首页 > 最新文献

npj Biofilms and Microbiomes最新文献

英文 中文
Microbiome mapping in dairy industry reveals new species and genes for probiotic and bioprotective activities. 乳业微生物组图谱揭示了具有益生菌和生物保护活性的新物种和新基因。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-02 DOI: 10.1038/s41522-024-00541-5
Francesca De Filippis, Vincenzo Valentino, Min Yap, Raul Cabrera-Rubio, Coral Barcenilla, Niccolò Carlino, José F Cobo-Díaz, Narciso Martín Quijada, Inés Calvete-Torre, Patricia Ruas-Madiedo, Carlos Sabater, Giuseppina Sequino, Edoardo Pasolli, Martin Wagner, Abelardo Margolles, Nicola Segata, Avelino Álvarez-Ordóñez, Paul D Cotter, Danilo Ercolini

The resident microbiome in food industries may impact on food quality and safety. In particular, microbes residing on surfaces in dairy industries may actively participate in cheese fermentation and ripening and contribute to the typical flavor and texture. In this work, we carried out an extensive microbiome mapping in 73 cheese-making industries producing different types of cheeses (fresh, medium and long ripened) and located in 4 European countries. We sequenced and analyzed metagenomes from cheese samples, raw materials and environmental swabs collected from both food contact and non-food contact surfaces, as well as operators' hands and aprons. Dairy plants were shown to harbor a very complex microbiome, characterized by high prevalence of genes potentially involved in flavor development, probiotic activities, and resistance to gastro-intestinal transit, suggesting that these microbes may potentially be transferred to the human gut microbiome. More than 6100 high-quality Metagenome Assembled Genomes (MAGs) were reconstructed, including MAGs from several Lactic Acid Bacteria species and putative new species. Although microbial pathogens were not prevalent, we found several MAGs harboring genes related to antibiotic resistance, highlighting that dairy industry surfaces represent a potential hotspot for antimicrobial resistance (AR) spreading along the food chain. Finally, we identified facility-specific strains that can represent clear microbial signatures of different cheesemaking facilities, suggesting an interesting potential of microbiome tracking for the traceability of cheese origin.

食品工业中的常驻微生物群可能会影响食品质量和安全。特别是,乳制品工业表面的微生物可能会积极参与奶酪的发酵和成熟过程,并对奶酪的典型风味和口感做出贡献。在这项工作中,我们对欧洲 4 个国家生产不同类型奶酪(新鲜奶酪、中熟奶酪和长熟奶酪)的 73 家奶酪生产企业进行了广泛的微生物组图谱绘制。我们对奶酪样品、原材料和从食品接触面和非食品接触面以及操作人员的手和围裙上采集的环境拭子中的元基因组进行了测序和分析。结果表明,乳制品厂蕴藏着非常复杂的微生物群,其特点是可能参与风味开发、益生菌活性和抗胃肠道转运的基因的高流行率,这表明这些微生物有可能转移到人类肠道微生物群中。研究人员重建了 6100 多个高质量的元基因组组装基因组(MAGs),包括几个乳酸菌物种和推测的新物种的 MAGs。虽然微生物病原体并不普遍,但我们发现了几个携带抗生素耐药性相关基因的 MAGs,这表明乳制品工业表面是抗菌素耐药性(AR)沿食物链传播的潜在热点。最后,我们还发现了不同设施的特异性菌株,它们可以代表不同奶酪制作设施的明显微生物特征,这表明微生物组追踪在奶酪来源追溯方面具有有趣的潜力。
{"title":"Microbiome mapping in dairy industry reveals new species and genes for probiotic and bioprotective activities.","authors":"Francesca De Filippis, Vincenzo Valentino, Min Yap, Raul Cabrera-Rubio, Coral Barcenilla, Niccolò Carlino, José F Cobo-Díaz, Narciso Martín Quijada, Inés Calvete-Torre, Patricia Ruas-Madiedo, Carlos Sabater, Giuseppina Sequino, Edoardo Pasolli, Martin Wagner, Abelardo Margolles, Nicola Segata, Avelino Álvarez-Ordóñez, Paul D Cotter, Danilo Ercolini","doi":"10.1038/s41522-024-00541-5","DOIUrl":"10.1038/s41522-024-00541-5","url":null,"abstract":"<p><p>The resident microbiome in food industries may impact on food quality and safety. In particular, microbes residing on surfaces in dairy industries may actively participate in cheese fermentation and ripening and contribute to the typical flavor and texture. In this work, we carried out an extensive microbiome mapping in 73 cheese-making industries producing different types of cheeses (fresh, medium and long ripened) and located in 4 European countries. We sequenced and analyzed metagenomes from cheese samples, raw materials and environmental swabs collected from both food contact and non-food contact surfaces, as well as operators' hands and aprons. Dairy plants were shown to harbor a very complex microbiome, characterized by high prevalence of genes potentially involved in flavor development, probiotic activities, and resistance to gastro-intestinal transit, suggesting that these microbes may potentially be transferred to the human gut microbiome. More than 6100 high-quality Metagenome Assembled Genomes (MAGs) were reconstructed, including MAGs from several Lactic Acid Bacteria species and putative new species. Although microbial pathogens were not prevalent, we found several MAGs harboring genes related to antibiotic resistance, highlighting that dairy industry surfaces represent a potential hotspot for antimicrobial resistance (AR) spreading along the food chain. Finally, we identified facility-specific strains that can represent clear microbial signatures of different cheesemaking facilities, suggesting an interesting potential of microbiome tracking for the traceability of cheese origin.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"67"},"PeriodicalIF":7.8,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297241/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut microbiota dysbiosis is associated with altered tryptophan metabolism and dysregulated inflammatory response in COVID-19. 肠道微生物群失调与 COVID-19 中色氨酸代谢改变和炎症反应失调有关。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-01 DOI: 10.1038/s41522-024-00538-0
Morgan Essex, Belén Millet Pascual-Leone, Ulrike Löber, Mathias Kuhring, Bowen Zhang, Ulrike Brüning, Raphaela Fritsche-Guenther, Marta Krzanowski, Facundo Fiocca Vernengo, Sophia Brumhard, Ivo Röwekamp, Agata Anna Bielecka, Till Robin Lesker, Emanuel Wyler, Markus Landthaler, Andrej Mantei, Christian Meisel, Sandra Caesar, Charlotte Thibeault, Victor M Corman, Lajos Marko, Norbert Suttorp, Till Strowig, Florian Kurth, Leif E Sander, Yang Li, Jennifer A Kirwan, Sofia K Forslund, Bastian Opitz

