 0.84, an accuracy of 0.92, and a sensitivity of 0.95 in the training set, and an AUC of 0.89 (95% CI 0.83-0.94), a specificity of 0.83, an accuracy of 0.81, and a sensitivity of 0.74 in the validation set. The discriminative efficacy of the EL model was significantly higher than that of the LR model. Favorable calibration performance and clinical applicability for the EL model were observed. The EL model combining preoperative MR-based tumor radiomics and clinical data showed high accuracy and sensitivity in differentiating IEE from GBM preoperatively, which may potentially assist in clinical management of these brain tumors.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5242"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in gene therapy, especially for brain diseases, have created new imaging demands for noninvasive monitoring of gene expression. While reporter gene imaging using co-expression of fluorescent protein-encoding gene has been widely developed, these conventional methods face significant limitations in longitudinal in vivo applications. Magnetic resonance imaging (MRI), specifically chemical exchange saturation transfer (CEST) MRI, provides a robust noninvasive alternative that offers unlimited depth penetration, reliable spatial resolution, and specificity toward particular molecules. In this study, we explore the potential of CEST-MRI for monitoring gene expression in neurons. We designed a CEST polypeptide reporter expressing 150 arginine residues and evaluated its expression in the living brain after viral vector delivery. A longitudinal study performed at one and 2 months postinjection showed that specific CEST signal was observable. In particular, the CEST contrast exhibited distinct peaks at 0.75 and 1.75 ppm, consistent with the expected hydroxyl and guanidyl protons resonance frequencies. Histological study confirmed the specific neuronal expression of the transgene evidenced by the fluorescence signal from the td-Tomato fluorophore fused to the polypeptide. The ability to image noninvasively a neuron-specific CEST-MRI reporter gene could offer valuable insights for further developments of gene therapy for neurological disorders.
{"title":"Noninvasive Imaging of Transgene Expression in Neurons Using Chemical Exchange Saturation Transfer MRI.","authors":"Julien Flament, Jérémy Pépin, Marianne Maugard, Mylène Gaudin, Léa Cohen, Caroline Jan, Julien Valette, Sébastien Piluso, Thierry Delzescaux, Gilles Bonvento","doi":"10.1002/nbm.5297","DOIUrl":"https://doi.org/10.1002/nbm.5297","url":null,"abstract":"<p><p>Advances in gene therapy, especially for brain diseases, have created new imaging demands for noninvasive monitoring of gene expression. While reporter gene imaging using co-expression of fluorescent protein-encoding gene has been widely developed, these conventional methods face significant limitations in longitudinal in vivo applications. Magnetic resonance imaging (MRI), specifically chemical exchange saturation transfer (CEST) MRI, provides a robust noninvasive alternative that offers unlimited depth penetration, reliable spatial resolution, and specificity toward particular molecules. In this study, we explore the potential of CEST-MRI for monitoring gene expression in neurons. We designed a CEST polypeptide reporter expressing 150 arginine residues and evaluated its expression in the living brain after viral vector delivery. A longitudinal study performed at one and 2 months postinjection showed that specific CEST signal was observable. In particular, the CEST contrast exhibited distinct peaks at 0.75 and 1.75 ppm, consistent with the expected hydroxyl and guanidyl protons resonance frequencies. Histological study confirmed the specific neuronal expression of the transgene evidenced by the fluorescence signal from the td-Tomato fluorophore fused to the polypeptide. The ability to image noninvasively a neuron-specific CEST-MRI reporter gene could offer valuable insights for further developments of gene therapy for neurological disorders.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5297"},"PeriodicalIF":2.7,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Myrte Wennen, Wilhelm Stehling, J Tim Marcus, Joost P A Kuijer, Cristina Lavini, Leo M A Heunks, Gustav J Strijkers, Bram F Coolen, Aart J Nederveen, Oliver J Gurney-Champion
The conventional gradient-echo steady-state signal model is the basis of various spoiled gradient-echo (SPGR) based quantitative MRI models, including variable flip angle (VFA) MRI and dynamic contrast-enhanced MRI (DCE). However, including preparation pulses, such as fat suppression or saturation bands, disrupts the steady-state and leads to a bias in T1 and DCE parameter estimates. This work introduces a signal model that improves the accuracy of VFA T1-mapping and DCE for interrupted spoiled gradient-echo (I-SPGR) acquisitions. The proposed model was applied to a VFA T1-mapping I-SPGR sequence in the Gold Standard T1-phantom (3 T), in the brain of four healthy volunteers (3 T), and to an abdominal DCE examination (1.5 T). T1-values obtained with the proposed and conventional model were compared to reference T1-values. Bland-Altman analysis (phantom) and analysis of variance (in vivo) were used to test whether bias from both methods was significantly different (p = 0.05). The proposed model outperformed the conventional model by decreasing the bias in the phantom with respect to the phantom reference values (mean bias -2 vs. -35% at 3 T) and in vivo with respect to the conventional SPGR (-6 vs. -37% bias in T1, p < 0.01). The proposed signal model estimated approximately 48% (depending on baseline T1) higher contrast concentrations in vivo, which resulted in decreased DCE pharmacokinetic parameter estimates of up to 35%. The proposed signal model improves the accuracy of quantitative parameter estimation from disrupted steady-state I-SPGR sequences. It therefore provides a flexible method for applying fat suppression, saturation bands, and other preparation pulses in VFA T1-mapping and DCE.
