首页 > 最新文献

NMR in Biomedicine最新文献

英文 中文
Unfolding coil localized errors from an imperfect slice profile using a structured autocalibration matrix: An application to reduce outflow effects in cine bSSFP imaging. 利用结构化自动校准矩阵,从不完美的切片轮廓中展开线圈局部误差:应用于减少 cine bSSFP 成像中的外流效应。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-08-07 DOI: 10.1002/nbm.5223
Fadil Ali, Zhaohuan Zhang, Andres Saucedo, Ajin Joy, Vahid Ghodrati, Kim-Lien Nguyen, J Paul Finn, Mark Bydder

Purpose: Balanced steady-state free precession (bSSFP) imaging is susceptible to outflow effects where excited spins leaving the slice as part of the blood stream are misprojected back onto the imaging plane. Previous work proposed using slice-encoding steps to localize these outflow effects from corrupting the target slice, at the expense of prolonged scan time. This present study extends this idea by proposing a means of significantly reducing most of the outflowing signal from the imaged slice using a coil localization method that acquires a slice-encoded calibration scan in addition to the 2D data, without being nearly as time-demanding as our previous method. This coil localization method is titled UNfolding Coil Localized Errors from an imperfect slice profile using a Structured Autocalibration Matrix (UNCLE SAM).

Methods: Retrospective and prospective evaluations were carried out. Both featured a 2D acquisition and a separate slice-encoded calibration of the center in-plane k -space lines across all desired slice-encoding steps.

Results: Retrospective results featured a slice-by-slice comparison of the slice-encoded images with UNCLE SAM. UNCLE SAM's subtraction from the slice-encoded image was compared with a subtraction from the flow-corrupted 2D image, to demonstrate UNCLE SAM's capability to unfold outflowing spins. UNCLE SAM's comparison with slice encoding showed that UNCLE SAM was able to unfold up to 74% of what slice encoding achieved. Prospective results showed significant reduction in outflow effects with only a marginal increase in scan time from the 2D acquisition.

Conclusions: We developed a method that effectively unfolds most outflowing spins from corrupting the target slice and does not require the explicit use of slice-encoding gradients. This development offers a method to reduce most outflow effects from the target slice within a clinically feasible scan duration compared with the fully sampled slice-encoding technique.

目的:平衡稳态自由前驱(bSSFP)成像容易受到外流效应的影响,即作为血流一部分离开切片的激发自旋被错误地投射回成像平面。之前的研究提出使用切片编码步骤来定位这些外流效应,以免破坏目标切片,但代价是延长扫描时间。本研究对这一想法进行了扩展,提出了一种使用线圈定位方法显著减少成像切片中大部分外流信号的方法,该方法除了获取二维数据外,还获取切片编码校准扫描,而且不像我们之前的方法那样耗时。这种线圈定位方法名为 "使用结构化自动校准矩阵消除不完美切片轮廓中的线圈定位误差"(UNCLE SAM):方法:进行了回顾性和前瞻性评估。方法:分别进行了回顾性和前瞻性评估,二者均采用二维采集,并在所有所需的切片编码步骤中对平面内 k$ k$ 空间中心线进行单独的切片编码校准:回顾性结果包括切片编码图像与 UNCLE SAM 的逐片比较。将 UNCLE SAM 从切片编码图像中减去的结果与从流动破坏的二维图像中减去的结果进行比较,以证明 UNCLE SAM 能够展开外流自旋。UNCLE SAM 与切片编码的比较结果显示,UNCLE SAM 能够展开的旋转量是切片编码的 74%。前瞻性结果显示,外流效应显著减少,而扫描时间仅比二维采集略有增加:我们开发了一种方法,它能有效地展开大部分外流自旋,避免破坏目标切片,而且不需要明确使用切片编码梯度。与全采样切片编码技术相比,该方法能在临床可行的扫描时间内减少目标切片的大部分外流效应。
{"title":"Unfolding coil localized errors from an imperfect slice profile using a structured autocalibration matrix: An application to reduce outflow effects in cine bSSFP imaging.","authors":"Fadil Ali, Zhaohuan Zhang, Andres Saucedo, Ajin Joy, Vahid Ghodrati, Kim-Lien Nguyen, J Paul Finn, Mark Bydder","doi":"10.1002/nbm.5223","DOIUrl":"10.1002/nbm.5223","url":null,"abstract":"<p><strong>Purpose: </strong>Balanced steady-state free precession (bSSFP) imaging is susceptible to outflow effects where excited spins leaving the slice as part of the blood stream are misprojected back onto the imaging plane. Previous work proposed using slice-encoding steps to localize these outflow effects from corrupting the target slice, at the expense of prolonged scan time. This present study extends this idea by proposing a means of significantly reducing most of the outflowing signal from the imaged slice using a coil localization method that acquires a slice-encoded calibration scan in addition to the 2D data, without being nearly as time-demanding as our previous method. This coil localization method is titled UNfolding Coil Localized Errors from an imperfect slice profile using a Structured Autocalibration Matrix (UNCLE SAM).</p><p><strong>Methods: </strong>Retrospective and prospective evaluations were carried out. Both featured a 2D acquisition and a separate slice-encoded calibration of the center in-plane <math><mi>k</mi></math> -space lines across all desired slice-encoding steps.</p><p><strong>Results: </strong>Retrospective results featured a slice-by-slice comparison of the slice-encoded images with UNCLE SAM. UNCLE SAM's subtraction from the slice-encoded image was compared with a subtraction from the flow-corrupted 2D image, to demonstrate UNCLE SAM's capability to unfold outflowing spins. UNCLE SAM's comparison with slice encoding showed that UNCLE SAM was able to unfold up to 74% of what slice encoding achieved. Prospective results showed significant reduction in outflow effects with only a marginal increase in scan time from the 2D acquisition.</p><p><strong>Conclusions: </strong>We developed a method that effectively unfolds most outflowing spins from corrupting the target slice and does not require the explicit use of slice-encoding gradients. This development offers a method to reduce most outflow effects from the target slice within a clinically feasible scan duration compared with the fully sampled slice-encoding technique.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5223"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing diffusion-controlled release of small-molecules using quantitative MRI in view of applications to orthopedic infection. 从骨科感染应用的角度,利用定量核磁共振成像鉴定小分子的扩散控制释放。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-10-02 DOI: 10.1002/nbm.5254
Greg Hong, Tina Khazaee, Santiago F Cobos, Spencer D Christiansen, Junmin Liu, Maria Drangova, David W Holdsworth

Calcium sulfate is an established carrier for localized drug delivery, but a means to non-invasively measure drug release, which would improve our understanding of localized delivery, remains an unmet need. We aim to quantitatively estimate the diffusion-controlled release of small molecules loaded into a calcium sulfate carrier through a gadobutrol-based contrast agent, which acts as a surrogate small molecule. A central cylindrical core made of calcium sulfate, either alone or within a metal scaffold, is loaded with contrast agents that release into agar. Multi-echo scans are acquired at multiple time points over 4 weeks and processed into R2* and quantitative susceptibility mapping (QSM) maps. Mean R2* values are fit to a known drug delivery model, which are then compared with the decrease in core QSM. Fitting R2* measurements of calcium sulfate core while constraining constants to a drug release model results in an R2-value of 0.991, yielding a diffusion constant of 4.59 × 10-11 m2 s-1. Incorporating the carrier within a metal scaffold results in a slower release. QSM shows the resulting loss of susceptibility in the non-metal core but is unreliable around metal. R2* characterizes the released gadobutrol, and QSM detects the resulting decrease in core susceptibility. The addition of a porous metal scaffold slows the release of gadobutrol, as expected.

