Pub Date : 2024-11-01Epub Date: 2024-07-23DOI: 10.1002/nbm.5211
Brayan Alves, Dunja Simicic, Jessie Mosso, Thanh Phong Lê, Guillaume Briand, Wolfgang Bogner, Bernard Lanz, Bernhard Strasser, Antoine Klauser, Cristina Cudalbu
Proton magnetic resonance spectroscopic imaging (1H-MRSI) is a powerful tool that enables the multidimensional non-invasive mapping of the neurochemical profile at high resolution over the entire brain. The constant demand for higher spatial resolution in 1H-MRSI has led to increased interest in post-processing-based denoising methods aimed at reducing noise variance. The aim of the present study was to implement two noise-reduction techniques, Marchenko-Pastur principal component analysis (MP-PCA) based denoising and low-rank total generalized variation (LR-TGV) reconstruction, and to test their potential with and impact on preclinical 14.1 T fast in vivo 1H-FID-MRSI datasets. Since there is no known ground truth for in vivo metabolite maps, additional evaluations of the performance of both noise-reduction strategies were conducted using Monte Carlo simulations. Results showed that both denoising techniques increased the apparent signal-to-noise ratio (SNR) while preserving noise properties in each spectrum for both in vivo and Monte Carlo datasets. Relative metabolite concentrations were not significantly altered by either method and brain regional differences were preserved in both synthetic and in vivo datasets. Increased precision of metabolite estimates was observed for the two methods, with inconsistencies noted for lower-concentration metabolites. Our study provided a framework for how to evaluate the performance of MP-PCA and LR-TGV methods for preclinical 1H-FID MRSI data at 14.1 T. While gains in apparent SNR and precision were observed, concentration estimations ought to be treated with care, especially for low-concentration metabolites.
质子磁共振光谱成像(1H-MRSI)是一种功能强大的工具,能以高分辨率对整个大脑的神经化学特征进行多维无创绘图。对 1H-MRSI 更高的空间分辨率的不断需求,导致人们对旨在减少噪声方差的基于后处理的去噪方法越来越感兴趣。本研究的目的是采用两种降噪技术,即基于马琴科-帕斯特尔主成分分析(MP-PCA)的去噪和低秩总广义变异(LR-TGV)重建,并测试它们对临床前 14.1 T 快速体内 1H-FID-MRSI 数据集的潜力和影响。由于体内代谢物图谱没有已知的基本真实值,因此使用蒙特卡罗模拟对两种降噪策略的性能进行了额外的评估。结果表明,这两种去噪技术都提高了表观信噪比(SNR),同时保留了体内和蒙特卡罗数据集每个频谱的噪声特性。两种方法都没有明显改变代谢物的相对浓度,而且合成数据集和体内数据集都保留了大脑区域差异。两种方法都能提高代谢物估算的精确度,但低浓度代谢物的估算结果不一致。我们的研究为如何评估 14.1 T 临床前 1H-FID MRSI 数据的 MP-PCA 和 LR-TGV 方法的性能提供了一个框架。虽然观察到了表观信噪比和精确度的提高,但仍需谨慎对待浓度估计,尤其是低浓度代谢物。
{"title":"Noise-reduction techniques for <sup>1</sup>H-FID-MRSI at 14.1 T: Monte Carlo validation and in vivo application.","authors":"Brayan Alves, Dunja Simicic, Jessie Mosso, Thanh Phong Lê, Guillaume Briand, Wolfgang Bogner, Bernard Lanz, Bernhard Strasser, Antoine Klauser, Cristina Cudalbu","doi":"10.1002/nbm.5211","DOIUrl":"10.1002/nbm.5211","url":null,"abstract":"<p><p>Proton magnetic resonance spectroscopic imaging (<sup>1</sup>H-MRSI) is a powerful tool that enables the multidimensional non-invasive mapping of the neurochemical profile at high resolution over the entire brain. The constant demand for higher spatial resolution in <sup>1</sup>H-MRSI has led to increased interest in post-processing-based denoising methods aimed at reducing noise variance. The aim of the present study was to implement two noise-reduction techniques, Marchenko-Pastur principal component analysis (MP-PCA) based denoising and low-rank total generalized variation (LR-TGV) reconstruction, and to test their potential with and impact on preclinical 14.1 T fast in vivo <sup>1</sup>H-FID-MRSI datasets. Since there is no known ground truth for in vivo metabolite maps, additional evaluations of the performance of both noise-reduction strategies were conducted using Monte Carlo simulations. Results showed that both denoising techniques increased the apparent signal-to-noise ratio (SNR) while preserving noise properties in each spectrum for both in vivo and Monte Carlo datasets. Relative metabolite concentrations were not significantly altered by either method and brain regional differences were preserved in both synthetic and in vivo datasets. Increased precision of metabolite estimates was observed for the two methods, with inconsistencies noted for lower-concentration metabolites. Our study provided a framework for how to evaluate the performance of MP-PCA and LR-TGV methods for preclinical <sup>1</sup>H-FID MRSI data at 14.1 T. While gains in apparent SNR and precision were observed, concentration estimations ought to be treated with care, especially for low-concentration metabolites.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5211"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-25DOI: 10.1002/nbm.5220
Kelley M Swanberg, Hetty Prinsen, Christopher L Averill, Leonardo Campos, Abhinav V Kurada, John H Krystal, Ismene L Petrakis, Lynnette A Averill, Douglas L Rothman, Chadi G Abdallah, Christoph Juchem
Posttraumatic stress disorder (PTSD) is a chronic psychiatric condition that follows exposure to a traumatic stressor. Though previous in vivo proton (1H) MRS) research conducted at 4 T or lower has identified alterations in glutamate metabolism associated with PTSD predisposition and/or progression, no prior investigations have been conducted at higher field strength. In addition, earlier studies have not extensively addressed the impact of psychiatric comorbidities such as major depressive disorder (MDD) on PTSD-associated 1H-MRS-visible brain metabolite abnormalities. Here we employ 7 T 1H MRS to examine concentrations of glutamate, glutamine, GABA, and glutathione in the medial prefrontal cortex (mPFC) of PTSD patients with MDD (PTSD+MDD+; N = 6) or without MDD (PTSD+MDD-; N = 5), as well as trauma-unmatched controls without PTSD but with MDD (PTSD-MDD+; N = 9) or without MDD (PTSD-MDD-; N = 18). Participants with PTSD demonstrated decreased ratios of GABA to glutamine relative to healthy PTSD-MDD- controls but no single-metabolite abnormalities. When comorbid MDD was considered, however, MDD but not PTSD diagnosis was significantly associated with increased mPFC glutamine concentration and decreased glutamate:glutamine ratio. In addition, all participants with PTSD and/or MDD collectively demonstrated decreased glutathione relative to healthy PTSD-MDD- controls. Despite limited findings in single metabolites, patterns of abnormality in prefrontal metabolite concentrations among individuals with PTSD and/or MDD enabled supervised classification to separate them from healthy controls with 80+% sensitivity and specificity, with glutathione, glutamine, and myoinositol consistently among the most informative metabolites for this classification. Our findings indicate that MDD can be an important factor in mPFC glutamate metabolism abnormalities observed using 1H MRS in cohorts with PTSD.