The clinical course of COVID-19 is variable and often unpredictable. To test the hypothesis that disease progression and inflammatory responses associate with alterations in the microbiome and metabolome, we analyzed metagenome, metabolome, cytokine, and transcriptome profiles of repeated samples from hospitalized COVID-19 patients and uninfected controls, and leveraged clinical information and post-hoc confounder analysis. Severe COVID-19 was associated with a depletion of beneficial intestinal microbes, whereas oropharyngeal microbiota disturbance was mainly linked to antibiotic use. COVID-19 severity was also associated with enhanced plasma concentrations of kynurenine and reduced levels of several other tryptophan metabolites, lysophosphatidylcholines, and secondary bile acids. Moreover, reduced concentrations of various tryptophan metabolites were associated with depletion of Faecalibacterium, and tryptophan decrease and kynurenine increase were linked to enhanced production of inflammatory cytokines. Collectively, our study identifies correlated microbiome and metabolome alterations as a potential contributor to inflammatory dysregulation in severe COVID-19.

COVID-19 的临床病程多变,往往难以预测。为了验证疾病进展和炎症反应与微生物组和代谢组改变有关的假设,我们分析了住院的 COVID-19 患者和未感染对照组重复样本的元基因组、代谢组、细胞因子和转录组图谱,并利用临床信息和事后混杂因素分析进行了分析。严重的COVID-19与肠道有益微生物的减少有关,而口咽微生物群紊乱主要与抗生素的使用有关。COVID-19严重程度还与犬尿氨酸血浆浓度升高以及其他几种色氨酸代谢物、溶血磷脂酰胆碱和次级胆汁酸水平降低有关。此外,各种色氨酸代谢物浓度的降低与粪杆菌的减少有关,色氨酸的减少和犬尿氨酸的增加与炎症细胞因子的分泌增加有关。总之,我们的研究确定了相关微生物组和代谢组的改变是导致严重 COVID-19 炎症失调的潜在因素。
{"title":"Gut microbiota dysbiosis is associated with altered tryptophan metabolism and dysregulated inflammatory response in COVID-19.","authors":"Morgan Essex, Belén Millet Pascual-Leone, Ulrike Löber, Mathias Kuhring, Bowen Zhang, Ulrike Brüning, Raphaela Fritsche-Guenther, Marta Krzanowski, Facundo Fiocca Vernengo, Sophia Brumhard, Ivo Röwekamp, Agata Anna Bielecka, Till Robin Lesker, Emanuel Wyler, Markus Landthaler, Andrej Mantei, Christian Meisel, Sandra Caesar, Charlotte Thibeault, Victor M Corman, Lajos Marko, Norbert Suttorp, Till Strowig, Florian Kurth, Leif E Sander, Yang Li, Jennifer A Kirwan, Sofia K Forslund, Bastian Opitz","doi":"10.1038/s41522-024-00538-0","DOIUrl":"10.1038/s41522-024-00538-0","url":null,"abstract":"<p><p>The clinical course of COVID-19 is variable and often unpredictable. To test the hypothesis that disease progression and inflammatory responses associate with alterations in the microbiome and metabolome, we analyzed metagenome, metabolome, cytokine, and transcriptome profiles of repeated samples from hospitalized COVID-19 patients and uninfected controls, and leveraged clinical information and post-hoc confounder analysis. Severe COVID-19 was associated with a depletion of beneficial intestinal microbes, whereas oropharyngeal microbiota disturbance was mainly linked to antibiotic use. COVID-19 severity was also associated with enhanced plasma concentrations of kynurenine and reduced levels of several other tryptophan metabolites, lysophosphatidylcholines, and secondary bile acids. Moreover, reduced concentrations of various tryptophan metabolites were associated with depletion of Faecalibacterium, and tryptophan decrease and kynurenine increase were linked to enhanced production of inflammatory cytokines. Collectively, our study identifies correlated microbiome and metabolome alterations as a potential contributor to inflammatory dysregulation in severe COVID-19.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"66"},"PeriodicalIF":7.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The highly differentiated gut of Pachnoda marginata hosts sequential microbiomes: microbial ecology and potential applications. 边缘棘尾虫高度分化的肠道宿主序列微生物组:微生物生态学和潜在应用。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-31 DOI: 10.1038/s41522-024-00531-7
Àngela Vidal-Verdú, Daniel Torrent, Alba Iglesias, Adriel Latorre-Pérez, Christian Abendroth, Paola Corbín-Agustí, Juli Peretó, Manuel Porcar

Insect gut microbiomes play a crucial role in the insect development and are shaped, among other factors, by the specialized insect diet habits as well as the morphological structure of the gut. Rose chafers (Pachnoda spp.; Coleoptera: Scarabaeidae) have a highly differentiated gut characterized by a pronounced hindgut dilation which resembles a miniaturized rumen. Specifically, the species Pachnoda marginata has not been previously studied in detail in terms of microbial ecology. Here, we show a fine scale study of the highly compartmentalized gut of P. marginata by using amplicon and metagenomic sequencing to shed light on the bacterial, archaeal and fungal communities thriving in each section of the gut. We found a microbial gradient along the gut from aerobic (foregut) to strictly anaerobic communities (hindgut). In addition, we have characterized interesting biological activities and metabolic pathways of gut microbial communities related to cellulose degradation, methane production and sulfate reduction. Taken together, our results reveal the highly diverse microbial community and the potential of P. marginata gut as a source of industrially relevant microbial diversity.