{"title":"A signal model for fat-suppressed T<sub>1</sub>-mapping and dynamic contrast-enhanced MRI with interrupted spoiled gradient-echo readout.","authors":"Myrte Wennen, Wilhelm Stehling, J Tim Marcus, Joost P A Kuijer, Cristina Lavini, Leo M A Heunks, Gustav J Strijkers, Bram F Coolen, Aart J Nederveen, Oliver J Gurney-Champion","doi":"10.1002/nbm.5289","DOIUrl":"https://doi.org/10.1002/nbm.5289","url":null,"abstract":"<p><p>The conventional gradient-echo steady-state signal model is the basis of various spoiled gradient-echo (SPGR) based quantitative MRI models, including variable flip angle (VFA) MRI and dynamic contrast-enhanced MRI (DCE). However, including preparation pulses, such as fat suppression or saturation bands, disrupts the steady-state and leads to a bias in T<sub>1</sub> and DCE parameter estimates. This work introduces a signal model that improves the accuracy of VFA T<sub>1</sub>-mapping and DCE for interrupted spoiled gradient-echo (I-SPGR) acquisitions. The proposed model was applied to a VFA T<sub>1</sub>-mapping I-SPGR sequence in the Gold Standard T<sub>1</sub>-phantom (3 T), in the brain of four healthy volunteers (3 T), and to an abdominal DCE examination (1.5 T). T<sub>1</sub>-values obtained with the proposed and conventional model were compared to reference T<sub>1</sub>-values. Bland-Altman analysis (phantom) and analysis of variance (in vivo) were used to test whether bias from both methods was significantly different (p = 0.05). The proposed model outperformed the conventional model by decreasing the bias in the phantom with respect to the phantom reference values (mean bias -2 vs. -35% at 3 T) and in vivo with respect to the conventional SPGR (-6 vs. -37% bias in T<sub>1</sub>, p < 0.01). The proposed signal model estimated approximately 48% (depending on baseline T<sub>1</sub>) higher contrast concentrations in vivo, which resulted in decreased DCE pharmacokinetic parameter estimates of up to 35%. The proposed signal model improves the accuracy of quantitative parameter estimation from disrupted steady-state I-SPGR sequences. It therefore provides a flexible method for applying fat suppression, saturation bands, and other preparation pulses in VFA T<sub>1</sub>-mapping and DCE.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5289"},"PeriodicalIF":2.7,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kalina V Jordanova, Carla C Fraenza, Michele N Martin, Ye Tian, Sheng Shen, Christopher E Vaughn, Kevin J Walsh, Casey Walsh, Charlotte R Sappo, Stephen E Ogier, Megan E Poorman, Rui P Teixeira, William A Grissom, Krishna S Nayak, Matthew S Rosen, Andrew G Webb, Steven G Greenbaum, Velencia J Witherspoon, Kathryn E Keenan
Tissue-mimicking reference phantoms are indispensable for the development and optimization of magnetic resonance (MR) measurement sequences. Phantoms have greatest utility when they mimic the MR signals arising from tissue physiology; however, many of the properties underlying these signals, including tissue relaxation characteristics, can vary as a function of magnetic field strength. There has been renewed interest in magnetic resonance imaging (MRI) at field strengths less than 1 T, and phantoms developed for higher field strengths may not be physiologically relevant at these lower fields. This work focuses on developing materials with specific relaxation properties for lower magnetic field strengths. Specifically, we developed recipes that can be used to create synthetic samples for target nuclear magnetic resonance relaxation values for fields between 0.0065 and 0.55 T. and mixing models for agarose-based gels doped with a paramagnetic salt (one of CuSO4, GdCl3, MnCl2, or NiCl2) were created using relaxation measurements of synthetic gel samples at 0.0065, 0.064, and 0.55 T. Measurements were evaluated for variability with respect to measurement repeatability and changing synthesis protocol or laboratory temperature. The mixing models were used to identify formulations of agarose and salt composition to approximately mimic the relaxation times of five neurological tissues (blood, cerebrospinal fluid, fat, gray matter, and white matter) at 0.0065, 0.0475, 0.05, 0.064, and 0.55 T. These mimic sample formulations were measured at each field strength. Of these samples, the GdCl3 and NiCl2 measurements were closest to the target tissue relaxation times. The GdCl3 or NiCl2 mixing model recipes are recommended for creating target relaxation samples below 0.55 T. This work can help development of MRI methods and applications for low-field systems and applications.