{"title":"Medial prefrontal cortex neurotransmitter abnormalities in posttraumatic stress disorder with and without comorbidity to major depression.","authors":"Kelley M Swanberg, Hetty Prinsen, Christopher L Averill, Leonardo Campos, Abhinav V Kurada, John H Krystal, Ismene L Petrakis, Lynnette A Averill, Douglas L Rothman, Chadi G Abdallah, Christoph Juchem","doi":"10.1002/nbm.5220","DOIUrl":"10.1002/nbm.5220","url":null,"abstract":"<p><p>Posttraumatic stress disorder (PTSD) is a chronic psychiatric condition that follows exposure to a traumatic stressor. Though previous in vivo proton (<sup>1</sup>H) MRS) research conducted at 4 T or lower has identified alterations in glutamate metabolism associated with PTSD predisposition and/or progression, no prior investigations have been conducted at higher field strength. In addition, earlier studies have not extensively addressed the impact of psychiatric comorbidities such as major depressive disorder (MDD) on PTSD-associated <sup>1</sup>H-MRS-visible brain metabolite abnormalities. Here we employ 7 T <sup>1</sup>H MRS to examine concentrations of glutamate, glutamine, GABA, and glutathione in the medial prefrontal cortex (mPFC) of PTSD patients with MDD (PTSD+<sub>MDD+</sub>; N = 6) or without MDD (PTSD+<sub>MDD-</sub>; N = 5), as well as trauma-unmatched controls without PTSD but with MDD (PTSD-<sub>MDD+</sub>; N = 9) or without MDD (PTSD-<sub>MDD-</sub>; N = 18). Participants with PTSD demonstrated decreased ratios of GABA to glutamine relative to healthy PTSD-<sub>MDD-</sub> controls but no single-metabolite abnormalities. When comorbid MDD was considered, however, MDD but not PTSD diagnosis was significantly associated with increased mPFC glutamine concentration and decreased glutamate:glutamine ratio. In addition, all participants with PTSD and/or MDD collectively demonstrated decreased glutathione relative to healthy PTSD-<sub>MDD-</sub> controls. Despite limited findings in single metabolites, patterns of abnormality in prefrontal metabolite concentrations among individuals with PTSD and/or MDD enabled supervised classification to separate them from healthy controls with 80+% sensitivity and specificity, with glutathione, glutamine, and myoinositol consistently among the most informative metabolites for this classification. Our findings indicate that MDD can be an important factor in mPFC glutamate metabolism abnormalities observed using <sup>1</sup>H MRS in cohorts with PTSD.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5220"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-04DOI: 10.1002/nbm.5208
Samo Lasič, Arthur Chakwizira, Henrik Lundell, Carl-Fredrik Westin, Markus Nilsson
Filter exchange imaging (FEXI) is a double diffusion-encoding (DDE) sequence that is specifically sensitive to exchange between sites with different apparent diffusivities. FEXI uses a diffusion-encoding filtering block followed by a detection block at varying mixing times to map the exchange rate. Long mixing times enhance the sensitivity to exchange, but they pose challenges for imaging applications that require a stimulated echo sequence with crusher gradients. Thin imaging slices require strong crushers, which can introduce significant diffusion weighting and bias exchange rate estimates. Here, we treat the crushers as an additional encoding block and consider FEXI as a triple diffusion-encoding sequence. This allows the bias to be corrected in the case of multi-Gaussian diffusion, but not easily in the presence of restricted diffusion. Our approach addresses challenges in the presence of restricted diffusion and relies on the ability to independently gauge sensitivities to exchange and restricted diffusion for arbitrary gradient waveforms. It follows two principles: (i) the effects of crushers are included in the forward model using signal cumulant expansion; and (ii) timing parameters of diffusion gradients in filter and detection blocks are adjusted to maintain the same level of restriction encoding regardless of the mixing time. This results in the tuned exchange imaging (TEXI) protocol. The accuracy of exchange mapping with TEXI was assessed through Monte Carlo simulations in spheres of identical sizes and gamma-distributed sizes, and in parallel hexagonally packed cylinders. The simulations demonstrate that TEXI provides consistent exchange rates regardless of slice thickness and restriction size, even with strong crushers. However, the accuracy depends on b-values, mixing times, and restriction geometry. The constraints and limitations of TEXI are discussed, including suggestions for protocol adaptations. Further studies are needed to optimize the precision of TEXI and assess the approach experimentally in realistic, heterogeneous substrates.
