Peter Omara, Lawrence Aula, F. Otim, A. Obia, Joao Luis Bigatao Souza, D. B. Arnall
Biochar is suggested to improve soil properties. However, its combination with inorganic nitrogen (N) fertilizer in temperate soils is not well understood. This study compared the effect of fertilizer N-biochar-combinations (NBC) and fertilizer-N (FN) on total soil N (TSN), soil organic carbon (SOC), soil nitrate (NO3−–N), and ammonium (NH4+–N). Soil samples were taken from experiments at Efaw and Lake Carl Blackwell (LCB), Oklahoma, USA with ten treatments consisting of three N rates (50, 100, and 150 kg N ha−1) and three biochar rates (5, 10, and 15 t ha−1). Results at Efaw showed greater TSN and SOC under NBC compared to FN by 3 and 21%, respectively. No percentage difference was observed for NH4+–N while NO3−–N was lower by 7%. At LCB, TSN, SOC, NO3−–N, and NH4+–N were higher under NBC by 5, 18, 24, and 10%, respectively, compared to FN. Whereas application of biochar improved SOC at both sites, NO3−–N and NH4+–N were only significant at LCB site with a sandy loam soil but not at Efaw with silty clay loam. Therefore, biochar applied in combination with inorganic N can improve N availability with potential to increase crop N uptake on coarse textured soils.
建议使用生物炭来改善土壤性质。然而,其与无机氮肥在温带土壤中的配合作用尚不清楚。本研究比较了肥炭配施(NBC)和肥氮配施(FN)对土壤全氮(TSN)、土壤有机碳(SOC)、土壤硝态氮(NO3−-N)和铵态氮(NH4+ -N)的影响。土壤样品采自美国俄克拉何马州Efaw和Carl Blackwell湖(LCB)的试验,采用10种处理,包括3种氮肥(50、100和150 kg N ha - 1)和3种生物炭(5、10和15 t ha - 1)。Efaw的结果显示,与FN相比,NBC下的TSN和SOC分别增加了3%和21%。NH4+ -N无百分比差异,NO3−-N降低7%。在LCB, NBC处理下TSN、SOC、NO3−-N和NH4+ -N分别比FN高5%、18%、24%和10%。施用生物炭改善了两个站点的有机碳,但NO3−-N和NH4+ -N仅在LCB站点(含砂壤土)显著,而在Efaw站点(含粉质粘土壤土)不显著。因此,生物炭与无机氮配合施用可以提高氮素有效性,并有可能增加作物对粗质土壤氮素的吸收。
{"title":"Biochar Applied with Inorganic Nitrogen Improves Soil Carbon, Nitrate and Ammonium Content of a Sandy Loam Temperate Soil","authors":"Peter Omara, Lawrence Aula, F. Otim, A. Obia, Joao Luis Bigatao Souza, D. B. Arnall","doi":"10.3390/nitrogen3010007","DOIUrl":"https://doi.org/10.3390/nitrogen3010007","url":null,"abstract":"Biochar is suggested to improve soil properties. However, its combination with inorganic nitrogen (N) fertilizer in temperate soils is not well understood. This study compared the effect of fertilizer N-biochar-combinations (NBC) and fertilizer-N (FN) on total soil N (TSN), soil organic carbon (SOC), soil nitrate (NO3−–N), and ammonium (NH4+–N). Soil samples were taken from experiments at Efaw and Lake Carl Blackwell (LCB), Oklahoma, USA with ten treatments consisting of three N rates (50, 100, and 150 kg N ha−1) and three biochar rates (5, 10, and 15 t ha−1). Results at Efaw showed greater TSN and SOC under NBC compared to FN by 3 and 21%, respectively. No percentage difference was observed for NH4+–N while NO3−–N was lower by 7%. At LCB, TSN, SOC, NO3−–N, and NH4+–N were higher under NBC by 5, 18, 24, and 10%, respectively, compared to FN. Whereas application of biochar improved SOC at both sites, NO3−–N and NH4+–N were only significant at LCB site with a sandy loam soil but not at Efaw with silty clay loam. Therefore, biochar applied in combination with inorganic N can improve N availability with potential to increase crop N uptake on coarse textured soils.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90618789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Nagano, T. Kume, Yasuhiro Utsumi, Naoaki Tashiro, K. Otsuki, M. Chiwa
Increased atmospheric nitrogen (N) deposition, caused by anthropogenic activities, has various effects on forest ecosystems. Some reports have investigated the responses in tree transpiration to N addition, but few studies have measured the short-term response of mature tree transpiration to N fertilization. This study aimed to clarify the short-term transpiration response in 27-year-old deciduous hardwood trees to an increase in N availability. We established two plot types (control and N-fertilized plots) in Quercus crispula plantation stands in Hokkaido, Northern Japan. We measured sap flow density (SFD; cm3 m−2 s−1) using a thermal dissipation method for three months during the growing season. In the N-fertilized plot, we added 50 kg N ha−1 yr−1 of ammonium nitrate (NH4NO3) to the forest floor in the middle of the measurement periods. For daily mean SFD, we did not find a significant difference between the control and the N-fertilized plots. Leaf N contents did not differ between treatments, implying a negligible difference in physiological responses and transpiration rates. The slight difference between treatments could be because the trees had already foliated before applying the N fertilizer to our deciduous hardwood trees. The present results indicate that the potential increase in N deposition during the growing season does not immediately alter tree transpiration.