昆虫肠道微生物群在昆虫的发育过程中起着至关重要的作用,除其他因素外,还受昆虫专门的饮食习惯和肠道形态结构的影响。玫瑰糠虾(Pachnoda spp.具体来说,以前从未对边缘腹棘蛛这一物种进行过微生物生态学方面的详细研究。在这里,我们利用扩增子和元基因组测序技术,对边缘腹棘蛛高度分隔的肠道进行了精细研究,从而揭示了在肠道各部分繁荣发展的细菌、古细菌和真菌群落。我们发现,沿着肠道,从好氧(前肠)到纯厌氧群落(后肠)有一个微生物梯度。此外,我们还描述了肠道微生物群落与纤维素降解、甲烷产生和硫酸盐还原有关的有趣生物活动和代谢途径。总之,我们的研究结果揭示了边缘鱼肠道微生物群落的高度多样性,以及边缘鱼肠道作为工业相关微生物多样性来源的潜力。
{"title":"The highly differentiated gut of Pachnoda marginata hosts sequential microbiomes: microbial ecology and potential applications.","authors":"Àngela Vidal-Verdú, Daniel Torrent, Alba Iglesias, Adriel Latorre-Pérez, Christian Abendroth, Paola Corbín-Agustí, Juli Peretó, Manuel Porcar","doi":"10.1038/s41522-024-00531-7","DOIUrl":"10.1038/s41522-024-00531-7","url":null,"abstract":"<p><p>Insect gut microbiomes play a crucial role in the insect development and are shaped, among other factors, by the specialized insect diet habits as well as the morphological structure of the gut. Rose chafers (Pachnoda spp.; Coleoptera: Scarabaeidae) have a highly differentiated gut characterized by a pronounced hindgut dilation which resembles a miniaturized rumen. Specifically, the species Pachnoda marginata has not been previously studied in detail in terms of microbial ecology. Here, we show a fine scale study of the highly compartmentalized gut of P. marginata by using amplicon and metagenomic sequencing to shed light on the bacterial, archaeal and fungal communities thriving in each section of the gut. We found a microbial gradient along the gut from aerobic (foregut) to strictly anaerobic communities (hindgut). In addition, we have characterized interesting biological activities and metabolic pathways of gut microbial communities related to cellulose degradation, methane production and sulfate reduction. Taken together, our results reveal the highly diverse microbial community and the potential of P. marginata gut as a source of industrially relevant microbial diversity.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"65"},"PeriodicalIF":7.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291753/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the response of the butyrate production potential to major fibers in dietary intervention studies. 在膳食干预研究中调查丁酸盐生产潜力对主要纤维的反应。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-30 DOI: 10.1038/s41522-024-00533-5
Thao Van-Wehle, Marius Vital

Interventions involving dietary fibers are known to benefit host health. A leading contribution of gut microbiota is commonly recognized with production of short chain fatty acids (SCFA) suspected to play a key role. However, the detailed mechanisms are largely unknown, and apart from a well-described bifidogenic effect of some fibers, results for other bacterial taxa are often incongruent between studies. We performed pooled analyses of 16S rRNA gene data derived from intervention studies (n = 14) based on three fibers, namely, inulin-type fructans (ITF), resistant starch (RS), and arabinoxylan-oligosaccharides (AXOS), harmonizing the bioinformatics workflow to reveal taxa stimulated by those substrates, specifically focusing on the SCFA-production potential. The results showed an increased butyrate production potential after ITF (p < 0.05) and RS (p < 0.1) treatment via an increase in bacteria exhibiting the enzyme butyryl-CoA:acetate CoA-transferase (but) that was governed by Faecalibacterium, Anaerostipes (ITF) and Agathobacter (RS) respectively. AXOS did not promote an increase in butyrate producers, nor were pathways linked to propionate production stimulated by any intervention. A bifidogenic effect was observed for AXOS and ITF, which was only partly associated with the behavior of but-containing bacteria and largely represented a separate response. Low and high Ruminococcus abundances pre-intervention for ITF and RS, respectively, promoted an increase in but-containing taxa (p < 0.05) upon interventions, whereas initial Prevotella abundance was negatively associated with responses of butyrate producers for both fibers. Collectively, our data demonstrate targeted stimulation of specific taxa by individual fibers increasing the potential to synthesize butyrate, where gut microbiota composition pre-intervention strongly controlled outcomes.

众所周知,涉及膳食纤维的干预措施有益于宿主健康。人们普遍认为,肠道微生物群的主要贡献是产生短链脂肪酸(SCFA),而短链脂肪酸被怀疑在其中发挥了关键作用。然而,详细的机制在很大程度上是未知的,除了一些纤维的双歧作用得到了很好的描述外,其他细菌类群的研究结果往往不一致。我们对来自干预研究(n = 14)的 16S rRNA 基因数据进行了汇总分析,这些数据基于三种纤维,即菊粉型果聚糖(ITF)、抗性淀粉(RS)和阿拉伯木聚糖-低聚糖(AXOS),并协调了生物信息学工作流程,以揭示受这些底物刺激的类群,特别关注 SCFA 生成的潜力。结果表明,在 ITF 之后,丁酸盐生产潜力增加(p
{"title":"Investigating the response of the butyrate production potential to major fibers in dietary intervention studies.","authors":"Thao Van-Wehle, Marius Vital","doi":"10.1038/s41522-024-00533-5","DOIUrl":"10.1038/s41522-024-00533-5","url":null,"abstract":"<p><p>Interventions involving dietary fibers are known to benefit host health. A leading contribution of gut microbiota is commonly recognized with production of short chain fatty acids (SCFA) suspected to play a key role. However, the detailed mechanisms are largely unknown, and apart from a well-described bifidogenic effect of some fibers, results for other bacterial taxa are often incongruent between studies. We performed pooled analyses of 16S rRNA gene data derived from intervention studies (n = 14) based on three fibers, namely, inulin-type fructans (ITF), resistant starch (RS), and arabinoxylan-oligosaccharides (AXOS), harmonizing the bioinformatics workflow to reveal taxa stimulated by those substrates, specifically focusing on the SCFA-production potential. The results showed an increased butyrate production potential after ITF (p < 0.05) and RS (p < 0.1) treatment via an increase in bacteria exhibiting the enzyme butyryl-CoA:acetate CoA-transferase (but) that was governed by Faecalibacterium, Anaerostipes (ITF) and Agathobacter (RS) respectively. AXOS did not promote an increase in butyrate producers, nor were pathways linked to propionate production stimulated by any intervention. A bifidogenic effect was observed for AXOS and ITF, which was only partly associated with the behavior of but-containing bacteria and largely represented a separate response. Low and high Ruminococcus abundances pre-intervention for ITF and RS, respectively, promoted an increase in but-containing taxa (p < 0.05) upon interventions, whereas initial Prevotella abundance was negatively associated with responses of butyrate producers for both fibers. Collectively, our data demonstrate targeted stimulation of specific taxa by individual fibers increasing the potential to synthesize butyrate, where gut microbiota composition pre-intervention strongly controlled outcomes.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"63"},"PeriodicalIF":7.8,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289085/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The plant-sucking insect selects assembly of the gut microbiota from environment to enhance host reproduction. 吸食植物的昆虫从环境中选择组合肠道微生物群,以提高宿主的繁殖能力。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-30 DOI: 10.1038/s41522-024-00539-z
Hong-Wei Shan, Xie-Jiang Xia, Yi-Lu Feng, Wei Wu, Hong-Jie Li, Zong-Tao Sun, Jun-Min Li, Jian-Ping Chen