{"title":"Tuned exchange imaging: Can the filter exchange imaging pulse sequence be adapted for applications with thin slices and restricted diffusion?","authors":"Samo Lasič, Arthur Chakwizira, Henrik Lundell, Carl-Fredrik Westin, Markus Nilsson","doi":"10.1002/nbm.5208","DOIUrl":"10.1002/nbm.5208","url":null,"abstract":"<p><p>Filter exchange imaging (FEXI) is a double diffusion-encoding (DDE) sequence that is specifically sensitive to exchange between sites with different apparent diffusivities. FEXI uses a diffusion-encoding filtering block followed by a detection block at varying mixing times to map the exchange rate. Long mixing times enhance the sensitivity to exchange, but they pose challenges for imaging applications that require a stimulated echo sequence with crusher gradients. Thin imaging slices require strong crushers, which can introduce significant diffusion weighting and bias exchange rate estimates. Here, we treat the crushers as an additional encoding block and consider FEXI as a triple diffusion-encoding sequence. This allows the bias to be corrected in the case of multi-Gaussian diffusion, but not easily in the presence of restricted diffusion. Our approach addresses challenges in the presence of restricted diffusion and relies on the ability to independently gauge sensitivities to exchange and restricted diffusion for arbitrary gradient waveforms. It follows two principles: (i) the effects of crushers are included in the forward model using signal cumulant expansion; and (ii) timing parameters of diffusion gradients in filter and detection blocks are adjusted to maintain the same level of restriction encoding regardless of the mixing time. This results in the tuned exchange imaging (TEXI) protocol. The accuracy of exchange mapping with TEXI was assessed through Monte Carlo simulations in spheres of identical sizes and gamma-distributed sizes, and in parallel hexagonally packed cylinders. The simulations demonstrate that TEXI provides consistent exchange rates regardless of slice thickness and restriction size, even with strong crushers. However, the accuracy depends on b-values, mixing times, and restriction geometry. The constraints and limitations of TEXI are discussed, including suggestions for protocol adaptations. Further studies are needed to optimize the precision of TEXI and assess the approach experimentally in realistic, heterogeneous substrates.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5208"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-11DOI: 10.1002/nbm.5210
Pilar Sango-Solanas, Kevin Tse Ve Koon, Eric Van Reeth, Stéphane Nicolle, Jean-François Palierne, Cyrielle Caussy, Olivier Beuf
The aim of the current study is to demonstrate the feasibility of radiofrequency (RF) pulses generated via an optimal control (OC) algorithm to perform magnetic resonance elastography (MRE) and quantify the mechanical properties of materials with very short transverse relaxation times (T2 < 5 ms) for the first time. OC theory applied to MRE provides RF pulses that bring isochromats from the equilibrium state to a fixed target state, which corresponds to the phase pattern of a conventional MRE acquisition. Such RF pulses applied with a constant gradient allow to simultaneously perform slice selection and motion encoding in the slice direction. Unlike conventional MRE, no additional motion-encoding gradients (MEGs) are needed, enabling shorter echo times. OC pulses were implemented both in turbo spin echo (OC rapid acquisition with refocused echoes [RARE]) and ultrashort echo time (OC UTE) sequences to compare their motion-encoding efficiency with the conventional MEG encoding (classical MEG MRE). MRE experiments were carried out on agar phantoms with very short T2 values and on an ex vivo bovine tendon. Magnitude images, wave field images, phase-to-noise ratio (PNR), and shear storage modulus maps were compared between OC RARE, OC UTE, and classical MEG MRE in samples with different T2 values. Shear storage modulus values of the agar phantoms were in agreement with values found in the literature, and that of the bovine tendon was corroborated with rheometry measurements. Only the OC sequences could encode motion in very short T2 samples, and only OC UTE sequences yielded magnitude images enabling proper visualization of short T2 samples and tissues. The OC UTE sequence produced the best PNRs, demonstrating its ability to perform anatomical and mechanical characterization. Its success warrants in vivo confirmation in further studies.