人为活动引起的大气氮沉降增加对森林生态系统有多种影响。一些研究报道了树木蒸腾对N添加的响应,但很少有研究测量成熟树木蒸腾对N施肥的短期响应。本研究旨在阐明27年阔叶树对氮有效性增加的短期蒸腾响应。以日本北海道栎人工林为研究对象,建立了对照区和施氮区两种样地。我们测量了液流密度(SFD;Cm3 m−2 s−1),在生长季节采用散热法,持续3个月。在施氮地块,我们在测量中期向森林地面添加50 kg N ha - 1 yr - 1硝酸铵(NH4NO3)。对于日平均SFD,我们发现对照和施氮地块之间没有显著差异。叶片氮含量在不同处理之间没有差异,这意味着生理反应和蒸腾速率的差异可以忽略不计。处理之间的细微差异可能是因为在对落叶阔叶树施用氮肥之前,树木已经长出了叶子。目前的结果表明,生长季节氮沉降的潜在增加不会立即改变树木的蒸腾作用。
{"title":"Negligible Response of Transpiration to Late-Summer Nitrogen Fertilization in Japanese Oak (Quercus crispula)","authors":"N. Nagano, T. Kume, Yasuhiro Utsumi, Naoaki Tashiro, K. Otsuki, M. Chiwa","doi":"10.3390/nitrogen3010006","DOIUrl":"https://doi.org/10.3390/nitrogen3010006","url":null,"abstract":"Increased atmospheric nitrogen (N) deposition, caused by anthropogenic activities, has various effects on forest ecosystems. Some reports have investigated the responses in tree transpiration to N addition, but few studies have measured the short-term response of mature tree transpiration to N fertilization. This study aimed to clarify the short-term transpiration response in 27-year-old deciduous hardwood trees to an increase in N availability. We established two plot types (control and N-fertilized plots) in Quercus crispula plantation stands in Hokkaido, Northern Japan. We measured sap flow density (SFD; cm3 m−2 s−1) using a thermal dissipation method for three months during the growing season. In the N-fertilized plot, we added 50 kg N ha−1 yr−1 of ammonium nitrate (NH4NO3) to the forest floor in the middle of the measurement periods. For daily mean SFD, we did not find a significant difference between the control and the N-fertilized plots. Leaf N contents did not differ between treatments, implying a negligible difference in physiological responses and transpiration rates. The slight difference between treatments could be because the trees had already foliated before applying the N fertilizer to our deciduous hardwood trees. The present results indicate that the potential increase in N deposition during the growing season does not immediately alter tree transpiration.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"56 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89121026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rigorous peer-reviews are the basis of high-quality academic publishing [...]