硫酸钙是一种成熟的局部给药载体,但如何无创测量药物释放,从而提高我们对局部给药的理解,仍是一个尚未满足的需求。我们的目标是通过钆布醇造影剂定量估算载入硫酸钙载体的小分子在扩散控制下的释放情况。由硫酸钙(单独或在金属支架内)制成的中心圆柱形核心装载了造影剂,造影剂释放到琼脂中。在 4 周内的多个时间点采集多回波扫描,并处理成 R2* 和定量易感图谱 (QSM) 地图。平均 R2* 值与已知的给药模型相拟合,然后与核心 QSM 的下降进行比较。将硫酸钙核心的 R2* 测量值与药物释放模型的约束条件进行拟合,结果 R2* 值为 0.991,得出扩散常数为 4.59 × 10-11 m2 s-1。在金属支架中加入载体会导致释放速度减慢。QSM 显示了非金属核心中由此产生的易感性损失,但在金属周围却不可靠。R2* 表征释放的钆布醇,QSM 则检测由此导致的核心电感下降。添加多孔金属支架可减缓钆布醇的释放,正如预期的那样。
{"title":"Characterizing diffusion-controlled release of small-molecules using quantitative MRI in view of applications to orthopedic infection.","authors":"Greg Hong, Tina Khazaee, Santiago F Cobos, Spencer D Christiansen, Junmin Liu, Maria Drangova, David W Holdsworth","doi":"10.1002/nbm.5254","DOIUrl":"10.1002/nbm.5254","url":null,"abstract":"<p><p>Calcium sulfate is an established carrier for localized drug delivery, but a means to non-invasively measure drug release, which would improve our understanding of localized delivery, remains an unmet need. We aim to quantitatively estimate the diffusion-controlled release of small molecules loaded into a calcium sulfate carrier through a gadobutrol-based contrast agent, which acts as a surrogate small molecule. A central cylindrical core made of calcium sulfate, either alone or within a metal scaffold, is loaded with contrast agents that release into agar. Multi-echo scans are acquired at multiple time points over 4 weeks and processed into R2* and quantitative susceptibility mapping (QSM) maps. Mean R2* values are fit to a known drug delivery model, which are then compared with the decrease in core QSM. Fitting R2* measurements of calcium sulfate core while constraining constants to a drug release model results in an R<sup>2</sup>-value of 0.991, yielding a diffusion constant of 4.59 × 10<sup>-11</sup> m<sup>2</sup> s<sup>-1</sup>. Incorporating the carrier within a metal scaffold results in a slower release. QSM shows the resulting loss of susceptibility in the non-metal core but is unreliable around metal. R2* characterizes the released gadobutrol, and QSM detects the resulting decrease in core susceptibility. The addition of a porous metal scaffold slows the release of gadobutrol, as expected.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5254"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous whole-liver water T 1 and T 2 mapping with isotropic resolution during free-breathing. 在自由呼吸过程中以各向同性分辨率同时绘制全肝水 T 1 $$ {mathrm{T}}_1 $$ 和 T 2 $$ {mathrm{T}}_2 $$。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-08-04 DOI: 10.1002/nbm.5216
Jonathan Stelter, Kilian Weiss, Lisa Steinhelfer, Veronika Spieker, Elizabeth Huaroc Moquillaza, Weitong Zhang, Marcus R Makowski, Julia A Schnabel, Bernhard Kainz, Rickmer F Braren, Dimitrios C Karampinos
<p><strong>Purpose: </strong>To develop and validate a data acquisition scheme combined with a motion-resolved reconstruction and dictionary-matching-based parameter estimation to enable free-breathing isotropic resolution self-navigated whole-liver simultaneous water-specific <math><msub><mtext>T</mtext> <mtext>1</mtext></msub> </math> ( <math><msub><mtext>wT</mtext> <mtext>1</mtext></msub> </math> ) and <math><msub><mtext>T</mtext> <mtext>2</mtext></msub> </math> ( <math><msub><mtext>wT</mtext> <mtext>2</mtext></msub> </math> ) mapping for the characterization of diffuse and oncological liver diseases.</p><p><strong>Methods: </strong>The proposed data acquisition consists of a magnetization preparation pulse and a two-echo gradient echo readout with a radial stack-of-stars trajectory, repeated with different preparations to achieve different <math><msub><mtext>T</mtext> <mtext>1</mtext></msub> </math> and <math><msub><mtext>T</mtext> <mtext>2</mtext></msub> </math> contrasts in a fixed acquisition time of 6 min. Regularized reconstruction was performed using self-navigation to account for motion during the free-breathing acquisition, followed by water-fat separation. Bloch simulations of the sequence were applied to optimize the sequence timing for <math> <msub><mrow><mi>B</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </math> insensitivity at 3 T, to correct for relaxation-induced blurring, and to map <math><msub><mtext>T</mtext> <mtext>1</mtext></msub> </math> and <math><msub><mtext>T</mtext> <mtext>2</mtext></msub> </math> using a dictionary. The proposed method was validated on a water-fat phantom with varying relaxation properties and in 10 volunteers against imaging and spectroscopy reference values. The performance and robustness of the proposed method were evaluated in five patients with abdominal pathologies.</p><p><strong>Results: </strong>Simulations demonstrate good <math> <msub><mrow><mi>B</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </math> insensitivity of the proposed method in measuring <math><msub><mtext>T</mtext> <mtext>1</mtext></msub> </math> and <math><msub><mtext>T</mtext> <mtext>2</mtext></msub> </math> values. The proposed method produces co-registered <math><msub><mtext>wT</mtext> <mtext>1</mtext></msub> </math> and <math><msub><mtext>wT</mtext> <mtext>2</mtext></msub> </math> maps with a good agreement with reference methods (phantom: <math><msub><mtext>wT</mtext> <mtext>1</mtext></msub> <mo>=</mo> <mn>1</mn> <mo>.</mo> <mn>02</mn> <mspace></mspace> <msub><mtext>wT</mtext> <mtext>1,ref</mtext></msub> <mo>-</mo> <mn>8</mn> <mo>.</mo> <mn>93</mn> <mspace></mspace> <mtext>ms</mtext> <mo>,</mo> <msup><mi>R</mi> <mn>2</mn></msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>991</mn></math> ; <math><msub><mtext>wT</mtext> <mn>2</mn></msub> <mo>=</mo> <mn>1</mn> <mo>.</mo> <mn>03</mn> <mspace></mspace> <msub><mtext>wT</mtext> <mtext>2,ref</mtext></msub> <mo>+</mo> <mn>0</mn> <mo>.</mo> <mn>73</mn> <mspace></mspace> <mtext>ms</mtext> <mo
目的开发并验证一种数据采集方案,结合运动分辨重建和基于字典匹配的参数估计,实现自由呼吸各向同性分辨率自导航全肝同步水特异性 T 1 $$ {mathrm{T}}_1 $$ ( wT 1 $$ {mathrm{wT}}_1 $$ ) 和 T 2 $$ {mathrm{T}}_2 $$ ( wT 2 $$ {mathrm{wT}}_2 $$ ) 映射,用于描述弥漫性和肿瘤性肝病的特征。方法:拟议的数据采集包括一个磁化准备脉冲和一个带有径向堆叠星轨迹的双回波梯度回波读出,在固定的6分钟采集时间内重复不同的准备以实现不同的T 1 $$ {mathrm{T}}_1 $$和T 2 $$ {mathrm{T}}_2 $$对比。利用自导航进行正则化重建,以考虑自由呼吸采集过程中的运动,然后进行水-脂肪分离。对序列进行布洛赫模拟,以优化序列时间,从而在 3 T 下实现 B 1 $$ {B}_1 $ 不敏感,纠正弛豫引起的模糊,并使用字典映射 T 1 $$ {mathrm{T}}_1 $ 和 T 2 $$ {mathrm{T}}_2 $。该方法在具有不同弛豫特性的水脂模型上进行了验证,并在 10 名志愿者身上对照成像和光谱参考值进行了验证。在五名腹部病变患者身上评估了所提方法的性能和鲁棒性:模拟结果表明,该方法在测量 T 1 $$ {mathrm{T}}_1 $$ 和 T 2 $$ {mathrm{T}}_2 $$ 值时对 B 1 $$ {B}_1 $$ 不敏感。所提议的方法生成的共存 wT 1 $$ {mathrm{wT}}_1 $$ 和 wT 2 $$ {mathrm{wT}}_2 $$ 地图与参考方法(幻影:wT 1 = 1 .02 wT 1,ref - 8 .93 ms , R 2 = 0 . 991 $$ {mathrm{wT}}_1=1.02kern0.1em {mathrm{wT}}_{1,mathrm{ref}}-8.93kern0.1em mathrm{ms},{R}^2=0.991 $$ ; wT 2 = 1 .03 wT 2,ref + 0 . 73 ms , R 2 = 0 . 995 $$ {mathrm{wT}}_2=1.03kern0.1em {mathrm{wT}}_{2,mathrm{ref}}+0.73kern0.1em mathrm{ms},{R}^2=0.995 $$ )。所提出的 wT 1 $$ {mathrm{wT}}_1 $$ 和 wT 2 $$ {mathrm{wT}}_2 $$ 映射显示出良好的可重复性,可在有病变的患者中稳健地进行:本文提出的方法可在自由呼吸过程中,在固定的采集时间内,以各向同性分辨率对全肝脏 wT 1 $$ {mathrm{wT}}_1 $$ 和 wT 2 $$ {mathrm{wT}}_2 $$ 进行高精度量化。
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Simultaneous whole-liver water <ns0:math><ns0:msub><ns0:mtext>T</ns0:mtext> <ns0:mtext>1</ns0:mtext></ns0:msub> </ns0:math> and <ns0:math><ns0:msub><ns0:mtext>T</ns0:mtext> <ns0:mtext>2</ns0:mtext></ns0:msub> </ns0:math> mapping with isotropic resolution during free-breathing.","authors":"Jonathan Stelter, Kilian Weiss, Lisa Steinhelfer, Veronika Spieker, Elizabeth Huaroc Moquillaza, Weitong Zhang, Marcus R Makowski, Julia A Schnabel, Bernhard Kainz, Rickmer F Braren, Dimitrios C Karampinos","doi":"10.1002/nbm.5216","DOIUrl":"10.1002/nbm.5216","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Purpose: &lt;/strong&gt;To develop and validate a data acquisition scheme combined with a motion-resolved reconstruction and dictionary-matching-based parameter estimation to enable free-breathing isotropic resolution self-navigated whole-liver simultaneous water-specific &lt;math&gt;&lt;msub&gt;&lt;mtext&gt;T&lt;/mtext&gt; &lt;mtext&gt;1&lt;/mtext&gt;&lt;/msub&gt; &lt;/math&gt; ( &lt;math&gt;&lt;msub&gt;&lt;mtext&gt;wT&lt;/mtext&gt; &lt;mtext&gt;1&lt;/mtext&gt;&lt;/msub&gt; &lt;/math&gt; ) and &lt;math&gt;&lt;msub&gt;&lt;mtext&gt;T&lt;/mtext&gt; &lt;mtext&gt;2&lt;/mtext&gt;&lt;/msub&gt; &lt;/math&gt; ( &lt;math&gt;&lt;msub&gt;&lt;mtext&gt;wT&lt;/mtext&gt; &lt;mtext&gt;2&lt;/mtext&gt;&lt;/msub&gt; &lt;/math&gt; ) mapping for the characterization of diffuse and oncological liver diseases.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;The proposed data acquisition consists of a magnetization preparation pulse and a two-echo gradient echo readout with a radial stack-of-stars trajectory, repeated with different preparations to achieve different &lt;math&gt;&lt;msub&gt;&lt;mtext&gt;T&lt;/mtext&gt; &lt;mtext&gt;1&lt;/mtext&gt;&lt;/msub&gt; &lt;/math&gt; and &lt;math&gt;&lt;msub&gt;&lt;mtext&gt;T&lt;/mtext&gt; &lt;mtext&gt;2&lt;/mtext&gt;&lt;/msub&gt; &lt;/math&gt; contrasts in a fixed acquisition time of 6 min. Regularized reconstruction was performed using self-navigation to account for motion during the free-breathing acquisition, followed by water-fat separation. Bloch simulations of the sequence were applied to optimize the sequence timing for &lt;math&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/math&gt; insensitivity at 3 T, to correct for relaxation-induced blurring, and to map &lt;math&gt;&lt;msub&gt;&lt;mtext&gt;T&lt;/mtext&gt; &lt;mtext&gt;1&lt;/mtext&gt;&lt;/msub&gt; &lt;/math&gt; and &lt;math&gt;&lt;msub&gt;&lt;mtext&gt;T&lt;/mtext&gt; &lt;mtext&gt;2&lt;/mtext&gt;&lt;/msub&gt; &lt;/math&gt; using a dictionary. The proposed method was validated on a water-fat phantom with varying relaxation properties and in 10 volunteers against imaging and spectroscopy reference values. The performance and robustness of the proposed method were evaluated in five patients with abdominal pathologies.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;Simulations demonstrate good &lt;math&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/math&gt; insensitivity of the proposed method in measuring &lt;math&gt;&lt;msub&gt;&lt;mtext&gt;T&lt;/mtext&gt; &lt;mtext&gt;1&lt;/mtext&gt;&lt;/msub&gt; &lt;/math&gt; and &lt;math&gt;&lt;msub&gt;&lt;mtext&gt;T&lt;/mtext&gt; &lt;mtext&gt;2&lt;/mtext&gt;&lt;/msub&gt; &lt;/math&gt; values. The proposed method produces co-registered &lt;math&gt;&lt;msub&gt;&lt;mtext&gt;wT&lt;/mtext&gt; &lt;mtext&gt;1&lt;/mtext&gt;&lt;/msub&gt; &lt;/math&gt; and &lt;math&gt;&lt;msub&gt;&lt;mtext&gt;wT&lt;/mtext&gt; &lt;mtext&gt;2&lt;/mtext&gt;&lt;/msub&gt; &lt;/math&gt; maps with a good agreement with reference methods (phantom: &lt;math&gt;&lt;msub&gt;&lt;mtext&gt;wT&lt;/mtext&gt; &lt;mtext&gt;1&lt;/mtext&gt;&lt;/msub&gt; &lt;mo&gt;=&lt;/mo&gt; &lt;mn&gt;1&lt;/mn&gt; &lt;mo&gt;.&lt;/mo&gt; &lt;mn&gt;02&lt;/mn&gt; &lt;mspace&gt;&lt;/mspace&gt; &lt;msub&gt;&lt;mtext&gt;wT&lt;/mtext&gt; &lt;mtext&gt;1,ref&lt;/mtext&gt;&lt;/msub&gt; &lt;mo&gt;-&lt;/mo&gt; &lt;mn&gt;8&lt;/mn&gt; &lt;mo&gt;.&lt;/mo&gt; &lt;mn&gt;93&lt;/mn&gt; &lt;mspace&gt;&lt;/mspace&gt; &lt;mtext&gt;ms&lt;/mtext&gt; &lt;mo&gt;,&lt;/mo&gt; &lt;msup&gt;&lt;mi&gt;R&lt;/mi&gt; &lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt; &lt;mo&gt;=&lt;/mo&gt; &lt;mn&gt;0&lt;/mn&gt; &lt;mo&gt;.&lt;/mo&gt; &lt;mn&gt;991&lt;/mn&gt;&lt;/math&gt; ; &lt;math&gt;&lt;msub&gt;&lt;mtext&gt;wT&lt;/mtext&gt; &lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt; &lt;mo&gt;=&lt;/mo&gt; &lt;mn&gt;1&lt;/mn&gt; &lt;mo&gt;.&lt;/mo&gt; &lt;mn&gt;03&lt;/mn&gt; &lt;mspace&gt;&lt;/mspace&gt; &lt;msub&gt;&lt;mtext&gt;wT&lt;/mtext&gt; &lt;mtext&gt;2,ref&lt;/mtext&gt;&lt;/msub&gt; &lt;mo&gt;+&lt;/mo&gt; &lt;mn&gt;0&lt;/mn&gt; &lt;mo&gt;.&lt;/mo&gt; &lt;mn&gt;73&lt;/mn&gt; &lt;mspace&gt;&lt;/mspace&gt; &lt;mtext&gt;ms&lt;/mtext&gt; &lt;mo","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5216"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic deep learning segmentation of the hippocampus on high-resolution diffusion magnetic resonance imaging and its application to the healthy lifespan. 高分辨率弥散磁共振成像上的海马区自动深度学习分割及其在健康寿命中的应用。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-08-13 DOI: 10.1002/nbm.5227
Dylan Miller, Cory Efird, Kevin Grant Solar, Christian Beaulieu, Dana Cobzas