{"title":"Ultrashort echo time magnetic resonance elastography for quantification of the mechanical properties of short T2 tissues via optimal control-based radiofrequency pulses.","authors":"Pilar Sango-Solanas, Kevin Tse Ve Koon, Eric Van Reeth, Stéphane Nicolle, Jean-François Palierne, Cyrielle Caussy, Olivier Beuf","doi":"10.1002/nbm.5210","DOIUrl":"10.1002/nbm.5210","url":null,"abstract":"<p><p>The aim of the current study is to demonstrate the feasibility of radiofrequency (RF) pulses generated via an optimal control (OC) algorithm to perform magnetic resonance elastography (MRE) and quantify the mechanical properties of materials with very short transverse relaxation times (T2 < 5 ms) for the first time. OC theory applied to MRE provides RF pulses that bring isochromats from the equilibrium state to a fixed target state, which corresponds to the phase pattern of a conventional MRE acquisition. Such RF pulses applied with a constant gradient allow to simultaneously perform slice selection and motion encoding in the slice direction. Unlike conventional MRE, no additional motion-encoding gradients (MEGs) are needed, enabling shorter echo times. OC pulses were implemented both in turbo spin echo (OC rapid acquisition with refocused echoes [RARE]) and ultrashort echo time (OC UTE) sequences to compare their motion-encoding efficiency with the conventional MEG encoding (classical MEG MRE). MRE experiments were carried out on agar phantoms with very short T2 values and on an ex vivo bovine tendon. Magnitude images, wave field images, phase-to-noise ratio (PNR), and shear storage modulus maps were compared between OC RARE, OC UTE, and classical MEG MRE in samples with different T2 values. Shear storage modulus values of the agar phantoms were in agreement with values found in the literature, and that of the bovine tendon was corroborated with rheometry measurements. Only the OC sequences could encode motion in very short T2 samples, and only OC UTE sequences yielded magnitude images enabling proper visualization of short T2 samples and tissues. The OC UTE sequence produced the best PNRs, demonstrating its ability to perform anatomical and mechanical characterization. Its success warrants in vivo confirmation in further studies.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5210"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-02DOI: 10.1002/nbm.5203
Diego Pasmiño, Johannes Slotboom, Brigitte Schweisthal, Pamela Guevara, Waldo Valenzuela, Esteban J Pino
Proton MRS is used clinically to collect localized, quantitative metabolic data from living tissues. However, the presence of baselines in the spectra complicates accurate MRS data quantification. The occurrence of baselines is not specific to short-echo-time MRS data. In short-echo-time MRS, the baseline consists typically of a dominating macromolecular (MM) part, and can, depending on B0 shimming, poor voxel placement, and/or localization sequences, also contain broad water and lipid resonance components, indicated by broad components (BCs). In long-echo-time MRS, the MM part is usually much smaller, but BCs may still be present. The sum of MM and BCs is denoted by the baseline. Many algorithms have been proposed over the years to tackle these artefacts. A first approach is to identify the baseline itself in a preprocessing step, and a second approach is to model the baseline in the quantification of the MRS data themselves. This paper gives an overview of baseline handling algorithms and also proposes a new algorithm for baseline correction. A subset of suitable baseline removal algorithms were tested on in vivo MRSI data (semi-LASER at TE = 40 ms) and compared with the new algorithm. The baselines in all datasets were removed using the different methods and subsequently fitted using spectrIm-QMRS with a TDFDFit fitting model that contained only a metabolite basis set and lacked a baseline model. The same spectra were also fitted using a spectrIm-QMRS model that explicitly models the metabolites and the baseline of the spectrum. The quantification results of the latter quantification were regarded as ground truth. The fit quality number (FQN) was used to assess baseline removal effectiveness, and correlations between metabolite peak areas and ground truth models were also examined. The results show a competitive performance of our new proposed algorithm, underscoring its automatic approach and efficiency. Nevertheless, none of the tested baseline correction methods achieved FQNs as good as the ground truth model. All separately applied baseline correction methods introduce a bias in the observed metabolite peak areas. We conclude that all baseline correction methods tested, when applied as a separate preprocessing step, yield poorer FQNs and biased quantification results. While they may enhance visual display, they are not advisable for use before spectral fitting.
{"title":"Comparison of baseline correction algorithms for in vivo <sup>1</sup>H-MRS.","authors":"Diego Pasmiño, Johannes Slotboom, Brigitte Schweisthal, Pamela Guevara, Waldo Valenzuela, Esteban J Pino","doi":"10.1002/nbm.5203","DOIUrl":"10.1002/nbm.5203","url":null,"abstract":"<p><p>Proton MRS is used clinically to collect localized, quantitative metabolic data from living tissues. However, the presence of baselines in the spectra complicates accurate MRS data quantification. The occurrence of baselines is not specific to short-echo-time MRS data. In short-echo-time MRS, the baseline consists typically of a dominating macromolecular (MM) part, and can, depending on B<sub>0</sub> shimming, poor voxel placement, and/or localization sequences, also contain broad water and lipid resonance components, indicated by broad components (BCs). In long-echo-time MRS, the MM part is usually much smaller, but BCs may still be present. The sum of MM and BCs is denoted by the baseline. Many algorithms have been proposed over the years to tackle these artefacts. A first approach is to identify the baseline itself in a preprocessing step, and a second approach is to model the baseline in the quantification of the MRS data themselves. This paper gives an overview of baseline handling algorithms and also proposes a new algorithm for baseline correction. A subset of suitable baseline removal algorithms were tested on in vivo MRSI data (semi-LASER at T<sub>E</sub> = 40 ms) and compared with the new algorithm. The baselines in all datasets were removed using the different methods and subsequently fitted using spectrIm-QMRS with a TDFDFit fitting model that contained only a metabolite basis set and lacked a baseline model. The same spectra were also fitted using a spectrIm-QMRS model that explicitly models the metabolites and the baseline of the spectrum. The quantification results of the latter quantification were regarded as ground truth. The fit quality number (FQN) was used to assess baseline removal effectiveness, and correlations between metabolite peak areas and ground truth models were also examined. The results show a competitive performance of our new proposed algorithm, underscoring its automatic approach and efficiency. Nevertheless, none of the tested baseline correction methods achieved FQNs as good as the ground truth model. All separately applied baseline correction methods introduce a bias in the observed metabolite peak areas. We conclude that all baseline correction methods tested, when applied as a separate preprocessing step, yield poorer FQNs and biased quantification results. While they may enhance visual display, they are not advisable for use before spectral fitting.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5203"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-09DOI: 10.1002/nbm.5207
Carolyn M Slupsky, Brian D Sykes, Jonathan R T Lakey
For patients with type 1 diabetes mellitus complicated by severe hypoglycemia, clinical islet transplantation is an efficacious alternative to whole pancreas transplantation. While islet transplantation has improved over the last few years, there remain questions regarding its cost-effectiveness and donor allosensitization, which is exacerbated when islets from more than one donor are required. Understanding the features of a pancreas that would provide viable islets prior to isolation may lead to development of an accurate assay that could identify suitable pancreases and provide significant cost savings to a clinical islet transplantation program. In this pilot study, solid-state high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy was used to assess samples of convenience of human pancreatic tissue taken prior to islet isolation both before and after incubation using the two-layer perfluorocarbon (PFC)/University of Wisconsin (UW) solution cold-storage method. We observed that, prior to incubation, human pancreatic tissue exhibited evidence of hypoxia with decreased peak integrals associated with glucose and increased peak integrals corresponding to lactate and free fatty acids. After incubation, we observed a reversal of the hypoxia-induced damage, as integrals corresponding to glucose increased, and those corresponding to lactate and free fatty acid resonances decreased. Interestingly, a significant correlation between the ratio of the glucose integral (at 3.0-4.5 ppm) to the sum of the fatty acid (at 0.9 ppm) and lactate + fatty acid (at 1.3 ppm) integrals and glucose responsiveness, a measure of islet viability, of the isolated islets, was observed after incubation in PFC/UW solution for pancreases that responded to PFC/UW solution incubation (p = 0.02). Notably, pancreases with little or no change in the integral ratio after PFC/UW solution incubation had poor recovery. These results suggest that tissue recovery is a key feature for determining islet cell viability, and further that HRMAS NMR may be a practical method to quickly assess human donor pancreatic tissue prior to islet isolation for clinical transplantation.