严格的同行评议是高质量学术出版的基础[…]
{"title":"Acknowledgment to Reviewers of Nitrogen in 2021","authors":"","doi":"10.3390/nitrogen3010005","DOIUrl":"https://doi.org/10.3390/nitrogen3010005","url":null,"abstract":"Rigorous peer-reviews are the basis of high-quality academic publishing [...]","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86186234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Phillips, C. Paungfoo-Lonhienne, Iman Tahmasbian, Benjamin Hunter, Brianna Smith, D. Mayer, M. Redding
Improved nitrogen fertiliser management and increased nitrogen use efficiency (NUE) can be achieved by synchronising nitrogen (N) availability with plant uptake requirements. Organic materials in conjunction with inorganic fertilisers provide a strategy for supplying plant-available N over the growing season and reducing N loss. This study investigated whether a combined application of inorganic N with an organic soil amendment could improve nitrogen use efficiency by reducing N loss in runoff. Nitrogen runoff from a ryegrass (Lolium multiflorum) cover was investigated using a rainfall simulator. Nitrogen was applied at low, medium and high (50, 75 and 100 kg/ha) rates as either (NH4)2SO4 or in combination with a poultry manure-based organic material. We showed that the NUE in the combination (58–75%) was two-fold greater than in (NH4)2SO4 (24–42%). Furthermore, this combination also resulted in a two-fold lower N runoff compared with the inorganic fertiliser alone. This effect was attributed to the slower rate of N release from the organic amendment relative to the inorganic fertiliser. Here, we demonstrated that the combined use of inorganic and organic N substrates can reduce nutrient losses in surface runoff due to a better synchronisation of N availability with plant uptake requirements.
{"title":"Combination of Inorganic Nitrogen and Organic Soil Amendment Improves Nitrogen Use Efficiency While Reducing Nitrogen Runoff","authors":"I. Phillips, C. Paungfoo-Lonhienne, Iman Tahmasbian, Benjamin Hunter, Brianna Smith, D. Mayer, M. Redding","doi":"10.3390/nitrogen3010004","DOIUrl":"https://doi.org/10.3390/nitrogen3010004","url":null,"abstract":"Improved nitrogen fertiliser management and increased nitrogen use efficiency (NUE) can be achieved by synchronising nitrogen (N) availability with plant uptake requirements. Organic materials in conjunction with inorganic fertilisers provide a strategy for supplying plant-available N over the growing season and reducing N loss. This study investigated whether a combined application of inorganic N with an organic soil amendment could improve nitrogen use efficiency by reducing N loss in runoff. Nitrogen runoff from a ryegrass (Lolium multiflorum) cover was investigated using a rainfall simulator. Nitrogen was applied at low, medium and high (50, 75 and 100 kg/ha) rates as either (NH4)2SO4 or in combination with a poultry manure-based organic material. We showed that the NUE in the combination (58–75%) was two-fold greater than in (NH4)2SO4 (24–42%). Furthermore, this combination also resulted in a two-fold lower N runoff compared with the inorganic fertiliser alone. This effect was attributed to the slower rate of N release from the organic amendment relative to the inorganic fertiliser. Here, we demonstrated that the combined use of inorganic and organic N substrates can reduce nutrient losses in surface runoff due to a better synchronisation of N availability with plant uptake requirements.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75309003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To improve productivity, reduce production costs, and minimize the environmental impacts of agriculture, the advancement of nitrogen (N) fertilizer management methods is needed. The objective of this study is to compare the use of Unmanned Aerial Vehicle (UAV) multispectral imagery and PlanetScope satellite imagery, together with plant height, leaf area index (LAI), soil moisture, and field topographic metrics to predict the canopy nitrogen weight (g/m2) of wheat fields in southwestern Ontario, Canada. Random Forests (RF) and support vector regression (SVR) models, applied to either UAV imagery or satellite imagery, were evaluated for canopy nitrogen weight prediction. The top-performing UAV imagery-based validation model used SVR with seven selected variables (plant height, LAI, four VIs, and the NIR band) with an R2 of 0.80 and an RMSE of 2.62 g/m2. The best satellite imagery-based validation model was RF, which used 17 variables including plant height, LAI, the four PlanetScope bands, and 11 VIs, resulting in an R2 of 0.92 and an RMSE of 1.75 g/m2. The model information can be used to improve field nitrogen predictions for the effective management of N fertilizer.