Diffusion tensor imaging (DTI) can provide unique contrast and insight into microstructural changes with age or disease of the hippocampus, although it is difficult to measure the hippocampus because of its comparatively small size, location, and shape. This has been markedly improved by the advent of a clinically feasible 1-mm isotropic resolution 6-min DTI protocol at 3 T of the hippocampus with limited brain coverage of 20 axial-oblique slices aligned along its long axis. However, manual segmentation is too laborious for large population studies, and it cannot be automatically segmented directly on the diffusion images using traditional T1 or T2 image-based methods because of the limited brain coverage and different contrast. An automatic method is proposed here that segments the hippocampus directly on high-resolution diffusion images based on an extension of well-known deep learning architectures like UNet and UNet++ by including additional dense residual connections. The method was trained on 100 healthy participants with previously performed manual segmentation on the 1-mm DTI, then evaluated on typical healthy participants (n = 53), yielding an excellent voxel overlap with a Dice score of ~ 0.90 with manual segmentation; notably, this was comparable with the inter-rater reliability of manually delineating the hippocampus on diffusion magnetic resonance imaging (MRI) (Dice score of 0.86). This method also generalized to a different DTI protocol with 36% fewer acquisitions. It was further validated by showing similar age trajectories of volumes, fractional anisotropy, and mean diffusivity from manual segmentations in one cohort (n = 153, age 5-74 years) with automatic segmentations from a second cohort without manual segmentations (n = 354, age 5-90 years). Automated high-resolution diffusion MRI segmentation of the hippocampus will facilitate large cohort analyses and, in future research, needs to be evaluated on patient groups.

