The identification of antibody-specific epitopes on virus proteins is crucial for vaccine development and drug design. Nonetheless, traditional wet-lab approaches for the identification of epitopes are both costly and labor-intensive, underscoring the need for the development of efficient and cost-effective computational tools. Here, EpiScan, an attention-based deep learning framework for predicting antibody-specific epitopes, is presented. EpiScan adopts a multi-input and single-output strategy by designing independent blocks for different parts of antibodies, including variable heavy chain (VH), variable light chain (VL), complementary determining regions (CDRs), and framework regions (FRs). The block predictions are weighted and integrated for the prediction of potential epitopes. Using multiple experimental data samples, we show that EpiScan, which only uses antibody sequence information, can accurately map epitopes on specific antigen structures. The antibody-specific epitopes on the receptor binding domain (RBD) of SARS coronavirus 2 (SARS-CoV-2) were located by EpiScan, and the potentially valuable vaccine epitope was identified. EpiScan can expedite the epitope mapping process for high-throughput antibody sequencing data, supporting vaccine design and drug development. Availability: For the convenience of related wet-experimental researchers, the source code and web server of EpiScan are publicly available at https://github.com/gzBiomedical/EpiScan.
{"title":"EpiScan: accurate high-throughput mapping of antibody-specific epitopes using sequence information","authors":"Chuan Wang, Jiangyuan Wang, Wenjun Song, Guanzheng Luo, Taijiao Jiang","doi":"10.1038/s41540-024-00432-7","DOIUrl":"https://doi.org/10.1038/s41540-024-00432-7","url":null,"abstract":"<p>The identification of antibody-specific epitopes on virus proteins is crucial for vaccine development and drug design. Nonetheless, traditional wet-lab approaches for the identification of epitopes are both costly and labor-intensive, underscoring the need for the development of efficient and cost-effective computational tools. Here, EpiScan, an attention-based deep learning framework for predicting antibody-specific epitopes, is presented. EpiScan adopts a multi-input and single-output strategy by designing independent blocks for different parts of antibodies, including variable heavy chain (V<sub>H</sub>), variable light chain (V<sub>L</sub>), complementary determining regions (CDRs), and framework regions (FRs). The block predictions are weighted and integrated for the prediction of potential epitopes. Using multiple experimental data samples, we show that EpiScan, which only uses antibody sequence information, can accurately map epitopes on specific antigen structures. The antibody-specific epitopes on the receptor binding domain (RBD) of SARS coronavirus 2 (SARS-CoV-2) were located by EpiScan, and the potentially valuable vaccine epitope was identified. EpiScan can expedite the epitope mapping process for high-throughput antibody sequencing data, supporting vaccine design and drug development. Availability: For the convenience of related wet-experimental researchers, the source code and web server of EpiScan are publicly available at https://github.com/gzBiomedical/EpiScan.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"249 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1038/s41540-024-00431-8
Shaked Bergman, Tamir Tuller
CRISPR is a precise and effective genome editing technology; but despite several advancements during the last decade, our ability to computationally design gRNAs remains limited. Most predictive models have relatively low predictive power and utilize only the sequence of the target site as input. Here we suggest a new category of features, which incorporate the target site genomic position and the presence of genes close to it. We calculate four features based on gene expression and codon usage bias indices. We show, on CRISPR datasets taken from 3 different cell types, that such features perform comparably with 425 state-of-the-art predictive features, ranking in the top 2-12% of features. We trained new predictive models, showing that adding expression features to them significantly improves their r2 by up to 0.04 (relative increase of 39%), achieving average correlations of up to 0.38 on their validation sets; and that these features are deemed important by different feature importance metrics. We believe that incorporating the target site's position, in addition to its sequence, in features such as we have generated here will improve our ability to predict, design and understand CRISPR experiments going forward.