组织模拟参考模型对于磁共振(MR)测量序列的开发和优化不可或缺。当模型模拟组织生理学产生的磁共振信号时,其效用最大;然而,这些信号的许多基本特性,包括组织弛豫特性,会随着磁场强度的变化而变化。人们对磁场强度小于 1 T 的磁共振成像(MRI)重新产生了兴趣,而为较高磁场强度开发的模型在这些较低磁场中可能与生理不相关。这项工作的重点是为较低磁场强度开发具有特定弛豫特性的材料。具体来说,我们开发的配方可用于创建目标核磁共振弛豫值在 0.0065 和 0.55 T 之间的合成样本。 通过在 0.0065、0.064 和 0.55 T 下对合成凝胶样品进行弛豫测量,建立了掺杂顺磁盐(CuSO4、GdCl3、MnCl2 或 NiCl2 中的一种)的琼脂糖基凝胶的 T 1 $$ {T}_1 $$ 和 T 2 $$ {T}_2 $$ 混合模型。根据测量的可重复性以及合成方案或实验室温度的变化,对测量结果的可变性进行了评估。混合模型用于确定琼脂糖和盐成分的配方,以近似模拟五种神经组织(血液、脑脊液、脂肪、灰质和白质)在 0.0065、0.0475、0.05、0.064 和 0.55 T 下的弛豫时间。在每个场强下都对这些模拟样本配方进行了测量。在这些样品中,GdCl3 和 NiCl2 的测量结果最接近目标组织的弛豫时间。建议使用 GdCl3 或 NiCl2 混合模型配方来制作 0.55 T 以下的目标弛豫样本。这项工作有助于开发低场系统和应用的磁共振成像方法和应用。
{"title":"Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low-field MRI.","authors":"Kalina V Jordanova, Carla C Fraenza, Michele N Martin, Ye Tian, Sheng Shen, Christopher E Vaughn, Kevin J Walsh, Casey Walsh, Charlotte R Sappo, Stephen E Ogier, Megan E Poorman, Rui P Teixeira, William A Grissom, Krishna S Nayak, Matthew S Rosen, Andrew G Webb, Steven G Greenbaum, Velencia J Witherspoon, Kathryn E Keenan","doi":"10.1002/nbm.5281","DOIUrl":"https://doi.org/10.1002/nbm.5281","url":null,"abstract":"<p><p>Tissue-mimicking reference phantoms are indispensable for the development and optimization of magnetic resonance (MR) measurement sequences. Phantoms have greatest utility when they mimic the MR signals arising from tissue physiology; however, many of the properties underlying these signals, including tissue relaxation characteristics, can vary as a function of magnetic field strength. There has been renewed interest in magnetic resonance imaging (MRI) at field strengths less than 1 T, and phantoms developed for higher field strengths may not be physiologically relevant at these lower fields. This work focuses on developing materials with specific relaxation properties for lower magnetic field strengths. Specifically, we developed recipes that can be used to create synthetic samples for target nuclear magnetic resonance relaxation values for fields between 0.0065 and 0.55 T. <math> <semantics> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> and <math> <semantics> <mrow><msub><mi>T</mi> <mn>2</mn></msub> </mrow> <annotation>$$ {T}_2 $$</annotation></semantics> </math> mixing models for agarose-based gels doped with a paramagnetic salt (one of CuSO<sub>4</sub>, GdCl<sub>3</sub>, MnCl<sub>2</sub>, or NiCl<sub>2</sub>) were created using relaxation measurements of synthetic gel samples at 0.0065, 0.064, and 0.55 T. Measurements were evaluated for variability with respect to measurement repeatability and changing synthesis protocol or laboratory temperature. The mixing models were used to identify formulations of agarose and salt composition to approximately mimic the relaxation times of five neurological tissues (blood, cerebrospinal fluid, fat, gray matter, and white matter) at 0.0065, 0.0475, 0.05, 0.064, and 0.55 T. These mimic sample formulations were measured at each field strength. Of these samples, the GdCl<sub>3</sub> and NiCl<sub>2</sub> measurements were closest to the target tissue relaxation times. The GdCl<sub>3</sub> or NiCl<sub>2</sub> mixing model recipes are recommended for creating target relaxation samples below 0.55 T. This work can help development of MRI methods and applications for low-field systems and applications.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5281"},"PeriodicalIF":2.