弥散张量成像(DTI)可以提供独特的对比度,让人深入了解海马随年龄或疾病发生的微观结构变化,但由于海马的体积、位置和形状相对较小,因此很难对其进行测量。临床上可行的海马 1 毫米各向同性分辨率 6 分钟 DTI 方案的出现明显改善了这一问题,该方案在 3 T 下对海马进行了有限的脑覆盖,包括 20 张沿海马长轴排列的轴向-斜向切片。然而,对于大规模人群研究来说,手动分割过于费力,而且由于大脑覆盖范围有限且对比度不同,无法使用传统的基于 T1 或 T2 图像的方法直接在弥散图像上进行自动分割。本文提出了一种自动方法,基于对 UNet 和 UNet++ 等著名深度学习架构的扩展,加入额外的密集残余连接,直接在高分辨率扩散图像上分割海马体。该方法在 100 名健康参与者身上进行了训练,他们之前在 1 毫米 DTI 上进行了手动分割,然后在典型的健康参与者(n = 53)身上进行了评估,结果显示,手动分割的体素重叠度非常好,Dice 得分为约 0.90;值得注意的是,这与在弥散磁共振成像(MRI)上手动划分海马的评分者间可靠性(Dice 得分为 0.86)相当。这种方法还适用于采集次数减少 36% 的不同 DTI 方案。在一个队列(n = 153,年龄 5-74 岁)中,手动分割的体积、分数各向异性和平均弥散度的年龄轨迹与在第二个队列(n = 354,年龄 5-90 岁)中未进行手动分割的自动分割的体积、分数各向异性和平均弥散度的年龄轨迹相似,从而进一步验证了该方法。海马体的自动高分辨率弥散核磁共振成像分割有助于进行大规模队列分析,在未来的研究中,需要对患者群体进行评估。
{"title":"Automatic deep learning segmentation of the hippocampus on high-resolution diffusion magnetic resonance imaging and its application to the healthy lifespan.","authors":"Dylan Miller, Cory Efird, Kevin Grant Solar, Christian Beaulieu, Dana Cobzas","doi":"10.1002/nbm.5227","DOIUrl":"10.1002/nbm.5227","url":null,"abstract":"<p><p>Diffusion tensor imaging (DTI) can provide unique contrast and insight into microstructural changes with age or disease of the hippocampus, although it is difficult to measure the hippocampus because of its comparatively small size, location, and shape. This has been markedly improved by the advent of a clinically feasible 1-mm isotropic resolution 6-min DTI protocol at 3 T of the hippocampus with limited brain coverage of 20 axial-oblique slices aligned along its long axis. However, manual segmentation is too laborious for large population studies, and it cannot be automatically segmented directly on the diffusion images using traditional T<sub>1</sub> or T<sub>2</sub> image-based methods because of the limited brain coverage and different contrast. An automatic method is proposed here that segments the hippocampus directly on high-resolution diffusion images based on an extension of well-known deep learning architectures like UNet and UNet++ by including additional dense residual connections. The method was trained on 100 healthy participants with previously performed manual segmentation on the 1-mm DTI, then evaluated on typical healthy participants (n = 53), yielding an excellent voxel overlap with a Dice score of ~ 0.90 with manual segmentation; notably, this was comparable with the inter-rater reliability of manually delineating the hippocampus on diffusion magnetic resonance imaging (MRI) (Dice score of 0.86). This method also generalized to a different DTI protocol with 36% fewer acquisitions. It was further validated by showing similar age trajectories of volumes, fractional anisotropy, and mean diffusivity from manual segmentations in one cohort (n = 153, age 5-74 years) with automatic segmentations from a second cohort without manual segmentations (n = 354, age 5-90 years). Automated high-resolution diffusion MRI segmentation of the hippocampus will facilitate large cohort analyses and, in future research, needs to be evaluated on patient groups.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5227"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying biochemical changes in the kidney using proton nuclear magnetic resonance in an adenine diet chronic kidney disease mouse model. 利用质子核磁共振识别腺嘌呤饮食慢性肾病小鼠模型中肾脏的生化变化。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-09-04 DOI: 10.1002/nbm.5257
Tyrone L R Humphries, Glenda C Gobe, Aaron J Urquhart, Robert J Ellis, Graham J Galloway, David A Vesey, Ross S Francis

This study aimed to investigate the metabolic changes in the kidneys in a murine adenine-diet model of chronic kidney disease (CKD). Kidney fibrosis is the common pathological manifestation across CKD aetiologies. Sustained inflammation and fibrosis cause changes in preferred energy metabolic pathways in the cells of the kidney. Kidney cortical tissue from mice receiving a control or adenine-supplemented diet for 8 weeks (late inflammation and fibrosis) and 12 weeks (8 weeks of treatment followed by 4 weeks recovery) were analysed by 2D-correlated nuclear magnetic resonance spectroscopy and compared with histopathology and biomarkers of kidney damage. Tissue metabolite and lipid levels were assessed using the MestreNova software. Expression of genes related to inflammation, fibrosis, and metabolism were measured using quantitative polymerase chain reaction. Animals showed indicators of severely impaired kidney function at 8 and 12 weeks. Significantly increased fibrosis was present at 8 weeks but not in the recovery group suggesting some reversal of fibrosis and amelioration of inflammation. At 8 weeks, metabolites associated with glycolysis were increased, while lipid signatures were decreased. Genes involved in fatty acid oxidation were decreased at 8 weeks but not 12 weeks while genes associated with glycolysis were significantly increased at 8 weeks but not at 12 weeks. In this murine model of CKD, kidney fibrosis was associated with the accumulation of triglyceride and free lactate. There was an up-regulation of glycolytic enzymes and down-regulation of lipolytic enzymes. These metabolic changes reflect the energy demands associated with progressive kidney disease where there is a switch from fatty acid oxidation to that of glycolysis.