Plant-sucking insects have intricate associations with a diverse array of microorganisms to facilitate their adaptation to specific ecological niches. The midgut of phytophagous true bugs is generally structured into four distinct compartments to accommodate their microbiota. Nevertheless, there is limited understanding regarding the origins of these gut microbiomes, the mechanisms behind microbial community assembly, and the interactions between gut microbiomes and their insect hosts. In this study, we conducted a comprehensive survey of microbial communities within the midgut compartments of a bean bug Riptortus pedestris, soybean plant, and bulk soil across 12 distinct geographical fields in China, utilizing high-throughput sequencing of the 16 S rRNA gene. Our findings illuminated that gut microbiota of the plant-sucking insects predominantly originated from the surrounding soil environment, and plants also play a subordinate role in mediating microbial acquisition for the insects. Furthermore, our investigation suggested that the composition of the insect gut microbiome was probably shaped by host selection and/or microbe-microbe interactions at the gut compartment level, with marginal influence from soil and geographical factors. Additionally, we had unveiled a noteworthy dynamic in the acquisition of core bacterial taxa, particularly Burkholderia, which were initially sourced from the environment and subsequently enriched within the insect midgut compartments. This bacterial enrichment played a significant role in enhancing insect host reproduction. These findings contribute to our evolving understanding of microbiomes within the insect-plant-soil ecosystem, shedding additional light on the intricate interactions between insects and their microbiomes that underpin the ecological significance of microbial partnerships in host adaptation.

吸食植物的昆虫与各种微生物有着复杂的联系,以帮助它们适应特定的生态位。植食性真虫的中肠一般分为四个不同的区域,以容纳它们的微生物群。然而,人们对这些肠道微生物群的起源、微生物群落组装背后的机制以及肠道微生物群与其昆虫宿主之间的相互作用了解有限。在这项研究中,我们利用 16 S rRNA 基因的高通量测序,对中国 12 个不同地理区域的豆角蝇、大豆植株和大块土壤的中肠内的微生物群落进行了全面调查。我们的研究结果表明,植物吸食昆虫的肠道微生物群主要来源于周围的土壤环境,植物在昆虫获取微生物方面也起着辅助作用。此外,我们的调查还表明,昆虫肠道微生物组的组成可能是由宿主选择和/或肠道分区水平上微生物与微生物之间的相互作用形成的,土壤和地理因素的影响微乎其微。此外,我们还揭示了获得核心细菌类群(尤其是伯克霍尔德氏菌)的一个值得注意的动态过程。这种细菌富集在提高昆虫宿主繁殖能力方面发挥了重要作用。这些发现加深了我们对昆虫-植物-土壤生态系统中微生物组的理解,进一步揭示了昆虫与其微生物组之间错综复杂的互动关系,而这种互动关系正是微生物伙伴关系在宿主适应过程中的生态意义所在。
{"title":"The plant-sucking insect selects assembly of the gut microbiota from environment to enhance host reproduction.","authors":"Hong-Wei Shan, Xie-Jiang Xia, Yi-Lu Feng, Wei Wu, Hong-Jie Li, Zong-Tao Sun, Jun-Min Li, Jian-Ping Chen","doi":"10.1038/s41522-024-00539-z","DOIUrl":"10.1038/s41522-024-00539-z","url":null,"abstract":"<p><p>Plant-sucking insects have intricate associations with a diverse array of microorganisms to facilitate their adaptation to specific ecological niches. The midgut of phytophagous true bugs is generally structured into four distinct compartments to accommodate their microbiota. Nevertheless, there is limited understanding regarding the origins of these gut microbiomes, the mechanisms behind microbial community assembly, and the interactions between gut microbiomes and their insect hosts. In this study, we conducted a comprehensive survey of microbial communities within the midgut compartments of a bean bug Riptortus pedestris, soybean plant, and bulk soil across 12 distinct geographical fields in China, utilizing high-throughput sequencing of the 16 S rRNA gene. Our findings illuminated that gut microbiota of the plant-sucking insects predominantly originated from the surrounding soil environment, and plants also play a subordinate role in mediating microbial acquisition for the insects. Furthermore, our investigation suggested that the composition of the insect gut microbiome was probably shaped by host selection and/or microbe-microbe interactions at the gut compartment level, with marginal influence from soil and geographical factors. Additionally, we had unveiled a noteworthy dynamic in the acquisition of core bacterial taxa, particularly Burkholderia, which were initially sourced from the environment and subsequently enriched within the insect midgut compartments. This bacterial enrichment played a significant role in enhancing insect host reproduction. These findings contribute to our evolving understanding of microbiomes within the insect-plant-soil ecosystem, shedding additional light on the intricate interactions between insects and their microbiomes that underpin the ecological significance of microbial partnerships in host adaptation.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"64"},"PeriodicalIF":7.8,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289440/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large scale exploration reveals rare taxa crucially shape microbial assembly in alkaline lake sediments. 大规模勘探揭示了稀有类群对碱性湖泊沉积物中微生物组合的关键作用。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-28 DOI: 10.1038/s41522-024-00537-1
Zhiguang Qiu, Shuhang He, Chun-Ang Lian, Xuejiao Qiao, Qing Zhang, Ciqin Yao, Rong Mu, Li Wang, Xiao-Ai Cao, Yan Yan, Ke Yu