{"title":"Codon usage and expression-based features significantly improve prediction of CRISPR efficiency.","authors":"Shaked Bergman, Tamir Tuller","doi":"10.1038/s41540-024-00431-8","DOIUrl":"10.1038/s41540-024-00431-8","url":null,"abstract":"<p><p>CRISPR is a precise and effective genome editing technology; but despite several advancements during the last decade, our ability to computationally design gRNAs remains limited. Most predictive models have relatively low predictive power and utilize only the sequence of the target site as input. Here we suggest a new category of features, which incorporate the target site genomic position and the presence of genes close to it. We calculate four features based on gene expression and codon usage bias indices. We show, on CRISPR datasets taken from 3 different cell types, that such features perform comparably with 425 state-of-the-art predictive features, ranking in the top 2-12% of features. We trained new predictive models, showing that adding expression features to them significantly improves their r<sup>2</sup> by up to 0.04 (relative increase of 39%), achieving average correlations of up to 0.38 on their validation sets; and that these features are deemed important by different feature importance metrics. We believe that incorporating the target site's position, in addition to its sequence, in features such as we have generated here will improve our ability to predict, design and understand CRISPR experiments going forward.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"10 1","pages":"100"},"PeriodicalIF":3.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1038/s41540-024-00422-9
Alexis Hernández-Magaña, Antonio Bensussen, Juan Carlos Martínez-García, Elena R Álvarez-Buylla
In several carcinomas, including hepatocellular carcinoma, it has been demonstrated that cancer stem cells (CSCs) have enhanced invasiveness and therapy resistance compared to differentiated cancer cells. Mathematical-computational tools could be valuable for integrating experimental results and understanding the phenotypic plasticity mechanisms for CSCs emergence. Based on the literature review, we constructed a Boolean model that recovers eight stable states (attractors) corresponding to the gene expression profile of hepatocytes and mesenchymal cells in senescent, quiescent, proliferative, and stem-like states. The epigenetic landscape associated with the regulatory network was analyzed. We observed that the loss of p53, p16, RB, or the constitutive activation of β-catenin and YAP1 increases the robustness of the proliferative stem-like phenotypes. Additionally, we found that p53 inactivation facilitates the transition of proliferative hepatocytes into stem-like mesenchymal phenotype. Thus, phenotypic plasticity may be altered, and stem-like phenotypes related to CSCs may be easier to attain following the mutation acquisition.
{"title":"A Boolean model explains phenotypic plasticity changes underlying hepatic cancer stem cells emergence.","authors":"Alexis Hernández-Magaña, Antonio Bensussen, Juan Carlos Martínez-García, Elena R Álvarez-Buylla","doi":"10.1038/s41540-024-00422-9","DOIUrl":"10.1038/s41540-024-00422-9","url":null,"abstract":"<p><p>In several carcinomas, including hepatocellular carcinoma, it has been demonstrated that cancer stem cells (CSCs) have enhanced invasiveness and therapy resistance compared to differentiated cancer cells. Mathematical-computational tools could be valuable for integrating experimental results and understanding the phenotypic plasticity mechanisms for CSCs emergence. Based on the literature review, we constructed a Boolean model that recovers eight stable states (attractors) corresponding to the gene expression profile of hepatocytes and mesenchymal cells in senescent, quiescent, proliferative, and stem-like states. The epigenetic landscape associated with the regulatory network was analyzed. We observed that the loss of p53, p16, RB, or the constitutive activation of β-catenin and YAP1 increases the robustness of the proliferative stem-like phenotypes. Additionally, we found that p53 inactivation facilitates the transition of proliferative hepatocytes into stem-like mesenchymal phenotype. Thus, phenotypic plasticity may be altered, and stem-like phenotypes related to CSCs may be easier to attain following the mutation acquisition.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"10 1","pages":"99"},"PeriodicalIF":3.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369243/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1038/s41540-024-00423-8
Tomáš Gedeon
In this review paper we summarize a recent progress on the problem of describing range of dynamics supported by a network. We show that there is natural connection between network models consisting of collections of multivalued monotone boolean functions and ordinary differential equations models. We show how to construct such collections and use them to answer questions about prevalence of cellular phenotypes that correspond to equilibria of network models.