本研究旨在探讨小鼠慢性肾脏病(CKD)腺嘌呤饮食模型中肾脏的代谢变化。肾脏纤维化是慢性肾脏病各种病因的共同病理表现。持续的炎症和纤维化会导致肾脏细胞首选的能量代谢途径发生变化。通过二维相关核磁共振波谱分析了接受对照组或腺嘌呤补充饮食 8 周(晚期炎症和纤维化)和 12 周(治疗 8 周后恢复 4 周)的小鼠肾皮质组织,并与组织病理学和肾损伤生物标志物进行了比较。组织代谢物和脂质水平使用 MestreNova 软件进行评估。使用定量聚合酶链反应测量了与炎症、纤维化和新陈代谢有关的基因表达。动物的肾功能在 8 周和 12 周时出现了严重受损的迹象。在 8 周时,纤维化明显加重,但在恢复组中没有出现这种情况,这表明纤维化在一定程度上发生了逆转,炎症也有所改善。8 周时,与糖酵解相关的代谢物增加,而脂质特征减少。参与脂肪酸氧化的基因在 8 周时减少,但在 12 周时没有减少,而与糖酵解相关的基因在 8 周时显著增加,但在 12 周时没有增加。在这种小鼠慢性肾脏病模型中,肾脏纤维化与甘油三酯和游离乳酸的积累有关。糖酵解酶上调,脂肪分解酶下调。这些代谢变化反映了进行性肾病对能量的需求,即从脂肪酸氧化转向糖酵解。
{"title":"Identifying biochemical changes in the kidney using proton nuclear magnetic resonance in an adenine diet chronic kidney disease mouse model.","authors":"Tyrone L R Humphries, Glenda C Gobe, Aaron J Urquhart, Robert J Ellis, Graham J Galloway, David A Vesey, Ross S Francis","doi":"10.1002/nbm.5257","DOIUrl":"10.1002/nbm.5257","url":null,"abstract":"<p><p>This study aimed to investigate the metabolic changes in the kidneys in a murine adenine-diet model of chronic kidney disease (CKD). Kidney fibrosis is the common pathological manifestation across CKD aetiologies. Sustained inflammation and fibrosis cause changes in preferred energy metabolic pathways in the cells of the kidney. Kidney cortical tissue from mice receiving a control or adenine-supplemented diet for 8 weeks (late inflammation and fibrosis) and 12 weeks (8 weeks of treatment followed by 4 weeks recovery) were analysed by 2D-correlated nuclear magnetic resonance spectroscopy and compared with histopathology and biomarkers of kidney damage. Tissue metabolite and lipid levels were assessed using the MestreNova software. Expression of genes related to inflammation, fibrosis, and metabolism were measured using quantitative polymerase chain reaction. Animals showed indicators of severely impaired kidney function at 8 and 12 weeks. Significantly increased fibrosis was present at 8 weeks but not in the recovery group suggesting some reversal of fibrosis and amelioration of inflammation. At 8 weeks, metabolites associated with glycolysis were increased, while lipid signatures were decreased. Genes involved in fatty acid oxidation were decreased at 8 weeks but not 12 weeks while genes associated with glycolysis were significantly increased at 8 weeks but not at 12 weeks. In this murine model of CKD, kidney fibrosis was associated with the accumulation of triglyceride and free lactate. There was an up-regulation of glycolytic enzymes and down-regulation of lipolytic enzymes. These metabolic changes reflect the energy demands associated with progressive kidney disease where there is a switch from fatty acid oxidation to that of glycolysis.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5257"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducing thermal noise in high-resolution quantitative magnetic resonance imaging rotating frame relaxation mapping of the human brain at 3 T. 降低 3 T 人脑高分辨率定量磁共振成像旋转帧弛豫映射中的热噪声。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-08-21 DOI: 10.1002/nbm.5228
Sara Ponticorvo, Antonietta Canna, Steen Moeller, Mehmet Akcakaya, Gregory J Metzger, Pavel Filip, Lynn E Eberly, Shalom Michaeli, Silvia Mangia

Quantitative maps of rotating frame relaxation (RFR) time constants are sensitive and useful magnetic resonance imaging tools with which to evaluate tissue integrity in vivo. However, to date, only moderate image resolutions of 1.6 x 1.6 x 3.6 mm3 have been used for whole-brain coverage RFR mapping in humans at 3 T. For more precise morphometrical examinations, higher spatial resolutions are desirable. Towards achieving the long-term goal of increasing the spatial resolution of RFR mapping without increasing scan times, we explore the use of the recently introduced Transform domain NOise Reduction with DIstribution Corrected principal component analysis (T-NORDIC) algorithm for thermal noise reduction. RFR acquisitions at 3 T were obtained from eight healthy participants (seven males and one female) aged 52 ± 20 years, including adiabatic T1ρ, T2ρ, and nonadiabatic Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank n = 4 (RAFF4) with both 1.6 x 1.6 x 3.6 mm3 and 1.25 x 1.25 x 2 mm3 image resolutions. We compared RFR values and their confidence intervals (CIs) obtained from fitting the denoised versus nondenoised images, at both voxel and regional levels separately for each resolution and RFR metric. The comparison of metrics obtained from denoised versus nondenoised images was performed with a two-sample paired t-test and statistical significance was set at p less than 0.05 after Bonferroni correction for multiple comparisons. The use of T-NORDIC on the RFR images prior to the fitting procedure decreases the uncertainty of parameter estimation (lower CIs) at both spatial resolutions. The effect was particularly prominent at high-spatial resolution for RAFF4. Moreover, T-NORDIC did not degrade map quality, and it had minimal impact on the RFR values. Denoising RFR images with T-NORDIC improves parameter estimation while preserving the image quality and accuracy of all RFR maps, ultimately enabling high-resolution RFR mapping in scan times that are suitable for clinical settings.

旋转框架弛豫(RFR)时间常数的定量图是评估体内组织完整性的灵敏而有用的磁共振成像工具。然而,迄今为止,只有 1.6 x 1.6 x 3.6 mm3 的中等图像分辨率被用于 3 T 下的人体全脑覆盖 RFR 地图绘制。要进行更精确的形态学检查,需要更高的空间分辨率。为了实现在不增加扫描时间的情况下提高 RFR 图谱空间分辨率的长期目标,我们探索使用最近推出的变换域降噪与分布校正主成分分析(T-NORDIC)算法来降低热噪声。我们对八名健康参与者(七男一女)进行了 3 T 的 RFR 采集,他们的年龄在 52 ± 20 岁之间,采集内容包括绝热 T1ρ、T2ρ 和非绝热沿虚构场松弛(RAFF),旋转框架的等级为 n = 4 (RAFF4),图像分辨率分别为 1.6 x 1.6 x 3.6 mm3 和 1.25 x 1.25 x 2 mm3。我们比较了去噪与非去噪图像拟合得到的 RFR 值及其置信区间 (CI),在体素和区域层面分别针对每种分辨率和 RFR 指标进行了比较。去噪图像与非去噪图像的指标比较采用双样本配对 t 检验,经 Bonferroni 多重比较校正后,统计显著性设定为 p 小于 0.05。在拟合程序之前对 RFR 图像使用 T-NORDIC 可降低两种空间分辨率下参数估计的不确定性(CI 值降低)。在 RAFF4 的高空间分辨率下,这种效果尤为突出。此外,T-NORDIC 不会降低地图质量,对 RFR 值的影响也很小。使用 T-NORDIC 对 RFR 图像进行去噪可改善参数估计,同时保持所有 RFR 地图的图像质量和准确性,最终使高分辨率 RFR 地图的扫描时间适合临床应用。
{"title":"Reducing thermal noise in high-resolution quantitative magnetic resonance imaging rotating frame relaxation mapping of the human brain at 3 T.","authors":"Sara Ponticorvo, Antonietta Canna, Steen Moeller, Mehmet Akcakaya, Gregory J Metzger, Pavel Filip, Lynn E Eberly, Shalom Michaeli, Silvia Mangia","doi":"10.1002/nbm.5228","DOIUrl":"10.1002/nbm.5228","url":null,"abstract":"<p><p>Quantitative maps of rotating frame relaxation (RFR) time constants are sensitive and useful magnetic resonance imaging tools with which to evaluate tissue integrity in vivo. However, to date, only moderate image resolutions of 1.6 x 1.6 x 3.6 mm<sup>3</sup> have been used for whole-brain coverage RFR mapping in humans at 3 T. For more precise morphometrical examinations, higher spatial resolutions are desirable. Towards achieving the long-term goal of increasing the spatial resolution of RFR mapping without increasing scan times, we explore the use of the recently introduced Transform domain NOise Reduction with DIstribution Corrected principal component analysis (T-NORDIC) algorithm for thermal noise reduction. RFR acquisitions at 3 T were obtained from eight healthy participants (seven males and one female) aged 52 ± 20 years, including adiabatic T1ρ, T2ρ, and nonadiabatic Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank n = 4 (RAFF4) with both 1.6 x 1.6 x 3.6 mm<sup>3</sup> and 1.25 x 1.25 x 2 mm<sup>3</sup> image resolutions. We compared RFR values and their confidence intervals (CIs) obtained from fitting the denoised versus nondenoised images, at both voxel and regional levels separately for each resolution and RFR metric. The comparison of metrics obtained from denoised versus nondenoised images was performed with a two-sample paired t-test and statistical significance was set at p less than 0.05 after Bonferroni correction for multiple comparisons. The use of T-NORDIC on the RFR images prior to the fitting procedure decreases the uncertainty of parameter estimation (lower CIs) at both spatial resolutions. The effect was particularly prominent at high-spatial resolution for RAFF4. Moreover, T-NORDIC did not degrade map quality, and it had minimal impact on the RFR values. Denoising RFR images with T-NORDIC improves parameter estimation while preserving the image quality and accuracy of all RFR maps, ultimately enabling high-resolution RFR mapping in scan times that are suitable for clinical settings.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5228"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650668/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Significant age-related differences between lower leg muscles of older and younger female subjects detected by ultrashort echo time magnetization transfer modeling. 通过超短回波时间磁化转移建模检测老年女性和年轻女性小腿肌肉之间与年龄有关的显著差异。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-08-18 DOI: 10.1002/nbm.5237
Saeed Jerban, Hamidreza Shaterian Mohammadi, Jiyo S Athertya, Amir Masoud Afsahi, Niloofar Shojaeiadib, Dina Moazamian, Samuel R Ward, Gina Woods, Christine B Chung, Jiang Du, Eric Y Chang