Alkaline lakes are extreme environments inhabited by diverse microbial extremophiles. However, large-scale distribution patterns, environmental adaptations, community assembly, and evolutionary dynamics of microbial communities remain largely underexplored. This study investigated the characteristics of microbial communities on rare and abundant taxa in alkaline lake sediments in west and northwest China. We observed that abundant taxa varied significantly with geographical distance, while rare taxa remained unaffected by regional differences. The assembly process of abundant taxa was influenced by dispersal limitation, whilst rare taxa were predominantly driven by heterogeneous selection. Network analysis indicated that rare taxa as core species for community interactions and community stability. Rare taxa exhibited higher speciation and transition rate than abundant taxa, serving as a genetic reservoir and potential candidates to become abundance taxa, highlighting their crucial role in maintaining microbial diversity. These insights underscore the significant influence of rare taxa on ecosystem biodiversity and stability in alkaline lakes.

碱性湖泊是多种嗜极微生物栖息的极端环境。然而,对微生物群落的大尺度分布模式、环境适应性、群落组装和进化动态等方面的研究仍显不足。本研究调查了中国西部和西北部碱性湖泊沉积物中稀有和丰富类群的微生物群落特征。我们观察到,丰富类群随地理距离的变化而显著不同,而稀有类群则不受地区差异的影响。丰富类群的聚集过程受扩散限制的影响,而稀有类群则主要受异质性选择的驱动。网络分析表明,稀有类群是群落相互作用和群落稳定性的核心物种。稀有类群比丰富类群表现出更高的物种演化率和过渡率,是基因库和成为丰富类群的潜在候选者,突出了它们在维持微生物多样性方面的关键作用。这些见解强调了稀有类群对碱性湖泊生态系统生物多样性和稳定性的重要影响。
{"title":"Large scale exploration reveals rare taxa crucially shape microbial assembly in alkaline lake sediments.","authors":"Zhiguang Qiu, Shuhang He, Chun-Ang Lian, Xuejiao Qiao, Qing Zhang, Ciqin Yao, Rong Mu, Li Wang, Xiao-Ai Cao, Yan Yan, Ke Yu","doi":"10.1038/s41522-024-00537-1","DOIUrl":"10.1038/s41522-024-00537-1","url":null,"abstract":"<p><p>Alkaline lakes are extreme environments inhabited by diverse microbial extremophiles. However, large-scale distribution patterns, environmental adaptations, community assembly, and evolutionary dynamics of microbial communities remain largely underexplored. This study investigated the characteristics of microbial communities on rare and abundant taxa in alkaline lake sediments in west and northwest China. We observed that abundant taxa varied significantly with geographical distance, while rare taxa remained unaffected by regional differences. The assembly process of abundant taxa was influenced by dispersal limitation, whilst rare taxa were predominantly driven by heterogeneous selection. Network analysis indicated that rare taxa as core species for community interactions and community stability. Rare taxa exhibited higher speciation and transition rate than abundant taxa, serving as a genetic reservoir and potential candidates to become abundance taxa, highlighting their crucial role in maintaining microbial diversity. These insights underscore the significant influence of rare taxa on ecosystem biodiversity and stability in alkaline lakes.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"62"},"PeriodicalIF":7.8,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284227/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiomics of parkinsonism cynomolgus monkeys highlights significance of metabolites in interaction between host and microbiota. 帕金森病猴的多组学研究凸显了代谢物在宿主与微生物群相互作用中的重要性。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-26 DOI: 10.1038/s41522-024-00535-3
Jiang-Mei Gao, Shou-Yue Xia, Geoff Hide, Bi-Hai Li, Yi-Yan Liu, Zhi-Yuan Wei, Xiao-Ji Zhuang, Qing Yan, Yun Wang, Wei Yang, Jian-Huan Chen, Jun-Hua Rao

The gut microbiota has been demonstrated to play a significant role in the pathogenesis of Parkinson's disease (PD). However, conflicting findings regarding specific microbial species have been reported, possibly due to confounding factors within human populations. Herein, our current study investigated the interaction between the gut microbiota and host in a non-human primate (NHP) PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a multi-omic approach and a self-controlled design. Our transcriptomic sequencing of peripheral blood leukocytes (PBL) identified key genes involved in pro-inflammatory cytokine dysregulation, mitochondrial function regulation, neuroprotection activation, and neurogenesis associated with PD, such as IL1B, ATP1A3, and SLC5A3. The metabolomic profiles in serum and feces consistently exhibited significant alterations, particularly those closely associated with inflammation, mitochondrial dysfunctions and neurodegeneration in PD, such as TUDCA, ethylmalonic acid, and L-homophenylalanine. Furthermore, fecal metagenome analysis revealed gut dysbiosis associated with PD, characterized by a significant decrease in alpha diversity and altered commensals, particularly species such as Streptococcus, Butyrivibrio, and Clostridium. Additionally, significant correlations were observed between PD-associated microbes and metabolites, such as sphingomyelin and phospholipids. Importantly, PDPC significantly reduced in both PD monkey feces and serum, exhibiting strong correlation with PD-associated genes and microbes, such as SLC5A3 and Butyrivibrio species. Moreover, such multi-omic differential biomarkers were linked to the clinical rating scales of PD monkeys. Our findings provided novel insights into understanding the potential role of key metabolites in the host-microbiota interaction involved in PD pathogenesis.