{"title":"High-resolution magic angle spinning nuclear magnetic resonance of donor pancreatic tissue may predict islet viability prior to isolation.","authors":"Carolyn M Slupsky, Brian D Sykes, Jonathan R T Lakey","doi":"10.1002/nbm.5207","DOIUrl":"10.1002/nbm.5207","url":null,"abstract":"<p><p>For patients with type 1 diabetes mellitus complicated by severe hypoglycemia, clinical islet transplantation is an efficacious alternative to whole pancreas transplantation. While islet transplantation has improved over the last few years, there remain questions regarding its cost-effectiveness and donor allosensitization, which is exacerbated when islets from more than one donor are required. Understanding the features of a pancreas that would provide viable islets prior to isolation may lead to development of an accurate assay that could identify suitable pancreases and provide significant cost savings to a clinical islet transplantation program. In this pilot study, solid-state high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy was used to assess samples of convenience of human pancreatic tissue taken prior to islet isolation both before and after incubation using the two-layer perfluorocarbon (PFC)/University of Wisconsin (UW) solution cold-storage method. We observed that, prior to incubation, human pancreatic tissue exhibited evidence of hypoxia with decreased peak integrals associated with glucose and increased peak integrals corresponding to lactate and free fatty acids. After incubation, we observed a reversal of the hypoxia-induced damage, as integrals corresponding to glucose increased, and those corresponding to lactate and free fatty acid resonances decreased. Interestingly, a significant correlation between the ratio of the glucose integral (at 3.0-4.5 ppm) to the sum of the fatty acid (at 0.9 ppm) and lactate + fatty acid (at 1.3 ppm) integrals and glucose responsiveness, a measure of islet viability, of the isolated islets, was observed after incubation in PFC/UW solution for pancreases that responded to PFC/UW solution incubation (p = 0.02). Notably, pancreases with little or no change in the integral ratio after PFC/UW solution incubation had poor recovery. These results suggest that tissue recovery is a key feature for determining islet cell viability, and further that HRMAS NMR may be a practical method to quickly assess human donor pancreatic tissue prior to islet isolation for clinical transplantation.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5207"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-12DOI: 10.1002/nbm.5209
Jonah J Hahn, Andreas Voskrebenzev, Lea Behrendt, Filip Klimeš, Gesa H Pöhler, Frank Wacker, Jens Vogel-Claussen
Phase-resolved functional lung (PREFUL) MRI is a proton-based, contrast agent-free technique derived from the Fourier decomposition approach to measure regional ventilation and perfusion dynamics during free-breathing. Besides the necessity of extensive PREFUL postprocessing, the utilized MRI sequence must fulfill specific requirements. This study investigates the impact of sequence selection on PREFUL-MRI-derived functional parameters by comparing the standard spoiled gradient echo (SPGRE) sequence with a lung-optimized balanced steady-state free precession (bSSFP) sequence, thereby facilitating PREFULs clinical application in pulmonary disease assessment. This study comprised a prospective dataset of healthy volunteers and a retrospective dataset of patients with suspected chronic thromboembolic pulmonary hypertension. Both cohorts underwent PREFUL-MRI with both sequences to assess the correspondence of PREFUL ventilation and perfusion parameters (A). Additionally, healthy subjects were scanned a second time to evaluate repeatability (B), whereas patients received dynamic contrast-enhanced (DCE)-MRI, considered the perfusion gold standard for comparison with PREFUL-MRI (C). Signal-to-noise ratio (SNR), calculated from the unprocessed images, was compared alongside median differences of PREFUL-MRI-derived parameters using a paired Wilcoxon signed rank test. Further evaluations included calculation of the Pearson correlation, intraclass-correlation coefficient for repeatability assessment, and spatial overlap (SO) for regional comparison of PREFUL-MRI and DCE-MRI. bSSFP showed a clear SNR advantage over SPGRE (median: 23 vs. 9, p < 0.001). (A) Despite significant differences, parameter values were strongly correlated (r ≥ 0.75). After thresholding, binary maps showed high healthy overlap across both cohorts (SOHealthy > 86%) and high defect overlap in the patient cohort (SODefect ≥ 48%). (B) bSSFP demonstrated slightly higher repeatability across most parameters. (C) Both sequences demonstrated comparable correspondence to DCE-MRI, with SPGRE excelling in absolute quantification and bSSFP in spatial agreement. Although bSSFP showed superior SNR results, both sequences displayed spatial defect concordance and highly correlated PREFUL parameters with deviations regarding repeatability and alignment with DCE-MRI.