Magnetization transfer (MT) magnetic resonance imaging (MRI) can be used to estimate the fraction of water and macromolecular proton pools in tissues. MT modeling paired with ultrashort echo time acquisition (UTE-MT modeling) has been proposed to improve the evaluation of the myotendinous junction and fibrosis in muscle tissues, which the latter increases with aging. This study aimed to determine if the UTE-MT modeling technique is sensitive to age-related changes in the skeletal muscles of the lower leg. Institutional review board approval was obtained, and all recruited subjects provided written informed consent. The legs of 31 healthy younger (28.1 ± 6.1 years old, BMI = 22.3 ± 3.5) and 20 older (74.7 ± 5.5 years old, BMI = 26.7 ± 5.9) female subjects were imaged using UTE sequences on a 3 T MRI scanner. MT ratio (MTR), macromolecular fraction (MMF), macromolecular T2 (T2-MM), and water T2 (T2-W) were calculated using UTE-MT modeling for the anterior tibialis (ATM), posterior tibialis (PTM), soleus (SM), and combined lateral muscles. Results were compared between groups using the Wilcoxon rank sum test. Three independent observers selected regions of interest (ROIs) and processed UTE-MRI images separately, and the intraclass correlation coefficient (ICC) was calculated for a reproducibility study. Significantly lower mean MTR and MMF values were present in the older compared with the younger group in all studied lower leg muscles. T2-MM showed significantly lower values in the older group only for PTM and SM muscles. In contrast, T2-W showed significantly higher values in the older group. The age-related differences were more pronounced for MMF (-17 to -19%) and T2-W (+20 to 47%) measurements in all muscle groups compared with other investigated MR measures. ICCs were higher than 0.93, indicating excellent consistency between the ROI selection and MRI measurements of independent readers. As demonstrated by significant differences between younger and older groups, this research emphasizes the potential of UTE-MT MRI techniques in evaluating age-related skeletal muscle changes.

磁化传递(MT)磁共振成像(MRI)可用于估算组织中水和大分子质子池的比例。MT建模与超短回波时间采集(UTE-MT建模)相结合,可改善对肌腱连接处和肌肉组织纤维化的评估,后者会随着年龄的增长而增加。本研究旨在确定UTE-MT建模技术对小腿骨骼肌与年龄相关的变化是否敏感。研究获得了机构审查委员会的批准,所有受试者都提供了书面知情同意书。在 3 T 磁共振成像扫描仪上使用 UTE 序列对 31 名年轻(28.1 ± 6.1 岁,BMI = 22.3 ± 3.5)和 20 名年长(74.7 ± 5.5 岁,BMI = 26.7 ± 5.9)的健康女性受试者的腿部进行成像。使用UTE-MT建模计算了胫骨前肌(ATM)、胫骨后肌(PTM)、比目鱼肌(SM)和外侧联合肌的MT比值(MTR)、大分子分数(MMF)、大分子T2(T2-MM)和水T2(T2-W)。采用 Wilcoxon 秩和检验比较组间结果。三名独立观察者分别选择感兴趣区(ROI)和处理 UTE-MRI 图像,并计算类内相关系数(ICC)以进行重现性研究。在所有研究的小腿肌肉中,老年组的 MTR 和 MMF 平均值均显著低于年轻组。只有 PTM 和 SM 肌肉的 T2-MM 值在老年组明显较低。相反,老年组的 T2-W 值明显较高。在所有肌肉群中,MMF(-17% 至 -19%)和 T2-W 测量值(+20% 至 47%)与年龄相关的差异比其他磁共振测量值更为明显。ICC 均高于 0.93,表明独立读者的 ROI 选择和 MRI 测量结果之间具有极佳的一致性。年轻组和老年组之间的显著差异表明,这项研究强调了UTE-MT MRI 技术在评估与年龄相关的骨骼肌变化方面的潜力。
{"title":"Significant age-related differences between lower leg muscles of older and younger female subjects detected by ultrashort echo time magnetization transfer modeling.","authors":"Saeed Jerban, Hamidreza Shaterian Mohammadi, Jiyo S Athertya, Amir Masoud Afsahi, Niloofar Shojaeiadib, Dina Moazamian, Samuel R Ward, Gina Woods, Christine B Chung, Jiang Du, Eric Y Chang","doi":"10.1002/nbm.5237","DOIUrl":"10.1002/nbm.5237","url":null,"abstract":"<p><p>Magnetization transfer (MT) magnetic resonance imaging (MRI) can be used to estimate the fraction of water and macromolecular proton pools in tissues. MT modeling paired with ultrashort echo time acquisition (UTE-MT modeling) has been proposed to improve the evaluation of the myotendinous junction and fibrosis in muscle tissues, which the latter increases with aging. This study aimed to determine if the UTE-MT modeling technique is sensitive to age-related changes in the skeletal muscles of the lower leg. Institutional review board approval was obtained, and all recruited subjects provided written informed consent. The legs of 31 healthy younger (28.1 ± 6.1 years old, BMI = 22.3 ± 3.5) and 20 older (74.7 ± 5.5 years old, BMI = 26.7 ± 5.9) female subjects were imaged using UTE sequences on a 3 T MRI scanner. MT ratio (MTR), macromolecular fraction (MMF), macromolecular T2 (T2-MM), and water T2 (T2-W) were calculated using UTE-MT modeling for the anterior tibialis (ATM), posterior tibialis (PTM), soleus (SM), and combined lateral muscles. Results were compared between groups using the Wilcoxon rank sum test. Three independent observers selected regions of interest (ROIs) and processed UTE-MRI images separately, and the intraclass correlation coefficient (ICC) was calculated for a reproducibility study. Significantly lower mean MTR and MMF values were present in the older compared with the younger group in all studied lower leg muscles. T2-MM showed significantly lower values in the older group only for PTM and SM muscles. In contrast, T2-W showed significantly higher values in the older group. The age-related differences were more pronounced for MMF (-17 to -19%) and T2-W (+20 to 47%) measurements in all muscle groups compared with other investigated MR measures. ICCs were higher than 0.93, indicating excellent consistency between the ROI selection and MRI measurements of independent readers. As demonstrated by significant differences between younger and older groups, this research emphasizes the potential of UTE-MT MRI techniques in evaluating age-related skeletal muscle changes.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5237"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerated 2D radial Look-Locker T1 mapping using a deep learning-based rapid inversion recovery sampling technique. 利用基于深度学习的快速反演恢复采样技术加速二维径向 Look-Locker T1 绘图。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-10-02 DOI: 10.1002/nbm.5266
Eze Ahanonu, Ute Goerke, Kevin Johnson, Brian Toner, Diego R Martin, Vibhas Deshpande, Ali Bilgin, Maria Altbach

Efficient abdominal coverage with T1-mapping methods currently available in the clinic is limited by the breath hold period (BHP) and the time needed for T1 recovery. This work develops a T1-mapping framework for efficient abdominal coverage based on rapid T1 recovery curve (T1RC) sampling, slice-selective inversion, optimized slice interleaving, and a convolutional neural network (CNN)-based T1 estimation. The effect of reducing the T1RC sampling was evaluated by comparing T1 estimates from T1RC ranging from 0.63 to 2.0 s with reference T1 values obtained from T1RC = 2.5-5 s. Slice interleaving methodologies were evaluated by comparing the T1 variation in abdominal organs across slices. The repeatability of the proposed framework was demonstrated by performing acquisition on test subjects across imaging sessions. Analysis of in vivo data based on retrospectively shortening the T1RC showed that with the CNN framework, a T1RC = 0.84 s yielded T1 estimates without significant changes in mean T1 (p > 0.05) or significant increase in T1 variability (p > 0.48) compared to the reference. Prospectively acquired data using T1RC = 0.84 s, an optimized slice interleaving scheme, and the CNN framework enabled 21 slices in a 20 s BHP. Analyses across abdominal organs produced T1 values within 2% of the reference. Repeatability experiments yielded Pearson's correlation, repeatability coefficient, and coefficient of variation of 0.99, 2.5%, and 0.12%, respectively. The proposed T1 mapping framework provides full abdominal coverage within a single BHP.