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantitative magnetization transfer (MT) imaging enables noninvasive characterization of the macromolecular environment of tissues. However, recent work has highlighted that the quantification of MT parameters using saturation radiofrequency (RF) pulses exhibits orientation dependence in ordered tissue structures, potentially confounding its clinical applications. Notably, in tissues with ordered structures, such as articular cartilage and myelin, the residual dipolar coupling (RDC) effect can arise owing to incomplete averaging of dipolar-dipolar interactions of water protons. In this study, we demonstrated the confounding effect of RDC on quantitative MT imaging in ordered tissues can be suppressed by using an emerging technique known as macromolecular proton fraction mapping based on spin-lock (MPF-SL). The off-resonance spin-lock RF pulse in MPF-SL could be designed to generate a strong effective spin-lock field to suppress RDC without violating the specific absorption rate and hardware limitations in clinical scans. Furthermore, suppressing the water pool contribution in MPF-SL enabled the application of a strong effective spin-lock field without confounding effects from direct water saturation. Our findings were experimentally validated using human knee specimens and healthy human cartilage. The results demonstrated that MPF-SL exhibits lower sensitivity to tissue orientation compared with , , and saturation-pulse-based MT imaging. Consequently, MPF-SL could serve as a valuable orientation-independent technique for the quantification of MPF.
{"title":"Orientation-independent quantification of macromolecular proton fraction in tissues with suppression of residual dipolar coupling.","authors":"Zijian Gao, Ziqiang Yu, Ziqin Zhou, Jian Hou, Baiyan Jiang, Michael Ong, Weitian Chen","doi":"10.1002/nbm.5293","DOIUrl":"https://doi.org/10.1002/nbm.5293","url":null,"abstract":"<p><p>Quantitative magnetization transfer (MT) imaging enables noninvasive characterization of the macromolecular environment of tissues. However, recent work has highlighted that the quantification of MT parameters using saturation radiofrequency (RF) pulses exhibits orientation dependence in ordered tissue structures, potentially confounding its clinical applications. Notably, in tissues with ordered structures, such as articular cartilage and myelin, the residual dipolar coupling (RDC) effect can arise owing to incomplete averaging of dipolar-dipolar interactions of water protons. In this study, we demonstrated the confounding effect of RDC on quantitative MT imaging in ordered tissues can be suppressed by using an emerging technique known as macromolecular proton fraction mapping based on spin-lock (MPF-SL). The off-resonance spin-lock RF pulse in MPF-SL could be designed to generate a strong effective spin-lock field to suppress RDC without violating the specific absorption rate and hardware limitations in clinical scans. Furthermore, suppressing the water pool contribution in MPF-SL enabled the application of a strong effective spin-lock field without confounding effects from direct water saturation. Our findings were experimentally validated using human knee specimens and healthy human cartilage. The results demonstrated that MPF-SL exhibits lower sensitivity to tissue orientation compared with <math> <semantics> <mrow><msub><mi>R</mi> <mn>2</mn></msub> </mrow> <annotation>$$ {R}_2 $$</annotation></semantics> </math> , <math> <semantics> <mrow><msub><mi>R</mi> <mrow><mn>1</mn> <mi>ρ</mi></mrow> </msub> </mrow> <annotation>$$ {R}_{1rho } $$</annotation></semantics> </math> , and saturation-pulse-based MT imaging. Consequently, MPF-SL could serve as a valuable orientation-independent technique for the quantification of MPF.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5293"},"PeriodicalIF":2.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}