{"title":"Network topology and interaction logic determine states it supports.","authors":"Tomáš Gedeon","doi":"10.1038/s41540-024-00423-8","DOIUrl":"https://doi.org/10.1038/s41540-024-00423-8","url":null,"abstract":"<p><p>In this review paper we summarize a recent progress on the problem of describing range of dynamics supported by a network. We show that there is natural connection between network models consisting of collections of multivalued monotone boolean functions and ordinary differential equations models. We show how to construct such collections and use them to answer questions about prevalence of cellular phenotypes that correspond to equilibria of network models.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"10 1","pages":"98"},"PeriodicalIF":3.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358538/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1038/s41540-024-00424-7
Shu Wang, Muhammad Ali Al-Radhawi, Douglas A Lauffenburger, Eduardo D Sontag
Single-cell omics technologies can measure millions of cells for up to thousands of biomolecular features, enabling data-driven studies of complex biological networks. However, these high-throughput experimental techniques often cannot track individual cells over time, thus complicating the understanding of dynamics such as time trajectories of cell states. These "dynamical phenotypes" are key to understanding biological phenomena such as differentiation fates. We show by mathematical analysis that, in spite of high dimensionality and lack of individual cell traces, three time-points of single-cell omics data are theoretically necessary and sufficient to uniquely determine the network interaction matrix and associated dynamics. Moreover, we show through numerical simulations that an interaction matrix can be accurately determined with three or more time-points even in the presence of sampling and measurement noise typical of single-cell omics. Our results can guide the design of single-cell omics time-course experiments, and provide a tool for data-driven phase-space analysis.
{"title":"Recovering biomolecular network dynamics from single-cell omics data requires three time points.","authors":"Shu Wang, Muhammad Ali Al-Radhawi, Douglas A Lauffenburger, Eduardo D Sontag","doi":"10.1038/s41540-024-00424-7","DOIUrl":"10.1038/s41540-024-00424-7","url":null,"abstract":"<p><p>Single-cell omics technologies can measure millions of cells for up to thousands of biomolecular features, enabling data-driven studies of complex biological networks. However, these high-throughput experimental techniques often cannot track individual cells over time, thus complicating the understanding of dynamics such as time trajectories of cell states. These \"dynamical phenotypes\" are key to understanding biological phenomena such as differentiation fates. We show by mathematical analysis that, in spite of high dimensionality and lack of individual cell traces, three time-points of single-cell omics data are theoretically necessary and sufficient to uniquely determine the network interaction matrix and associated dynamics. Moreover, we show through numerical simulations that an interaction matrix can be accurately determined with three or more time-points even in the presence of sampling and measurement noise typical of single-cell omics. Our results can guide the design of single-cell omics time-course experiments, and provide a tool for data-driven phase-space analysis.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"10 1","pages":"97"},"PeriodicalIF":3.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-24DOI: 10.1038/s41540-024-00418-5
Kate E Meeson, Jean-Marc Schwartz
Ovarian cancer is an aggressive, heterogeneous disease, burdened with late diagnosis and resistance to chemotherapy. Clinical features of ovarian cancer could be explained by investigating its metabolism, and how the regulation of specific pathways links to individual phenotypes. Ovarian cancer is of particular interest for metabolic research due to its heterogeneous nature, with five distinct subtypes having been identified, each of which may display a unique metabolic signature. To elucidate metabolic differences, constraint-based modelling (CBM) represents a powerful technology, inviting the integration of 'omics' data, such as transcriptomics. However, many CBM methods have not prioritised accurate growth rate predictions, and there are very few ovarian cancer genome-scale studies. Here, a novel method for CBM has been developed, employing the genome-scale model Human1 and flux balance analysis, enabling the integration of in vitro growth rates, transcriptomics data and media conditions to predict the metabolic behaviour of cells. Using low- and high-grade ovarian cancer, subtype-specific metabolic differences have been predicted, which have been supported by publicly available CRISPR-Cas9 data from the Cancer Cell Line Encyclopaedia and an extensive literature review. Metabolic drivers of aggressive, invasive phenotypes, as well as pathways responsible for increased chemoresistance in low-grade cell lines have been suggested. Experimental gene dependency data has been used to validate areas of the pentose phosphate pathway as essential for low-grade cellular growth, highlighting potential vulnerabilities for this ovarian cancer subtype.