肠道微生物群已被证实在帕金森病(PD)的发病机制中发挥着重要作用。然而,关于特定微生物物种的研究结果却相互矛盾,这可能是由于人类群体中的混杂因素造成的。在此,我们目前的研究采用多组学方法和自控设计,调查了非人灵长类(NHP)帕金森病模型中肠道微生物群与宿主之间的相互作用,该模型由1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)诱发。我们对外周血白细胞(PBL)进行了转录组测序,发现了与帕金森病相关的促炎细胞因子失调、线粒体功能调节、神经保护激活和神经发生的关键基因,如IL1B、ATP1A3和SLC5A3。血清和粪便中的代谢组图谱始终表现出显著的变化,尤其是那些与帕金森病的炎症、线粒体功能障碍和神经变性密切相关的代谢组,如TUDCA、乙基丙二酸和L-高苯丙氨酸。此外,粪便元基因组分析显示了与帕金森病相关的肠道菌群失调,其特点是α多样性显著降低和共生菌发生改变,尤其是链球菌、丁弧菌和梭状芽孢杆菌等物种。此外,还观察到与脊髓灰质炎相关的微生物与代谢物(如鞘磷脂和磷脂)之间存在明显的相关性。重要的是,PD 猴粪便和血清中的 PDPC 都明显减少,这与 PD 相关基因和微生物(如 SLC5A3 和丁弧菌)有很强的相关性。此外,这些多组学差异生物标志物还与帕金森病猴的临床评分量表有关。我们的研究结果为了解关键代谢物在帕金森氏症发病机制所涉及的宿主-微生物群相互作用中的潜在作用提供了新的见解。
{"title":"Multiomics of parkinsonism cynomolgus monkeys highlights significance of metabolites in interaction between host and microbiota.","authors":"Jiang-Mei Gao, Shou-Yue Xia, Geoff Hide, Bi-Hai Li, Yi-Yan Liu, Zhi-Yuan Wei, Xiao-Ji Zhuang, Qing Yan, Yun Wang, Wei Yang, Jian-Huan Chen, Jun-Hua Rao","doi":"10.1038/s41522-024-00535-3","DOIUrl":"10.1038/s41522-024-00535-3","url":null,"abstract":"<p><p>The gut microbiota has been demonstrated to play a significant role in the pathogenesis of Parkinson's disease (PD). However, conflicting findings regarding specific microbial species have been reported, possibly due to confounding factors within human populations. Herein, our current study investigated the interaction between the gut microbiota and host in a non-human primate (NHP) PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a multi-omic approach and a self-controlled design. Our transcriptomic sequencing of peripheral blood leukocytes (PBL) identified key genes involved in pro-inflammatory cytokine dysregulation, mitochondrial function regulation, neuroprotection activation, and neurogenesis associated with PD, such as IL1B, ATP1A3, and SLC5A3. The metabolomic profiles in serum and feces consistently exhibited significant alterations, particularly those closely associated with inflammation, mitochondrial dysfunctions and neurodegeneration in PD, such as TUDCA, ethylmalonic acid, and L-homophenylalanine. Furthermore, fecal metagenome analysis revealed gut dysbiosis associated with PD, characterized by a significant decrease in alpha diversity and altered commensals, particularly species such as Streptococcus, Butyrivibrio, and Clostridium. Additionally, significant correlations were observed between PD-associated microbes and metabolites, such as sphingomyelin and phospholipids. Importantly, PDPC significantly reduced in both PD monkey feces and serum, exhibiting strong correlation with PD-associated genes and microbes, such as SLC5A3 and Butyrivibrio species. Moreover, such multi-omic differential biomarkers were linked to the clinical rating scales of PD monkeys. Our findings provided novel insights into understanding the potential role of key metabolites in the host-microbiota interaction involved in PD pathogenesis.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"61"},"PeriodicalIF":7.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GmAMT2.1/2.2-dependent ammonium nitrogen and metabolites shape rhizosphere microbiome assembly to mitigate cadmium toxicity. 依赖于 GmAMT2.1/2.2 的铵态氮和代谢产物塑造了根瘤微生物组的组合,以减轻镉的毒性。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-24 DOI: 10.1038/s41522-024-00532-6
Zhandong Cai, Taobing Yu, Weiyi Tan, Qianghua Zhou, Lingrui Liu, Hai Nian, Tengxiang Lian

Cadmium (Cd), a heavy metal, is negatively associated with plant growth. AMT (ammonium transporter) genes can confer Cd resistance and enhance nitrogen (N) uptake in soybeans. The potential of AMT genes to alleviate Cd toxicity by modulating rhizosphere microbiota remains unkonwn. Here, the rhizosphere microbial taxonomic and metabolic differences in three genotypes, i.e., double knockout and overexpression lines and wild type, were identified. The results showed that GmAMT2.1/2.2 genes could induce soybean to recruit beneficial microorganisms, such as Tumebacillus, Alicyclobacillus, and Penicillium, by altering metabolites. The bacterial, fungal, and cross-kingdom synthetic microbial communities (SynComs) formed by these microorganisms can help soybean resist Cd toxicity. The mechanisms by which SynComs help soybeans resist Cd stress include reducing Cd content, increasing ammonium (NH4+-N) uptake and regulating specific functional genes in soybeans. Overall, this study provides valuable insights for the developing microbial formulations that enhance Cd resistance in sustainable agriculture.