{"title":"Sequence comparison of spoiled gradient echo and balanced steady-state free precession for pulmonary free-breathing proton MRI in patients and healthy volunteers: Correspondence, repeatability, and validation with dynamic contrast-enhanced MRI.","authors":"Jonah J Hahn, Andreas Voskrebenzev, Lea Behrendt, Filip Klimeš, Gesa H Pöhler, Frank Wacker, Jens Vogel-Claussen","doi":"10.1002/nbm.5209","DOIUrl":"10.1002/nbm.5209","url":null,"abstract":"<p><p>Phase-resolved functional lung (PREFUL) MRI is a proton-based, contrast agent-free technique derived from the Fourier decomposition approach to measure regional ventilation and perfusion dynamics during free-breathing. Besides the necessity of extensive PREFUL postprocessing, the utilized MRI sequence must fulfill specific requirements. This study investigates the impact of sequence selection on PREFUL-MRI-derived functional parameters by comparing the standard spoiled gradient echo (SPGRE) sequence with a lung-optimized balanced steady-state free precession (bSSFP) sequence, thereby facilitating PREFULs clinical application in pulmonary disease assessment. This study comprised a prospective dataset of healthy volunteers and a retrospective dataset of patients with suspected chronic thromboembolic pulmonary hypertension. Both cohorts underwent PREFUL-MRI with both sequences to assess the correspondence of PREFUL ventilation and perfusion parameters (A). Additionally, healthy subjects were scanned a second time to evaluate repeatability (B), whereas patients received dynamic contrast-enhanced (DCE)-MRI, considered the perfusion gold standard for comparison with PREFUL-MRI (C). Signal-to-noise ratio (SNR), calculated from the unprocessed images, was compared alongside median differences of PREFUL-MRI-derived parameters using a paired Wilcoxon signed rank test. Further evaluations included calculation of the Pearson correlation, intraclass-correlation coefficient for repeatability assessment, and spatial overlap (SO) for regional comparison of PREFUL-MRI and DCE-MRI. bSSFP showed a clear SNR advantage over SPGRE (median: 23 vs. 9, p < 0.001). (A) Despite significant differences, parameter values were strongly correlated (r ≥ 0.75). After thresholding, binary maps showed high healthy overlap across both cohorts (SO<sub>Healthy</sub> > 86%) and high defect overlap in the patient cohort (SO<sub>Defect</sub> ≥ 48%). (B) bSSFP demonstrated slightly higher repeatability across most parameters. (C) Both sequences demonstrated comparable correspondence to DCE-MRI, with SPGRE excelling in absolute quantification and bSSFP in spatial agreement. Although bSSFP showed superior SNR results, both sequences displayed spatial defect concordance and highly correlated PREFUL parameters with deviations regarding repeatability and alignment with DCE-MRI.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5209"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-20DOI: 10.1002/nbm.5213
Shi Su, Jiahao Hu, Ye Ding, Junhao Zhang, Vick Lau, Yujiao Zhao, Ed X Wu
We aim to explore the feasibility of head and neck time-of-flight (TOF) magnetic resonance angiography (MRA) at ultra-low-field (ULF). TOF MRA was conducted on a highly simplified 0.05 T MRI scanner with no radiofrequency (RF) and magnetic shielding. A flow-compensated three-dimensional (3D) gradient echo (GRE) sequence with a tilt-optimized nonsaturated excitation RF pulse, and a flow-compensated multislice two-dimensional (2D) GRE sequence, were implemented for cerebral artery and vein imaging, respectively. For carotid artery and jugular vein imaging, flow-compensated 2D GRE sequences were utilized with venous and arterial blood presaturation, respectively. MRA was performed on young healthy subjects. Vessel-to-background contrast was experimentally observed with strong blood inflow effect and background tissue suppression. The large primary cerebral arteries and veins, carotid arteries, jugular veins, and artery bifurcations could be identified in both raw GRE images and maximum intensity projections. The primary brain and neck arteries were found to be reproducible among multiple examination sessions. These preliminary experimental results demonstrated the possibility of artery TOF MRA on low-cost 0.05 T scanners for the first time, despite the extremely low MR signal. We expect to improve the quality of ULF TOF MRA in the near future through sequence development and optimization, ongoing advances in ULF hardware and image formation, and the use of vascular T1 contrast agents.