{"title":"Constraint-based modelling predicts metabolic signatures of low and high-grade serous ovarian cancer.","authors":"Kate E Meeson, Jean-Marc Schwartz","doi":"10.1038/s41540-024-00418-5","DOIUrl":"10.1038/s41540-024-00418-5","url":null,"abstract":"<p><p>Ovarian cancer is an aggressive, heterogeneous disease, burdened with late diagnosis and resistance to chemotherapy. Clinical features of ovarian cancer could be explained by investigating its metabolism, and how the regulation of specific pathways links to individual phenotypes. Ovarian cancer is of particular interest for metabolic research due to its heterogeneous nature, with five distinct subtypes having been identified, each of which may display a unique metabolic signature. To elucidate metabolic differences, constraint-based modelling (CBM) represents a powerful technology, inviting the integration of 'omics' data, such as transcriptomics. However, many CBM methods have not prioritised accurate growth rate predictions, and there are very few ovarian cancer genome-scale studies. Here, a novel method for CBM has been developed, employing the genome-scale model Human1 and flux balance analysis, enabling the integration of in vitro growth rates, transcriptomics data and media conditions to predict the metabolic behaviour of cells. Using low- and high-grade ovarian cancer, subtype-specific metabolic differences have been predicted, which have been supported by publicly available CRISPR-Cas9 data from the Cancer Cell Line Encyclopaedia and an extensive literature review. Metabolic drivers of aggressive, invasive phenotypes, as well as pathways responsible for increased chemoresistance in low-grade cell lines have been suggested. Experimental gene dependency data has been used to validate areas of the pentose phosphate pathway as essential for low-grade cellular growth, highlighting potential vulnerabilities for this ovarian cancer subtype.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"10 1","pages":"96"},"PeriodicalIF":3.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344801/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1038/s41540-024-00417-6
Veronica Venafra, Francesca Sacco, Livia Perfetto
Unraveling how cellular signaling is remodeled upon perturbation is crucial for understanding disease mechanisms and identifying potential drug targets. In this pursuit, computational tools generating mechanistic hypotheses from multi-omics data have invaluable potential. Here, we present a newly implemented version (2.0) of SignalingProfiler, a multi-step pipeline to draw mechanistic hypotheses on the signaling events impacting cellular phenotypes. SignalingProfiler 2.0 derives context-specific signaling networks by integrating proteogenomic data with the prior knowledge-causal network. This is a freely accessible and flexible tool that incorporates statistical, footprint-based, and graph algorithms to accelerate the integration and interpretation of multi-omics data. Through a benchmarking process on three proof-of-concept studies, we demonstrate the tool's ability to generate hierarchical mechanistic networks recapitulating novel and known perturbed signaling and phenotypic outcomes, in both human and mice contexts. In summary, SignalingProfiler 2.0 addresses the emergent need to derive biologically relevant information from complex multi-omics data by extracting interpretable networks.
{"title":"SignalingProfiler 2.0 a network-based approach to bridge multi-omics data to phenotypic hallmarks.","authors":"Veronica Venafra, Francesca Sacco, Livia Perfetto","doi":"10.1038/s41540-024-00417-6","DOIUrl":"10.1038/s41540-024-00417-6","url":null,"abstract":"<p><p>Unraveling how cellular signaling is remodeled upon perturbation is crucial for understanding disease mechanisms and identifying potential drug targets. In this pursuit, computational tools generating mechanistic hypotheses from multi-omics data have invaluable potential. Here, we present a newly implemented version (2.0) of SignalingProfiler, a multi-step pipeline to draw mechanistic hypotheses on the signaling events impacting cellular phenotypes. SignalingProfiler 2.0 derives context-specific signaling networks by integrating proteogenomic data with the prior knowledge-causal network. This is a freely accessible and flexible tool that incorporates statistical, footprint-based, and graph algorithms to accelerate the integration and interpretation of multi-omics data. Through a benchmarking process on three proof-of-concept studies, we demonstrate the tool's ability to generate hierarchical mechanistic networks recapitulating novel and known perturbed signaling and phenotypic outcomes, in both human and mice contexts. In summary, SignalingProfiler 2.0 addresses the emergent need to derive biologically relevant information from complex multi-omics data by extracting interpretable networks.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"10 1","pages":"95"},"PeriodicalIF":3.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1038/s41540-024-00420-x
Tadao Ooka, Naoto Usuyama, Ryohei Shibata, Michihito Kyo, Jonathan M Mansbach, Zhaozhong Zhu, Carlos A Camargo, Kohei Hasegawa
Bronchiolitis is the leading cause of infant hospitalization. However, the molecular networks driving bronchiolitis pathobiology remain unknown. Integrative molecular networks, including the transcriptome and metabolome, can identify functional and regulatory pathways contributing to disease severity. Here, we integrated nasopharyngeal transcriptome and metabolome data of 397 infants hospitalized with bronchiolitis in a 17-center prospective cohort study. Using an explainable deep network model, we identified an omics-cluster comprising 401 transcripts and 38 metabolites that distinguishes bronchiolitis severity (test-set AUC, 0.828). This omics-cluster derived a molecular network, where innate immunity-related metabolites (e.g., ceramides) centralized and were characterized by toll-like receptor (TLR) and NF-κB signaling pathways (both FDR < 0.001). The network analyses identified eight modules and 50 existing drug candidates for repurposing, including prostaglandin I2 analogs (e.g., iloprost), which promote anti-inflammatory effects through TLR signaling. Our approach facilitates not only the identification of molecular networks underlying infant bronchiolitis but the development of pioneering treatment strategies.