{"title":"Nitrogen Estimation for Wheat Using UAV-Based and Satellite Multispectral Imagery, Topographic Metrics, Leaf Area Index, Plant Height, Soil Moisture, and Machine Learning Methods","authors":"Jody Yu, Jinfei Wang, B. Leblon, Yang Song","doi":"10.3390/nitrogen3010001","DOIUrl":"https://doi.org/10.3390/nitrogen3010001","url":null,"abstract":"To improve productivity, reduce production costs, and minimize the environmental impacts of agriculture, the advancement of nitrogen (N) fertilizer management methods is needed. The objective of this study is to compare the use of Unmanned Aerial Vehicle (UAV) multispectral imagery and PlanetScope satellite imagery, together with plant height, leaf area index (LAI), soil moisture, and field topographic metrics to predict the canopy nitrogen weight (g/m2) of wheat fields in southwestern Ontario, Canada. Random Forests (RF) and support vector regression (SVR) models, applied to either UAV imagery or satellite imagery, were evaluated for canopy nitrogen weight prediction. The top-performing UAV imagery-based validation model used SVR with seven selected variables (plant height, LAI, four VIs, and the NIR band) with an R2 of 0.80 and an RMSE of 2.62 g/m2. The best satellite imagery-based validation model was RF, which used 17 variables including plant height, LAI, the four PlanetScope bands, and 11 VIs, resulting in an R2 of 0.92 and an RMSE of 1.75 g/m2. The model information can be used to improve field nitrogen predictions for the effective management of N fertilizer.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89540803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigated structural changes in microbial community of biological nutrient removal (BNR) in response to changes in substrate composition (ammonium and phosphate), redox condition, and morphological characteristics (flocs to granules), with a focus on nitrification and phosphate removal. Analyzing treatment performance and 16S rRNA phylogenetic gene sequencing data suggested that heterotrophic nitrification (HN) and autotrophic nitrification (AN) potentially happened in aerobic organic-rich (HN_AS) and aerobic organic-deficient (AN_AS) activated sludge batch reactors, respectively. However, phosphate release and uptake were not observed under alternating anaerobic/aerobic regime. Phosphate release could not be induced even when anaerobic phase was extended, although Accumulibacter existed in the inoculum (5.1% of total bacteria). Some potential HN (e.g., Thauera, Acinetobacter, Flavobacterium), AN (e.g., Nitrosomonas (3.2%) and Nitrospira), and unconventional phosphate-accumulating organisms (PAOs) were identified. Putative HN bacteria (i.e., Thauera (29–36%) and Flavobacterium (18–25%)) were enriched in aerobic granular sludge (AGS) regardless of the granular reactor operation mode. Enrichment of HN organisms in the AGS was suspected to be mainly due to granulation, possibly due to the floc-forming ability of HN species. Thus, HN is likely to play a role in nitrogen removal in AGS reactors. This study is supposed to serve as a starting point for the investigation of the microbial communities of AS- and AGS-based BNR processes. It is recommended that the identified roles for the isolated bacteria are further investigated in future works.
{"title":"Changes in BNR Microbial Community in Response to Different Selection Pressure","authors":"R. Pishgar, J. Dominic, J. Tay, A. Chu","doi":"10.3390/nitrogen2040032","DOIUrl":"https://doi.org/10.3390/nitrogen2040032","url":null,"abstract":"This study investigated structural changes in microbial community of biological nutrient removal (BNR) in response to changes in substrate composition (ammonium and phosphate), redox condition, and morphological characteristics (flocs to granules), with a focus on nitrification and phosphate removal. Analyzing treatment performance and 16S rRNA phylogenetic gene sequencing data suggested that heterotrophic nitrification (HN) and autotrophic nitrification (AN) potentially happened in aerobic organic-rich (HN_AS) and aerobic organic-deficient (AN_AS) activated sludge batch reactors, respectively. However, phosphate release and uptake were not observed under alternating anaerobic/aerobic regime. Phosphate release could not be induced even when anaerobic phase was extended, although Accumulibacter existed in the inoculum (5.1% of total bacteria). Some potential HN (e.g., Thauera, Acinetobacter, Flavobacterium), AN (e.g., Nitrosomonas (3.2%) and Nitrospira), and unconventional phosphate-accumulating organisms (PAOs) were identified. Putative HN bacteria (i.e., Thauera (29–36%) and Flavobacterium (18–25%)) were enriched in aerobic granular sludge (AGS) regardless of the granular reactor operation mode. Enrichment of HN organisms in the AGS was suspected to be mainly due to granulation, possibly due to the floc-forming ability of HN species. Thus, HN is likely to play a role in nitrogen removal in AGS reactors. This study is supposed to serve as a starting point for the investigation of the microbial communities of AS- and AGS-based BNR processes. It is recommended that the identified roles for the isolated bacteria are further investigated in future works.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"74 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74654901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Kupcsik, Claudia Chiodi, T. Moturu, Hugues De Gernier, Loïc Haelterman, J. Louvieaux, P. Tillard, C. Sturrock, M. Bennett, P. Nacry, C. Hermans