重金属镉(Cd)与植物生长呈负相关。AMT(铵转运体)基因可赋予大豆抗镉能力,并提高大豆对氮(N)的吸收。AMT 基因通过调节根瘤微生物群减轻镉毒性的潜力仍有待研究。在此,研究人员确定了三种基因型(即双基因敲除和过表达株系以及野生型)的根瘤微生物分类和代谢差异。结果表明,GmAMT2.1/2.2 基因可通过改变代谢产物诱导大豆吸收有益微生物,如Tumebacillus、Alicyclobacillus 和Penicillium。这些微生物形成的细菌、真菌和跨领域合成微生物群落(SynComs)可以帮助大豆抵抗镉的毒性。SynComs 帮助大豆抵抗镉胁迫的机制包括降低镉含量、增加铵(NH4+-N)吸收和调节大豆的特定功能基因。总之,这项研究为开发提高可持续农业抗镉能力的微生物制剂提供了宝贵的见解。
{"title":"GmAMT2.1/2.2-dependent ammonium nitrogen and metabolites shape rhizosphere microbiome assembly to mitigate cadmium toxicity.","authors":"Zhandong Cai, Taobing Yu, Weiyi Tan, Qianghua Zhou, Lingrui Liu, Hai Nian, Tengxiang Lian","doi":"10.1038/s41522-024-00532-6","DOIUrl":"10.1038/s41522-024-00532-6","url":null,"abstract":"<p><p>Cadmium (Cd), a heavy metal, is negatively associated with plant growth. AMT (ammonium transporter) genes can confer Cd resistance and enhance nitrogen (N) uptake in soybeans. The potential of AMT genes to alleviate Cd toxicity by modulating rhizosphere microbiota remains unkonwn. Here, the rhizosphere microbial taxonomic and metabolic differences in three genotypes, i.e., double knockout and overexpression lines and wild type, were identified. The results showed that GmAMT2.1/2.2 genes could induce soybean to recruit beneficial microorganisms, such as Tumebacillus, Alicyclobacillus, and Penicillium, by altering metabolites. The bacterial, fungal, and cross-kingdom synthetic microbial communities (SynComs) formed by these microorganisms can help soybean resist Cd toxicity. The mechanisms by which SynComs help soybeans resist Cd stress include reducing Cd content, increasing ammonium (NH<sub>4</sub><sup>+</sup>-N) uptake and regulating specific functional genes in soybeans. Overall, this study provides valuable insights for the developing microbial formulations that enhance Cd resistance in sustainable agriculture.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"60"},"PeriodicalIF":7.8,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Bifidobacterium-dominated fecal microbiome in dairy calves shapes the characteristic growth phenotype of host. 以双歧杆菌为主的乳牛粪便微生物群塑造了宿主的生长表型特征。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-21 DOI: 10.1038/s41522-024-00534-4
Yimin Zhuang, Shuai Liu, Duo Gao, Yiming Xu, Wen Jiang, Tianyu Chen, Jianxin Xiao, Jingjun Wang, Guobin Hou, Sumin Li, Xinjie Zhao, Yanting Huang, Shangru Li, Siyuan Zhang, Mengmeng Li, Wei Wang, Shengli Li, Zhijun Cao

The dominant bacteria in the hindgut of calves play an important role in their growth and health, which could even lead to lifelong consequences. However, the identification of core probiotics in the hindgut and its mechanism regulating host growth remain unclear. Here, a total of 1045 fecal samples were analyzed by 16S rRNA gene sequencing from the 408 Holstein dairy calves at the age of 0, 14, 28, 42, 56, and 70 days to characterize the dynamic changes of core taxa. Moreover, the mechanisms of nutrient metabolism of calf growth regulated by core bacteria were investigated using multi-omics analyses. Finally, fecal microbiota transplantation (FMT) in mice were conducted to illustrate the potential beneficial effects of core bacteria. Four calf enterotypes were identified and enterotypes dominated by Bifidobacterium and Oscillospiraceae_UCG-005 were representative. The frequency of enterotype conversion shifted from variable to stable. The close relationship observed between phenotype and enterotype, revealing a potential pro-growth effect of Bifidobacterium, might be implemented by promoting the use of carbohydrate, activating the synthesis of volatile fatty acids, amino acids and vitamin B6, and inhibiting methane production in the hindgut. The FMT results indicated the beneficial effect of Bifidobacterium on host growth and hindgut development. These results support the notion that the Bifidobacterium-dominated fecal microbiome would be an important driving force for promoting the host growth in the early life. Our findings provide new insights into the potential probiotic mining and application strategies to promote the growth of young animals or improve their growth retardation.