{"title":"Integrated-omics analysis with explainable deep networks on pathobiology of infant bronchiolitis.","authors":"Tadao Ooka, Naoto Usuyama, Ryohei Shibata, Michihito Kyo, Jonathan M Mansbach, Zhaozhong Zhu, Carlos A Camargo, Kohei Hasegawa","doi":"10.1038/s41540-024-00420-x","DOIUrl":"10.1038/s41540-024-00420-x","url":null,"abstract":"<p><p>Bronchiolitis is the leading cause of infant hospitalization. However, the molecular networks driving bronchiolitis pathobiology remain unknown. Integrative molecular networks, including the transcriptome and metabolome, can identify functional and regulatory pathways contributing to disease severity. Here, we integrated nasopharyngeal transcriptome and metabolome data of 397 infants hospitalized with bronchiolitis in a 17-center prospective cohort study. Using an explainable deep network model, we identified an omics-cluster comprising 401 transcripts and 38 metabolites that distinguishes bronchiolitis severity (test-set AUC, 0.828). This omics-cluster derived a molecular network, where innate immunity-related metabolites (e.g., ceramides) centralized and were characterized by toll-like receptor (TLR) and NF-κB signaling pathways (both FDR < 0.001). The network analyses identified eight modules and 50 existing drug candidates for repurposing, including prostaglandin I<sub>2</sub> analogs (e.g., iloprost), which promote anti-inflammatory effects through TLR signaling. Our approach facilitates not only the identification of molecular networks underlying infant bronchiolitis but the development of pioneering treatment strategies.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"10 1","pages":"93"},"PeriodicalIF":3.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341550/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1038/s41540-024-00412-x
Yue Han, Mark P Styczynski
Ordinary differential equation (ODE) models are powerful tools for studying the dynamics of metabolic pathways. However, key challenges lie in constructing ODE models for metabolic pathways, specifically in our limited knowledge about which metabolite levels control which reaction rates. Identification of these regulatory networks is further complicated by the limited availability of relevant data. Here, we assess the conditions under which it is feasible to accurately identify regulatory networks in metabolic pathways by computationally fitting candidate network models with biochemical systems theory (BST) kinetics to data of varying quality. We use network motifs commonly found in metabolic pathways as a simplified testbed. Key features correlated with the level of difficulty in identifying the correct regulatory network were identified, highlighting the impact of sampling rate, data noise, and data incompleteness on structural uncertainty. We found that for a simple branched network motif with an equal number of metabolites and fluxes, identification of the correct regulatory network can be largely achieved and is robust to missing one of the metabolite profiles. However, with a bi-substrate bi-product reaction or more fluxes than metabolites in the network motif, the identification becomes more challenging. Stronger regulatory interactions and higher metabolite concentrations were found to be correlated with less structural uncertainty. These results could aid efforts to predict whether the true metabolic regulatory network can be computationally identified for a given stoichiometric network topology and dataset quality, thus helping to identify optimal measures to mitigate such identifiability issues in kinetic model development.