The worldwide demand for vegetable oils is rising. Oilseed rape (Brassica napus) diversifies cereal dominated crop rotations but requires important nitrogen input. Yet, the root organ is offering an untapped opportunity to improve the nitrogen capture in soil. This study evaluates three culture systems in controlled environment, to observe root morphology and to identify root attributes for superior biomass production and nitrogen use. The phenotypic diversity in a panel of 55 modern winter oilseed rape cultivars was screened in response to two divergent nitrate supplies. Upon in vitro and hydroponic cultures, a large variability for root morphologies was observed. Root biomass and morphological traits positively correlated with shoot biomass or leaf area. The activities of high-affinity nitrate transport systems correlated negatively with the leaf area, while the combined high- and low-affinity systems positively with the total root length. The X-ray computed tomography permitted to visualize the root system in pipes filled with soil. The in vitro root phenotype at germination stage was indicative of lateral root deployment in soil-grown plants. This study highlights great genetic potential in oilseed rape, which could be manipulated to optimize crop root characteristics and nitrogen capture with substantial implications for agricultural production.
{"title":"Oilseed Rape Cultivars Show Diversity of Root Morphologies with the Potential for Better Capture of Nitrogen","authors":"L. Kupcsik, Claudia Chiodi, T. Moturu, Hugues De Gernier, Loïc Haelterman, J. Louvieaux, P. Tillard, C. Sturrock, M. Bennett, P. Nacry, C. Hermans","doi":"10.3390/nitrogen2040033","DOIUrl":"https://doi.org/10.3390/nitrogen2040033","url":null,"abstract":"The worldwide demand for vegetable oils is rising. Oilseed rape (Brassica napus) diversifies cereal dominated crop rotations but requires important nitrogen input. Yet, the root organ is offering an untapped opportunity to improve the nitrogen capture in soil. This study evaluates three culture systems in controlled environment, to observe root morphology and to identify root attributes for superior biomass production and nitrogen use. The phenotypic diversity in a panel of 55 modern winter oilseed rape cultivars was screened in response to two divergent nitrate supplies. Upon in vitro and hydroponic cultures, a large variability for root morphologies was observed. Root biomass and morphological traits positively correlated with shoot biomass or leaf area. The activities of high-affinity nitrate transport systems correlated negatively with the leaf area, while the combined high- and low-affinity systems positively with the total root length. The X-ray computed tomography permitted to visualize the root system in pipes filled with soil. The in vitro root phenotype at germination stage was indicative of lateral root deployment in soil-grown plants. This study highlights great genetic potential in oilseed rape, which could be manipulated to optimize crop root characteristics and nitrogen capture with substantial implications for agricultural production.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80932867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soybean roots are colonized and nodulated by multiple strains of compatible nitrogen-fixing rhizobia primarily belonging to the Genus Bradyrhizobium. Motility towards the root and attachment to root hairs are key determinants of competitive colonization and subsequent nodulation. Bacterial surface properties and motility are known to vary with chemical composition of the culture medium, and root adhesion and nodulation occur in a soil environment rather than laboratory medium. We asked whether the nodulation-promoting factors motility, surface hydrophobicity and surface adhesion of Bradyrhizobium are affected by growth in a soil nutrient environment. B. diazoefficiens USDA 110, 126, 3384, and B. elkanii USDA 26 were grown in mineral salt medium with peptone, yeast extract and arabinose (PSY), and in a soil extracted soluble organic matter (SESOM) medium. Surface hydrophobicity was determined by partitioning into hydrocarbon, motility by transition through soft agar, and surface-exposed saccharides by lectin profiling, followed by biofilm formation and soybean root adhesion capacity of populations. SESOM-grown populations were generally less motile and more hydrophobic. They bound fewer lectins than PSY-grown populations, indicating a simpler surface saccharide profile. SESOM populations of USDA 110 did not form detectable biofilm, but showed increased binding to soy roots. Our results indicate that growth in a soil environment impacts surface properties, motility, and subsequent soy root adhesion propensity. Hence, evaluation of Bradyrhizobium for nodulation efficiency should be performed using soil from the specific field where the soybeans are to be planted, rather than laboratory culture media.