目前临床上使用的 T1 映射方法的高效腹部覆盖范围受到屏气时间(BHP)和 T1 恢复所需时间的限制。这项研究基于快速 T1 恢复曲线(T1RC)采样、切片选择性反转、优化切片交错和基于卷积神经网络(CNN)的 T1 估计,开发了一种高效腹部覆盖的 T1 映像框架。通过比较从 0.63 秒到 2.0 秒的 T1RC 和从 T1RC = 2.5-5 秒获得的参考 T1 值,评估了减少 T1RC 采样的效果。通过对测试对象在不同成像时段进行采集,证明了建议框架的可重复性。基于回溯性缩短 T1RC 的活体数据分析显示,与参考值相比,使用 CNN 框架,T1RC = 0.84 秒产生的 T1 估计值不会使平均 T1 发生显著变化(p > 0.05),也不会使 T1 变异性显著增加(p > 0.48)。使用 T1RC = 0.84 秒的前瞻性采集数据、优化的切片交错方案和 CNN 框架可在 20 秒必发365电子游戏内获得 21 个切片。通过对腹部器官进行分析,得出的 T1 值与参考值相差不到 2%。重复性实验得出的皮尔逊相关性、重复性系数和变异系数分别为 0.99、2.5% 和 0.12%。建议的 T1 映射框架可在单个必发365电子游戏内实现全腹部覆盖。
{"title":"Accelerated 2D radial Look-Locker T1 mapping using a deep learning-based rapid inversion recovery sampling technique.","authors":"Eze Ahanonu, Ute Goerke, Kevin Johnson, Brian Toner, Diego R Martin, Vibhas Deshpande, Ali Bilgin, Maria Altbach","doi":"10.1002/nbm.5266","DOIUrl":"10.1002/nbm.5266","url":null,"abstract":"<p><p>Efficient abdominal coverage with T1-mapping methods currently available in the clinic is limited by the breath hold period (BHP) and the time needed for T1 recovery. This work develops a T1-mapping framework for efficient abdominal coverage based on rapid T1 recovery curve (T1RC) sampling, slice-selective inversion, optimized slice interleaving, and a convolutional neural network (CNN)-based T1 estimation. The effect of reducing the T1RC sampling was evaluated by comparing T1 estimates from T1RC ranging from 0.63 to 2.0 s with reference T1 values obtained from T1RC = 2.5-5 s. Slice interleaving methodologies were evaluated by comparing the T1 variation in abdominal organs across slices. The repeatability of the proposed framework was demonstrated by performing acquisition on test subjects across imaging sessions. Analysis of in vivo data based on retrospectively shortening the T1RC showed that with the CNN framework, a T1RC = 0.84 s yielded T1 estimates without significant changes in mean T1 (p > 0.05) or significant increase in T1 variability (p > 0.48) compared to the reference. Prospectively acquired data using T1RC = 0.84 s, an optimized slice interleaving scheme, and the CNN framework enabled 21 slices in a 20 s BHP. Analyses across abdominal organs produced T1 values within 2% of the reference. Repeatability experiments yielded Pearson's correlation, repeatability coefficient, and coefficient of variation of 0.99, 2.5%, and 0.12%, respectively. The proposed T1 mapping framework provides full abdominal coverage within a single BHP.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5266"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-shot multi-b-value (SSMb) diffusion-weighted MRI using spin echo and stimulated echoes with variable flip angles. 使用自旋回波和可变翻转角刺激回波的单次多 b 值(SSMb)扩散加权磁共振成像。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-09-22 DOI: 10.1002/nbm.5261
Guangyu Dan, Kaibao Sun, Qingfei Luo, Xiaohong Joe Zhou

Conventional diffusion-weighted imaging (DWI) sequences employing a spin echo or stimulated echo sensitize diffusion with a specific b-value at a fixed diffusion direction and diffusion time (Δ). To compute apparent diffusion coefficient (ADC) and other diffusion parameters, the sequence needs to be repeated multiple times by varying the b-value and/or gradient direction. In this study, we developed a single-shot multi-b-value (SSMb) diffusion MRI technique, which combines a spin echo and a train of stimulated echoes produced with variable flip angles. The method involves a pair of 90° radio frequency (RF) pulses that straddle a diffusion gradient lobe (GD), to rephase the magnetization in the transverse plane, producing a diffusion-weighted spin echo acquired by the first echo-planar imaging (EPI) readout train. The magnetization stored along the longitudinal axis is successively re-excited by a series of n variable-flip-angle pulses, each followed by a diffusion gradient lobe GD and a subsequent EPI readout train to sample n stimulated-echo signals. As such, (n + 1) diffusion-weighted images, each with a distinct b-value, are acquired in a single shot. The SSMb sequence was demonstrated on a diffusion phantom and healthy human brain to produce diffusion-weighted images, which were quantitative analyzed using a mono-exponential model. In the phantom experiment, SSMb provided similar ADC values to those from a commercial spin-echo EPI (SE-EPI) sequence (r = 0.999). In the human brain experiment, SSMb enabled a fourfold scan time reduction and yielded slightly lower ADC values (0.83 ± 0.26 μm2/ms) than SE-EPI (0.88 ± 0.29 μm2/ms) in all voxels excluding cerebrospinal fluid, likely due to the influence of varying diffusion times. The feasibility of using SSMb to acquire multiple images in a single shot for intravoxel incoherent motion (IVIM) analysis was also demonstrated. In conclusion, despite a relatively low signal-to-noise ratio, the proposed SSMb technique can substantially increase the data acquisition efficiency in DWI studies.