犊牛后肠中的优势菌对其生长和健康起着重要作用,甚至可能导致终身后果。然而,后肠中核心益生菌的鉴定及其调控宿主生长的机制仍不清楚。本文通过 16S rRNA 基因测序分析了 408 头荷斯坦奶牛在 0、14、28、42、56 和 70 日龄时的 1045 份粪便样本,以描述核心类群的动态变化。此外,还利用多组学分析方法研究了核心菌调控犊牛生长的营养代谢机制。最后,对小鼠进行了粪便微生物群移植(FMT),以说明核心菌的潜在有益作用。研究发现了四种小牛肠型,其中以双歧杆菌和Oscillospiraceae_UCG-005为主的肠型具有代表性。肠型转换的频率从可变到稳定。观察到的表型与肠型之间的密切关系揭示了双歧杆菌潜在的促生长效应,可能是通过促进碳水化合物的利用,激活挥发性脂肪酸、氨基酸和维生素 B6 的合成,以及抑制后肠甲烷的产生来实现的。FMT 结果表明,双歧杆菌对宿主的生长和后肠发育有益。这些结果支持了一种观点,即双歧杆菌主导的粪便微生物组将成为促进宿主早期生长的重要动力。我们的发现为潜在益生菌的挖掘和应用策略提供了新的见解,以促进幼年动物的生长或改善其生长迟缓。
{"title":"The Bifidobacterium-dominated fecal microbiome in dairy calves shapes the characteristic growth phenotype of host.","authors":"Yimin Zhuang, Shuai Liu, Duo Gao, Yiming Xu, Wen Jiang, Tianyu Chen, Jianxin Xiao, Jingjun Wang, Guobin Hou, Sumin Li, Xinjie Zhao, Yanting Huang, Shangru Li, Siyuan Zhang, Mengmeng Li, Wei Wang, Shengli Li, Zhijun Cao","doi":"10.1038/s41522-024-00534-4","DOIUrl":"10.1038/s41522-024-00534-4","url":null,"abstract":"<p><p>The dominant bacteria in the hindgut of calves play an important role in their growth and health, which could even lead to lifelong consequences. However, the identification of core probiotics in the hindgut and its mechanism regulating host growth remain unclear. Here, a total of 1045 fecal samples were analyzed by 16S rRNA gene sequencing from the 408 Holstein dairy calves at the age of 0, 14, 28, 42, 56, and 70 days to characterize the dynamic changes of core taxa. Moreover, the mechanisms of nutrient metabolism of calf growth regulated by core bacteria were investigated using multi-omics analyses. Finally, fecal microbiota transplantation (FMT) in mice were conducted to illustrate the potential beneficial effects of core bacteria. Four calf enterotypes were identified and enterotypes dominated by Bifidobacterium and Oscillospiraceae_UCG-005 were representative. The frequency of enterotype conversion shifted from variable to stable. The close relationship observed between phenotype and enterotype, revealing a potential pro-growth effect of Bifidobacterium, might be implemented by promoting the use of carbohydrate, activating the synthesis of volatile fatty acids, amino acids and vitamin B6, and inhibiting methane production in the hindgut. The FMT results indicated the beneficial effect of Bifidobacterium on host growth and hindgut development. These results support the notion that the Bifidobacterium-dominated fecal microbiome would be an important driving force for promoting the host growth in the early life. Our findings provide new insights into the potential probiotic mining and application strategies to promote the growth of young animals or improve their growth retardation.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"59"},"PeriodicalIF":7.8,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271470/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topical prebiotic nitrate: optimizing the 'hang-time', source and dose for specific oral or systemic effects. 局部使用硝酸益生菌:优化 "悬挂时间"、来源和剂量,以达到特定的口服或全身效果。
IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-18 DOI: 10.1038/s41522-024-00528-2
Bob T Rosier, Alex Mira

In our opinion, the 'hang-time' of nitrate-containing products discussed in the letter by Green and Green is an interesting variable that should be considered when nitrate-based treatment or prevention strategies are designed. However, due to direct nitrate recycling after nitrate intake, products with a long 'hang-time' (e.g., chewing gum) may not always have an advantage compared to products with a short 'hang-time' (e.g., vegetable juices). We argue that extending the 'hang-time' is especially relevant and potentially beneficial for different applications, such as using a low nitrate dose to stimulate the oral effects, reaching oral tissues that may otherwise not be exposed to dietary nitrate (e.g., periodontal pockets), and providing a longer nitrate exposure in individuals with an impaired salivary flow. Apart from the 'hang-time', other important variables are the nitrate dose and source (e.g., different salts and vegetable extracts), as well as the desired effect (e.g., an oral effect versus systemic effects). Finally, we believe that the alterations in salivary microbiota observed before and after chewing three nitrate-rich gums over a period of ~5 h, as reported by Green and Green, could be considered beneficial. However, the oral microbiota composition is affected by the circadian rhythm and the effect of gum mastication should be evaluated. These results should thus be confirmed by a placebo-controlled study, where these confounding factors can be accounted for.

我们认为,格林和格林在信中讨论的含硝酸盐产品的 "悬挂时间 "是一个有趣的变量,在设计基于硝酸盐的治疗或预防策略时应加以考虑。然而,由于摄入硝酸盐后硝酸盐会被直接回收利用,与 "滞留时间 "较短的产品(如蔬菜汁)相比,"滞留时间 "较长的产品(如口香糖)并不总是具有优势。我们认为,延长 "悬挂时间 "对于不同的应用尤其重要,而且可能有益,例如使用低剂量硝酸盐来刺激口腔效应,使硝酸盐进入可能无法接触到膳食硝酸盐的口腔组织(如牙周袋),以及为唾液流量受损的人提供更长的硝酸盐接触时间。除了 "滞留时间 "外,其他重要变量还包括硝酸盐的剂量和来源(如不同的盐类和植物提取物),以及所期望的效果(如口腔效果和全身效果)。最后,我们认为 Green 和 Green 所报告的在咀嚼三种富含硝酸盐的口香糖前后约 5 小时内观察到的唾液微生物群的变化可以被认为是有益的。然而,口腔微生物群的组成受昼夜节律的影响,因此应评估咀嚼口香糖的影响。因此,这些结果应通过安慰剂对照研究加以证实,因为安慰剂对照研究可以考虑这些干扰因素。
{"title":"Topical prebiotic nitrate: optimizing the 'hang-time', source and dose for specific oral or systemic effects.","authors":"Bob T Rosier, Alex Mira","doi":"10.1038/s41522-024-00528-2","DOIUrl":"10.1038/s41522-024-00528-2","url":null,"abstract":"<p><p>In our opinion, the 'hang-time' of nitrate-containing products discussed in the letter by Green and Green is an interesting variable that should be considered when nitrate-based treatment or prevention strategies are designed. However, due to direct nitrate recycling after nitrate intake, products with a long 'hang-time' (e.g., chewing gum) may not always have an advantage compared to products with a short 'hang-time' (e.g., vegetable juices). We argue that extending the 'hang-time' is especially relevant and potentially beneficial for different applications, such as using a low nitrate dose to stimulate the oral effects, reaching oral tissues that may otherwise not be exposed to dietary nitrate (e.g., periodontal pockets), and providing a longer nitrate exposure in individuals with an impaired salivary flow. Apart from the 'hang-time', other important variables are the nitrate dose and source (e.g., different salts and vegetable extracts), as well as the desired effect (e.g., an oral effect versus systemic effects). Finally, we believe that the alterations in salivary microbiota observed before and after chewing three nitrate-rich gums over a period of ~5 h, as reported by Green and Green, could be considered beneficial. However, the oral microbiota composition is affected by the circadian rhythm and the effect of gum mastication should be evaluated. These results should thus be confirmed by a placebo-controlled study, where these confounding factors can be accounted for.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"58"},"PeriodicalIF":7.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Biofilms and Microbiomes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1