大豆的根是由多株相容的固氮根瘤菌定植和结瘤,主要属于缓生根瘤菌属。向根的运动和对根毛的附着是竞争定植和随后结瘤的关键决定因素。众所周知,细菌的表面特性和运动性随培养基的化学成分而变化,根的粘附和结瘤发生在土壤环境而不是实验室培养基中。我们研究了缓生根瘤菌在土壤养分环境下的生长是否会影响其结瘤促进因子的移动性、表面疏水性和表面粘附性。重氮效率B. diazoeffens USDA 110、126、3384和elkanii B. USDA 26分别在含有蛋白胨、酵母提取物和阿拉伯糖(PSY)的无矿盐培养基和土壤提取的可溶性有机物(SESOM)培养基中生长。表面疏水性通过划分碳氢化合物来确定,通过软琼脂转移来确定,通过凝集素分析来确定表面暴露的糖类,然后是生物膜形成和群体的根粘附能力。sesom生长的种群通常流动性较差,更疏水。它们结合的凝集素比psy培养的群体少,表明表面糖类结构更简单。USDA 110的SESOM群体没有形成可检测的生物膜,但与大豆根部的结合增加。我们的研究结果表明,土壤环境中的生长影响了大豆的表面特性、运动性和随后的根系粘附倾向。因此,对缓生根瘤菌结瘤效率的评估应使用大豆种植的特定田地的土壤,而不是实验室培养基。
{"title":"Surface Properties and Adherence of Bradyrhizobium diazoefficiens to Glycine max Roots Are Altered When Grown in Soil Extracted Nutrients","authors":"A. K. Sandhu, S. Subramanian, V. Brözel","doi":"10.3390/nitrogen2040031","DOIUrl":"https://doi.org/10.3390/nitrogen2040031","url":null,"abstract":"Soybean roots are colonized and nodulated by multiple strains of compatible nitrogen-fixing rhizobia primarily belonging to the Genus Bradyrhizobium. Motility towards the root and attachment to root hairs are key determinants of competitive colonization and subsequent nodulation. Bacterial surface properties and motility are known to vary with chemical composition of the culture medium, and root adhesion and nodulation occur in a soil environment rather than laboratory medium. We asked whether the nodulation-promoting factors motility, surface hydrophobicity and surface adhesion of Bradyrhizobium are affected by growth in a soil nutrient environment. B. diazoefficiens USDA 110, 126, 3384, and B. elkanii USDA 26 were grown in mineral salt medium with peptone, yeast extract and arabinose (PSY), and in a soil extracted soluble organic matter (SESOM) medium. Surface hydrophobicity was determined by partitioning into hydrocarbon, motility by transition through soft agar, and surface-exposed saccharides by lectin profiling, followed by biofilm formation and soybean root adhesion capacity of populations. SESOM-grown populations were generally less motile and more hydrophobic. They bound fewer lectins than PSY-grown populations, indicating a simpler surface saccharide profile. SESOM populations of USDA 110 did not form detectable biofilm, but showed increased binding to soy roots. Our results indicate that growth in a soil environment impacts surface properties, motility, and subsequent soy root adhesion propensity. Hence, evaluation of Bradyrhizobium for nodulation efficiency should be performed using soil from the specific field where the soybeans are to be planted, rather than laboratory culture media.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89158255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effect of N fertilization on residue decomposition has been studied extensively; however, contrasting results reflect differences in residue quality, the form of N applied, and the type of soil studied. A 60 d laboratory incubation experiment was conducted to ascertain the effect of synthetic N addition on the decomposition of two corn (Zea mays L.) stover mixtures differing in C:N ratio by continuous monitoring of CO2 emissions and periodic measurement of microbial biomass and enzyme activities involved in C and N cycling. Cumulative CO2 production was greater for the high than low N residue treatment, and was significantly increased by the addition of exogenous N. The latter effect was prominent during the first month of incubation, whereas N-treated soils produced less CO2 in the second month, as would be expected due to more rapid substrate depletion from microbial C utilization previously enhanced by greater N availability. The stimulatory effect of exogenous N was verified with respect to active biomass, microbial biomass C and N, and cellulase and protease activities, all of which were significantly correlated with cumulative CO2 production. Intensive N fertilization in modern corn production increases the input of residues but is not conducive to soil C sequestration.