我们旨在探索在超低场(ULF)下进行头颈部飞行时间(TOF)磁共振血管造影(MRA)的可行性。TOF MRA 在高度简化的 0.05 T MRI 扫描仪上进行,没有射频(RF)和磁屏蔽。在脑动脉和静脉成像中分别采用了带有倾斜优化非饱和激发射频脉冲的血流补偿三维(3D)梯度回波(GRE)序列和血流补偿多层二维(2D)GRE序列。在颈动脉和颈静脉成像中,分别使用了静脉和动脉血预饱和的血流补偿二维 GRE 序列。MRA 在年轻的健康受试者身上进行。实验观察到血管与背景的对比度具有很强的血液流入效应和背景组织抑制。在原始 GRE 图像和最大强度投影图像中都能识别大的原发性脑动脉和静脉、颈动脉、颈静脉和动脉分叉。在多次检查过程中,发现主要脑动脉和颈部动脉具有可重复性。这些初步实验结果表明,尽管磁共振信号极低,但在低成本的 0.05 T 扫描仪上首次实现了动脉 TOF MRA。我们希望在不久的将来,通过序列开发和优化、超低频硬件和图像形成技术的不断进步以及血管 T1 造影剂的使用,提高超低频 TOF MRA 的质量。
{"title":"Ultra-low-field magnetic resonance angiography at 0.05 T: A preliminary study.","authors":"Shi Su, Jiahao Hu, Ye Ding, Junhao Zhang, Vick Lau, Yujiao Zhao, Ed X Wu","doi":"10.1002/nbm.5213","DOIUrl":"10.1002/nbm.5213","url":null,"abstract":"<p><p>We aim to explore the feasibility of head and neck time-of-flight (TOF) magnetic resonance angiography (MRA) at ultra-low-field (ULF). TOF MRA was conducted on a highly simplified 0.05 T MRI scanner with no radiofrequency (RF) and magnetic shielding. A flow-compensated three-dimensional (3D) gradient echo (GRE) sequence with a tilt-optimized nonsaturated excitation RF pulse, and a flow-compensated multislice two-dimensional (2D) GRE sequence, were implemented for cerebral artery and vein imaging, respectively. For carotid artery and jugular vein imaging, flow-compensated 2D GRE sequences were utilized with venous and arterial blood presaturation, respectively. MRA was performed on young healthy subjects. Vessel-to-background contrast was experimentally observed with strong blood inflow effect and background tissue suppression. The large primary cerebral arteries and veins, carotid arteries, jugular veins, and artery bifurcations could be identified in both raw GRE images and maximum intensity projections. The primary brain and neck arteries were found to be reproducible among multiple examination sessions. These preliminary experimental results demonstrated the possibility of artery TOF MRA on low-cost 0.05 T scanners for the first time, despite the extremely low MR signal. We expect to improve the quality of ULF TOF MRA in the near future through sequence development and optimization, ongoing advances in ULF hardware and image formation, and the use of vascular T1 contrast agents.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5213"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The presence of a normal large blood vessel (LBV) in a tumor region can impact the evaluation of quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters and tumor classification. Hence, there is a need for automatic removal of LBVs from brain tissues including intratumoral regions for achieving an objective assessment of tumors. This retrospective study included 103 histopathologically confirmed brain tumor patients who underwent MRI, including DCE-MRI data acquisition. Quantitative DCE-MRI analysis was performed for computing various parameters such as wash-out slope (Slope-2), relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), blood plasma volume fraction (Vp), and volume transfer constant (Ktrans). An approach based on data-clustering algorithm, morphological operations, and quantitative DCE-MRI maps was proposed for the segmentation of normal LBVs in brain tissues, including the tumor region. Here, three widely used data-clustering algorithms were evaluated on two types of quantitative maps: (a) Slope-2, and (b) a new proposed combination of rCBV and Slope-2 maps. Fluid-attenuated inversion recovery-MRI hyperintense lesions were also automatically segmented using deep learning-based architecture. The accuracy of LBV segmentation was qualitatively assessed blindly by two experienced observers, and Likert scoring was also obtained from each individual and compared using Cohen's Kappa test, and multiple statistical features from quantitative DCE-MRI parameters were obtained in the segmented tumor. t-test and receiver operating characteristic (ROC) curve analysis were performed for comparing the effect of removal of LBVs on parameters as well as on tumor grading. k-means clustering exhibited better accuracy and computational efficiency. Tumors, in particular high-grade gliomas (HGGs), showed a high contrast compared with normal tissues (relative % difference = 18.5%) on quantitative maps after the removal of LBVs. Statistical features (95th percentile values) of all parameters in the tumor region showed a statistically significant difference (p < 0.05) between with and without LBV maps. Similar results were obtained for the ROC curve analysis for differentiation between low-grade gliomas and HGGs. Moreover, after the removal of LBVs, the rCBV, rCBF, and Vp maps show better visualization of tumor regions.
{"title":"Automatic removal of large blood vasculature for objective assessment of brain tumors using quantitative dynamic contrast-enhanced magnetic resonance imaging.","authors":"Anshika Kesari, Virendra Kumar Yadav, Rakesh Kumar Gupta, Anup Singh","doi":"10.1002/nbm.5218","DOIUrl":"10.1002/nbm.5218","url":null,"abstract":"<p><p>The presence of a normal large blood vessel (LBV) in a tumor region can impact the evaluation of quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters and tumor classification. Hence, there is a need for automatic removal of LBVs from brain tissues including intratumoral regions for achieving an objective assessment of tumors. This retrospective study included 103 histopathologically confirmed brain tumor patients who underwent MRI, including DCE-MRI data acquisition. Quantitative DCE-MRI analysis was performed for computing various parameters such as wash-out slope (Slope-2), relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), blood plasma volume fraction (V<sub>p</sub>), and volume transfer constant (K<sup>trans</sup>). An approach based on data-clustering algorithm, morphological operations, and quantitative DCE-MRI maps was proposed for the segmentation of normal LBVs in brain tissues, including the tumor region. Here, three widely used data-clustering algorithms were evaluated on two types of quantitative maps: (a) Slope-2, and (b) a new proposed combination of rCBV and Slope-2 maps. Fluid-attenuated inversion recovery-MRI hyperintense lesions were also automatically segmented using deep learning-based architecture. The accuracy of LBV segmentation was