{"title":"Assessing structural uncertainty of biochemical regulatory networks in metabolic pathways under varying data quality.","authors":"Yue Han, Mark P Styczynski","doi":"10.1038/s41540-024-00412-x","DOIUrl":"10.1038/s41540-024-00412-x","url":null,"abstract":"<p><p>Ordinary differential equation (ODE) models are powerful tools for studying the dynamics of metabolic pathways. However, key challenges lie in constructing ODE models for metabolic pathways, specifically in our limited knowledge about which metabolite levels control which reaction rates. Identification of these regulatory networks is further complicated by the limited availability of relevant data. Here, we assess the conditions under which it is feasible to accurately identify regulatory networks in metabolic pathways by computationally fitting candidate network models with biochemical systems theory (BST) kinetics to data of varying quality. We use network motifs commonly found in metabolic pathways as a simplified testbed. Key features correlated with the level of difficulty in identifying the correct regulatory network were identified, highlighting the impact of sampling rate, data noise, and data incompleteness on structural uncertainty. We found that for a simple branched network motif with an equal number of metabolites and fluxes, identification of the correct regulatory network can be largely achieved and is robust to missing one of the metabolite profiles. However, with a bi-substrate bi-product reaction or more fluxes than metabolites in the network motif, the identification becomes more challenging. Stronger regulatory interactions and higher metabolite concentrations were found to be correlated with less structural uncertainty. These results could aid efforts to predict whether the true metabolic regulatory network can be computationally identified for a given stoichiometric network topology and dataset quality, thus helping to identify optimal measures to mitigate such identifiability issues in kinetic model development.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"10 1","pages":"94"},"PeriodicalIF":3.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341918/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1038/s41540-024-00421-w
Heming Zhang, Yixin Chen, Philip Payne, Fuhai Li
Complex signaling pathways are believed to be responsible for drug resistance. Drug combinations perturbing multiple signaling targets have the potential to reduce drug resistance. The large-scale multi-omic datasets and experimental drug combination synergistic score data are valuable resources to study mechanisms of synergy (MoS) to guide the development of precision drug combinations. However, signaling patterns of MoS are complex and remain unclear, and thus it is challenging to identify synergistic drug combinations in clinical. Herein, we proposed a novel integrative and interpretable graph AI model, DeepSignalingFlow, to uncover the MoS by integrating and mining multi-omic data. The major innovation is that we uncover MoS by modeling the signaling flow from multi-omic features of essential disease proteins to the drug targets, which has not been introduced by the existing models. The model performance was assessed utilizing four distinct drug combination synergy evaluation datasets, i.e., NCI ALMANAC, O'Neil, DrugComb, and DrugCombDB. The comparison results showed that the proposed model outperformed existing graph AI models in terms of synergy score prediction, and can interpret MoS using the core signaling flows. The code is publicly accessible via Github: https://github.com/FuhaiLiAiLab/DeepSignalingFlow.
{"title":"Using DeepSignalingFlow to mine signaling flows interpreting mechanism of synergy of cocktails.","authors":"Heming Zhang, Yixin Chen, Philip Payne, Fuhai Li","doi":"10.1038/s41540-024-00421-w","DOIUrl":"10.1038/s41540-024-00421-w","url":null,"abstract":"<p><p>Complex signaling pathways are believed to be responsible for drug resistance. Drug combinations perturbing multiple signaling targets have the potential to reduce drug resistance. The large-scale multi-omic datasets and experimental drug combination synergistic score data are valuable resources to study mechanisms of synergy (MoS) to guide the development of precision drug combinations. However, signaling patterns of MoS are complex and remain unclear, and thus it is challenging to identify synergistic drug combinations in clinical. Herein, we proposed a novel integrative and interpretable graph AI model, DeepSignalingFlow, to uncover the MoS by integrating and mining multi-omic data. The major innovation is that we uncover MoS by modeling the signaling flow from multi-omic features of essential disease proteins to the drug targets, which has not been introduced by the existing models. The model performance was assessed utilizing four distinct drug combination synergy evaluation datasets, i.e., NCI ALMANAC, O'Neil, DrugComb, and DrugCombDB. The comparison results showed that the proposed model outperformed existing graph AI models in terms of synergy score prediction, and can interpret MoS using the core signaling flows. The code is publicly accessible via Github: https://github.com/FuhaiLiAiLab/DeepSignalingFlow.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"10 1","pages":"92"},"PeriodicalIF":3.5,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}