{"title":"Short-Term Effect of Nitrogen Fertilization on Carbon Mineralization during Corn Residue Decomposition in Soil","authors":"Tanjila Jesmin, Dakota T. Mitchell, R. Mulvaney","doi":"10.3390/nitrogen2040030","DOIUrl":"https://doi.org/10.3390/nitrogen2040030","url":null,"abstract":"The effect of N fertilization on residue decomposition has been studied extensively; however, contrasting results reflect differences in residue quality, the form of N applied, and the type of soil studied. A 60 d laboratory incubation experiment was conducted to ascertain the effect of synthetic N addition on the decomposition of two corn (Zea mays L.) stover mixtures differing in C:N ratio by continuous monitoring of CO2 emissions and periodic measurement of microbial biomass and enzyme activities involved in C and N cycling. Cumulative CO2 production was greater for the high than low N residue treatment, and was significantly increased by the addition of exogenous N. The latter effect was prominent during the first month of incubation, whereas N-treated soils produced less CO2 in the second month, as would be expected due to more rapid substrate depletion from microbial C utilization previously enhanced by greater N availability. The stimulatory effect of exogenous N was verified with respect to active biomass, microbial biomass C and N, and cellulase and protease activities, all of which were significantly correlated with cumulative CO2 production. Intensive N fertilization in modern corn production increases the input of residues but is not conducive to soil C sequestration.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90959763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arthur Siller, H. Darby, Alexandra Smychkovich, M. Hashemi
There is growing interest in malting barley (Hordeum vulgare L.) production in the Northeastern United States. This crop must meet high quality standards for malting but can command a high price if these quality thresholds are met. A two-year field experiment was conducted from 2015 to 2017 to evaluate the impact of two leguminous cover crops, sunn hemp (Crotalaria juncea L.) and crimson clover (Trifolium incarnatum L.), on subsequent winter malting barley production. Four cover crop treatments—sunn hemp (SH), crimson clover (CC), sunn hemp and crimson clover mixture (SH + CC), and no cover crop (NC)—were grown before planting barley at three seeding rates (300, 350, and 400 seeds m−2). SH and SH + CC produced significantly more biomass and residual nitrogen than the CC and NC treatments. Higher barley seeding rates led to higher seedling density and winter survival. However, the subsequent spring and summer barley growth metrics, yield, and malting quality were not different in any of the treatments. There is much left to investigate in determining the best malting barley production practices in the Northeastern United States, but these results show that winter malting barley can be successfully integrated into crop rotations with leguminous plants without negative impacts on barley growth, yield, and grain quality.
{"title":"Winter Malting Barley Growth, Yield, and Quality following Leguminous Cover Crops in the Northeast United States","authors":"Arthur Siller, H. Darby, Alexandra Smychkovich, M. Hashemi","doi":"10.3390/nitrogen2040028","DOIUrl":"https://doi.org/10.3390/nitrogen2040028","url":null,"abstract":"There is growing interest in malting barley (Hordeum vulgare L.) production in the Northeastern United States. This crop must meet high quality standards for malting but can command a high price if these quality thresholds are met. A two-year field experiment was conducted from 2015 to 2017 to evaluate the impact of two leguminous cover crops, sunn hemp (Crotalaria juncea L.) and crimson clover (Trifolium incarnatum L.), on subsequent winter malting barley production. Four cover crop treatments—sunn hemp (SH), crimson clover (CC), sunn hemp and crimson clover mixture (SH + CC), and no cover crop (NC)—were grown before planting barley at three seeding rates (300, 350, and 400 seeds m−2). SH and SH + CC produced significantly more biomass and residual nitrogen than the CC and NC treatments. Higher barley seeding rates led to higher seedling density and winter survival. However, the subsequent spring and summer barley growth metrics, yield, and malting quality were not different in any of the treatments. There is much left to investigate in determining the best malting barley production practices in the Northeastern United States, but these results show that winter malting barley can be successfully integrated into crop rotations with leguminous plants without negative impacts on barley growth, yield, and grain quality.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73932186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}