qualitatively assessed blindly by two experienced observers, and Likert scoring was also obtained from each individual and compared using Cohen's Kappa test, and multiple statistical features from quantitative DCE-MRI parameters were obtained in the segmented tumor. t-test and receiver operating characteristic (ROC) curve analysis were performed for comparing the effect of removal of LBVs on parameters as well as on tumor grading. k-means clustering exhibited better accuracy and computational efficiency. Tumors, in particular high-grade gliomas (HGGs), showed a high contrast compared with normal tissues (relative % difference = 18.5%) on quantitative maps after the removal of LBVs. Statistical features (95<sup>th</sup> percentile values) of all parameters in the tumor region showed a statistically significant difference (p < 0.05) between with and without LBV maps. Similar results were obtained for the ROC curve analysis for differentiation between low-grade gliomas and HGGs. Moreover, after the removal of LBVs, the rCBV, rCBF, and V<sub>p</sub> maps show better visualization of tumor regions.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5218"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-25DOI: 10.1002/nbm.5215
Paul G Mullins
The use of sequential proton magnetic resonance spectroscopy (MRS) to follow glutamate and gamma-aminobutyric acid (GABA) changes during functional task-based paradigms, functional MRS (fMRS), has increased. This technique has been used to investigate GABA dynamics during both sensory and behavioural tasks, usually with long 'block design' paradigms. Recently, there has been an increase in interest in the use of short stimuli and 'event-related' tasks. While changes in glutamate can be readily followed by collecting multiple individual transients (or shots), measurement of GABA, especially at 3 T, is usually performed using editing techniques like Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS), which by its nature is a dual shot approach. This poses problems when considering an event-related experiment, where it is unclear when GABA may change, or how this may affect the individual subspectra of the MEGA-PRESS acquisition. To address this issue, MEGA-PRESS data were simulated to reflect the effect of a transient change in GABA concentration due to a short event-related stimulus. The change in GABA was simulated for both the ON and OFF subspectra, and the effect of three different conditions (increase only during ON acquisition, increase during OFF acquisition and increase across both) on the corresponding edited GABA spectrum was modelled. Results show that a transient increase in GABA that only occurs during the ON subspectral acquisition, while not changing the results much from when GABA is changed across both conditions, will give a much larger change in the edited GABA spectrum than a transient increase that occurs only during the OFF subspectral acquisition. These results suggest that researchers should think carefully about the design of any event-related fMRS studies using MEGA-PRESS, as well as the analysis of other functional paradigms where transient changes in GABA may be expected. Experimental design considerations are therefore discussed, and suggestions are made.
在基于任务的功能性范例(即功能性 MRS(fMRS))中,越来越多地使用连续质子磁共振光谱(MRS)来跟踪谷氨酸和γ-氨基丁酸(GABA)的变化。这种技术被用于研究 GABA 在感官和行为任务中的动态变化,通常采用长 "区块设计 "范式。最近,人们对使用短刺激和 "事件相关 "任务的兴趣有所增加。谷氨酸的变化可以通过收集多个单独的瞬态(或镜头)来跟踪,而 GABA 的测量,尤其是在 3 T 条件下,通常使用编辑技术,如梅舍尔-加伍德点分辨光谱法(MEGA-PRESS),其本质是一种双镜头方法。这就给事件相关实验带来了问题,因为不清楚 GABA 何时会发生变化,也不清楚这会如何影响 MEGA-PRESS 采集的各个子光谱。为了解决这个问题,我们对 MEGA-PRESS 数据进行了模拟,以反映短时间事件相关刺激引起 GABA 浓度瞬时变化的影响。GABA 的变化在 ON 和 OFF 子频谱上都进行了模拟,并模拟了三种不同条件(仅在 ON 采集期间增加、在 OFF 采集期间增加以及在两者都增加)对相应编辑 GABA 频谱的影响。结果表明,仅在获取 ON 子频谱时瞬时增加 GABA,虽然与在两种条件下都增加 GABA 时的结果变化不大,但与仅在获取 OFF 子频谱时瞬时增加 GABA 相比,编辑后的 GABA 频谱变化要大得多。这些结果表明,研究人员在使用 MEGA-PRESS 进行任何事件相关的 fMRS 研究时,以及在分析其他可能会出现 GABA 瞬时变化的功能范式时,都应仔细考虑设计问题。因此,本文讨论了实验设计的注意事项,并提出了建议。
{"title":"Considerations for event-related gamma-aminobutyric acid functional magnetic resonance spectroscopy.","authors":"Paul G Mullins","doi":"10.1002/nbm.5215","DOIUrl":"10.1002/nbm.5215","url":null,"abstract":"<p><p>The use of sequential proton magnetic resonance spectroscopy (MRS) to follow glutamate and gamma-aminobutyric acid (GABA) changes during functional task-based paradigms, functional MRS (fMRS), has increased. This technique has been used to investigate GABA dynamics during both sensory and behavioural tasks, usually with long 'block design' paradigms. Recently, there has been an increase in interest in the use of short stimuli and 'event-related' tasks. While changes in glutamate can be readily followed by collecting multiple individual transients (or shots), measurement of GABA, especially at 3 T, is usually performed using editing techniques like Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS), which by its nature is a dual shot approach. This poses problems when considering an event-related experiment, where it is unclear when GABA may change, or how this may affect the individual subspectra of the MEGA-PRESS acquisition. To address this issue, MEGA-PRESS data were simulated to reflect the effect of a transient change in GABA concentration due to a short event-related stimulus. The change in GABA was simulated for both the ON and OFF subspectra, and the effect of three different conditions (increase only during ON acquisition, increase during OFF acquisition and increase across both) on the corresponding edited GABA spectrum was modelled. Results show that a transient increase in GABA that only occurs during the ON subspectral acquisition, while not changing the results much from when GABA is changed across both conditions, will give a much larger change in the edited GABA spectrum than a transient increase that occurs only during the OFF subspectral acquisition. These results suggest that researchers should think carefully about the design of any event-related fMRS studies using MEGA-PRESS, as well as the analysis of other functional paradigms where transient changes in GABA may be expected. Experimental design considerations are therefore discussed, and suggestions are made.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5215"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}