传统的扩散加权成像(DWI)序列采用自旋回波或刺激回波,在固定的扩散方向和扩散时间(Δ)下以特定的 b 值对扩散进行加敏。要计算表观扩散系数(ADC)和其他扩散参数,需要通过改变 b 值和/或梯度方向多次重复序列。在这项研究中,我们开发了一种单次多 b 值(SSMb)弥散 MRI 技术,它结合了自旋回波和以可变翻转角产生的刺激回波序列。该方法包括一对横跨扩散梯度叶(GD)的 90° 射频(RF)脉冲,对横向平面的磁化进行再分相,产生由第一组回声平面成像(EPI)读出获取的扩散加权自旋回波。一系列 n 个可变翻转角度脉冲相继重新激发沿纵轴存储的磁化,每个脉冲之后是扩散梯度叶 GD 和随后的 EPI 读出序列,以采样 n 个受激回波信号。这样,一次就能获得 (n + 1) 张扩散加权图像,每张图像都有不同的 b 值。在扩散模型和健康人脑上演示了 SSMb 序列,以生成扩散加权图像,并使用单指数模型对其进行定量分析。在模型实验中,SSMb 提供的 ADC 值与商用自旋回波 EPI(SE-EPI)序列提供的 ADC 值相似(r = 0.999)。在人脑实验中,SSMb 使扫描时间缩短了四倍,在除脑脊液外的所有体素中,SSMb 的 ADC 值(0.83 ± 0.26 μm2/ms)略低于 SE-EPI(0.88 ± 0.29 μm2/ms),这可能是由于不同扩散时间的影响。使用 SSMb 一次采集多幅图像进行体素内不连贯运动(IVIM)分析的可行性也得到了证实。总之,尽管信噪比相对较低,但所提出的 SSMb 技术可以大大提高 DWI 研究的数据采集效率。
{"title":"Single-shot multi-b-value (SSMb) diffusion-weighted MRI using spin echo and stimulated echoes with variable flip angles.","authors":"Guangyu Dan, Kaibao Sun, Qingfei Luo, Xiaohong Joe Zhou","doi":"10.1002/nbm.5261","DOIUrl":"10.1002/nbm.5261","url":null,"abstract":"<p><p>Conventional diffusion-weighted imaging (DWI) sequences employing a spin echo or stimulated echo sensitize diffusion with a specific b-value at a fixed diffusion direction and diffusion time (Δ). To compute apparent diffusion coefficient (ADC) and other diffusion parameters, the sequence needs to be repeated multiple times by varying the b-value and/or gradient direction. In this study, we developed a single-shot multi-b-value (SSMb) diffusion MRI technique, which combines a spin echo and a train of stimulated echoes produced with variable flip angles. The method involves a pair of 90° radio frequency (RF) pulses that straddle a diffusion gradient lobe (G<sub>D</sub>), to rephase the magnetization in the transverse plane, producing a diffusion-weighted spin echo acquired by the first echo-planar imaging (EPI) readout train. The magnetization stored along the longitudinal axis is successively re-excited by a series of n variable-flip-angle pulses, each followed by a diffusion gradient lobe G<sub>D</sub> and a subsequent EPI readout train to sample n stimulated-echo signals. As such, (n + 1) diffusion-weighted images, each with a distinct b-value, are acquired in a single shot. The SSMb sequence was demonstrated on a diffusion phantom and healthy human brain to produce diffusion-weighted images, which were quantitative analyzed using a mono-exponential model. In the phantom experiment, SSMb provided similar ADC values to those from a commercial spin-echo EPI (SE-EPI) sequence (r = 0.999). In the human brain experiment, SSMb enabled a fourfold scan time reduction and yielded slightly lower ADC values (0.83 ± 0.26 μm<sup>2</sup>/ms) than SE-EPI (0.88 ± 0.29 μm<sup>2</sup>/ms) in all voxels excluding cerebrospinal fluid, likely due to the influence of varying diffusion times. The feasibility of using SSMb to acquire multiple images in a single shot for intravoxel incoherent motion (IVIM) analysis was also demonstrated. In conclusion, despite a relatively low signal-to-noise ratio, the proposed SSMb technique can substantially increase the data acquisition efficiency in DWI studies.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5261"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142292261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elliptical Halbach magnet and gradient modules for low-field portable magnetic resonance imaging. 用于低场便携式磁共振成像的椭圆形哈尔巴赫磁体和梯度模块。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-12-01 Epub Date: 2024-09-30 DOI: 10.1002/nbm.5258
Fernando Galve, Eduardo Pallás, Teresa Guallart-Naval, Pablo García-Cristóbal, Pablo Martínez, José M Algarín, Jose Borreguero, Rubén Bosch, Francisco Juan-Lloris, José M Benlloch, Joseba Alonso

This study aims to develop methods to design the complete magnetic system for a truly portable MRI scanner for neurological and musculoskeletal (MSK) applications, optimized for field homogeneity, field of view (FoV), and gradient performance compared to existing low-weight configurations. We explore optimal elliptic-bore Halbach configurations based on discrete arrays of permanent magnets. In this way, we seek to improve the field homogeneity and remove constraints to the extent of the gradient coils typical of Halbach magnets. Specifically, we have optimized a tightly packed distribution of magnetic Nd2Fe14B cubes with differential evolution algorithms and a second array of shimming magnets with interior point and differential evolution methods. We have also designed and constructed an elliptical set of gradient coils that extend over the whole magnet length, maximizing the distance between the lobe centers. These are optimized with a target field method minimizing a cost function that considers also heat dissipation. We have employed the new toolbox to build the main magnet and gradient modules for a portable MRI scanner designed for point-of-care and residential use. The elliptical Halbach bore has semi-axes of 10 and 14& cm, and the magnet generates a field of 87& mT homogeneous down to 5700& ppm (parts per million) in a 20-cm diameter FoV; it weighs 216& kg and has a width of 65& cm and a height of 72& cm. Gradient efficiencies go up to around 0.8& mT/m/A, for a maximum of 12& mT/m within 0.5& ms with 15& A and 15& V amplifier. The distance between lobes is 28& cm, significantly increased with respect to other Halbach-based scanners. Heat dissipation is around 25& W at maximum power, and gradient deviations from linearity are below 20% in a 20-cm sphere. Elliptic-bore Halbach magnets enhance the ergonomicity and field distribution of low-cost portable MRI scanners, while allowing for full-length gradient support to increase the FoV. This geometry can be potentially adapted for a prospective low-cost whole-body technology.

本研究旨在开发用于神经和肌肉骨骼(MSK)应用的真正便携式磁共振成像扫描仪的全套磁系统设计方法,与现有的低重量配置相比,优化了磁场均匀性、视场(FoV)和梯度性能。我们探索了基于离散永磁阵列的最佳椭圆孔哈尔巴赫配置。这样,我们就能改善磁场均匀性,并消除对哈尔巴赫磁体典型梯度线圈范围的限制。具体来说,我们利用差分进化算法优化了紧密排列的磁性 Nd2Fe14B 立方体分布,并利用内点和差分进化方法优化了第二个垫片磁体阵列。我们还设计并建造了一组椭圆形梯度线圈,它们延伸至整个磁体长度,最大限度地增加了磁叶中心之间的距离。我们采用目标场方法对这些线圈进行了优化,使成本函数最小化,同时还考虑了散热问题。我们利用新工具箱为一台便携式核磁共振扫描仪构建了主磁体和梯度模块,该扫描仪设计用于医疗点和住宅。椭圆形哈尔巴赫孔的半轴分别为 10 厘米和 14 厘米,磁体在 20 厘米直径的 FoV 内产生 87& mT 的均匀磁场,最低可达 5700&ppm(百万分之一);它重 216&公斤,宽 65&厘米,高 72&厘米。梯度效率高达 0.8 mT/m/A,在 15A 和 15V 放大器的作用下,0.5 毫秒内的最大值为 12mT/m。叶片之间的距离为 28&厘米,与其他基于哈尔巴赫的扫描仪相比明显增加。最大功率时的散热量约为 25& W,在 20 厘米的球面上,梯度线性偏差低于 20%。椭圆孔哈尔巴赫磁体提高了低成本便携式磁共振成像扫描仪的人体工程学性能和磁场分布,同时允许全长梯度支持以增加视场角。这种几何形状可用于未来的低成本全身技术。
{"title":"Elliptical Halbach magnet and gradient modules for low-field portable magnetic resonance imaging.","authors":"Fernando Galve, Eduardo Pallás, Teresa Guallart-Naval, Pablo García-Cristóbal, Pablo Martínez, José M Algarín, Jose Borreguero, Rubén Bosch, Francisco Juan-Lloris, José M Benlloch, Joseba Alonso","doi":"10.1002/nbm.5258","DOIUrl":"10.1002/nbm.5258","url":null,"abstract":"<p><p>This study aims to develop methods to design the complete magnetic system for a truly portable MRI scanner for neurological and musculoskeletal (MSK) applications, optimized for field homogeneity, field of view (FoV), and gradient performance compared to existing low-weight configurations. We explore optimal elliptic-bore Halbach configurations based on discrete arrays of permanent magnets. In this way, we seek to improve the field homogeneity and remove constraints to the extent of the gradient coils typical of Halbach magnets. Specifically, we have optimized a tightly packed distribution of magnetic Nd<sub>2</sub>Fe<sub>14</sub>B cubes with differential evolution algorithms and a second array of shimming magnets with interior point and differential evolution methods. We have also designed and constructed an elliptical set of gradient coils that extend over the whole magnet length, maximizing the distance between the lobe centers. These are optimized with a target field method minimizing a cost function that considers also heat dissipation. We have employed the new toolbox to build the main magnet and gradient modules for a portable MRI scanner designed for point-of-care and residential use. The elliptical Halbach bore has semi-axes of 10 and 14& cm, and the magnet generates a field of 87& mT homogeneous down to 5700& ppm (parts per million) in a 20-cm diameter FoV; it weighs 216& kg and has a width of 65& cm and a height of 72& cm. Gradient efficiencies go up to around 0.8& mT/m/A, for a maximum of 12& mT/m within 0.5& ms with 15& A and 15& V amplifier. The distance between lobes is 28& cm, significantly increased with respect to other Halbach-based scanners. Heat dissipation is around 25& W at maximum power, and gradient deviations from linearity are below 20% in a 20-cm sphere. Elliptic-bore Halbach magnets enhance the ergonomicity and field distribution of low-cost portable MRI scanners, while allowing for full-length gradient support to increase the FoV. This geometry can be potentially adapted for a prospective low-cost whole-body technology.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5258"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
NMR in Biomedicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1