Pub Date : 2024-07-26DOI: 10.1038/s41545-024-00351-4
Yang Yu, Lianyu Liu, Yiqiao Xie, Wei Huang, Hai Liu, Xiaotu Liu, Da Chen
Increasing prevalence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) constitutes an emerging water safety issue globally. However, the effectiveness of current water treatment techniques in the control of ARGs dissemination remains controversial. Here, we develop a dual-zone strategy based on piezoelectric membrane filtration to efficiently eliminate waterborne antibiotic resistance. Following complete ARB inactivation and effective ARGs reduction in the retentate near the membrane surface (zone 1), a subsequent trans-membrane process (zone 2) further promotes ARGs elimination in the permeate, due to boosted interactions between ARGs and reactive oxygen species (ROS) generated from piezoelectric peroxymonosulfate activation and minimized ROS competition from inactivated ARB within piezocatalytic channels. The abundance of ARGs was largely reduced to ~1.0 × 103 copies·mL−1 in the permeate from ~5.0 × 106 copies·mL−1 in the feed solution. The singlet oxygen (1O2) is demonstrated to be primarily responsible for ARB inactivation, while 1O2, hydroxyl radical (•OH), sulfate radical (SO4·−) and superoxide radical (·O2−) can all participate in ARGs degradation. Our work demonstrates that the piezoelectric membrane-based dual-zone strategy has great potential to control the risk of ARGs dissemination.
{"title":"Trans-membrane piezoelectric activation of peroxymonosulfate for effective control of waterborne antibiotic resistance dissemination","authors":"Yang Yu, Lianyu Liu, Yiqiao Xie, Wei Huang, Hai Liu, Xiaotu Liu, Da Chen","doi":"10.1038/s41545-024-00351-4","DOIUrl":"10.1038/s41545-024-00351-4","url":null,"abstract":"Increasing prevalence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) constitutes an emerging water safety issue globally. However, the effectiveness of current water treatment techniques in the control of ARGs dissemination remains controversial. Here, we develop a dual-zone strategy based on piezoelectric membrane filtration to efficiently eliminate waterborne antibiotic resistance. Following complete ARB inactivation and effective ARGs reduction in the retentate near the membrane surface (zone 1), a subsequent trans-membrane process (zone 2) further promotes ARGs elimination in the permeate, due to boosted interactions between ARGs and reactive oxygen species (ROS) generated from piezoelectric peroxymonosulfate activation and minimized ROS competition from inactivated ARB within piezocatalytic channels. The abundance of ARGs was largely reduced to ~1.0 × 103 copies·mL−1 in the permeate from ~5.0 × 106 copies·mL−1 in the feed solution. The singlet oxygen (1O2) is demonstrated to be primarily responsible for ARB inactivation, while 1O2, hydroxyl radical (•OH), sulfate radical (SO4·−) and superoxide radical (·O2−) can all participate in ARGs degradation. Our work demonstrates that the piezoelectric membrane-based dual-zone strategy has great potential to control the risk of ARGs dissemination.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-9"},"PeriodicalIF":10.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00351-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1038/s41545-024-00362-1
Hilal Ahmad, Abdul Waheed, Fahad Ayesh Alharthi, Christopher Michael Fellows, Umair Baig, Isam H. Aljundi
The scarcity of freshwater resources, driven by rapid population growth and industrialization, underscores the urgent need for advanced desalination technologies. This research aims to meet this critical demand by enhancing the performance of polyamide membranes through innovative chemical tuning of the active layer. By strategically using Boc-protected ethylenediamine (EDA), we can precisely control the membrane’s surface properties. One amino group in EDA is protected with a Boc group, allowing the other to participate in the interfacial polymerization (IP) reaction with meta-phenylenediamine (MPD) and trimesoyl chloride (TMC). This inclusion of Boc-protected EDA enables in situ tuning of the active layer chemistry during polymerization. Subsequent removal of the Boc protection generates hydrophilic ammonium groups on the membrane surface, enhancing its desalination capabilities. As a result, three distinct membranes were fabricated and thoroughly characterized: MPD-TMC (control), MPD-TMC-EDA-Boc, and MPD-TMC-EDA-Deboc. At 20 bar and 2000 ppm NaCl feed, the MPD-TMC-EDA-Deboc membrane demonstrated superior desalination performance with a salt rejection of 98 ± 0.5% and a permeate flux of 25 L m−2 h−1; an increase of 25% compared to the control membrane. For the seawater nanofiltration (NF) permeate with a TDS of 33,700 ppm, a salt rejection of 97% and a permeate flux of 23 L m−2 h−1 was recorded at 20 bar. The MPD-TMC-EDA-Deboc membrane showed enhanced antifouling performance (95 ± 1% flux recovery) compared to the control MPD-TMC membrane with 93 ± 1% flux recovery. The Boc-protection/deprotection strategy demonstrated the high potential of this approach to significantly enhance the performance of polyamide membranes for desalination applications.
{"title":"Tuning polyamide membrane chemistry for enhanced desalination using Boc-protected ethylenediamine and its in situ Boc-deprotection","authors":"Hilal Ahmad, Abdul Waheed, Fahad Ayesh Alharthi, Christopher Michael Fellows, Umair Baig, Isam H. Aljundi","doi":"10.1038/s41545-024-00362-1","DOIUrl":"10.1038/s41545-024-00362-1","url":null,"abstract":"The scarcity of freshwater resources, driven by rapid population growth and industrialization, underscores the urgent need for advanced desalination technologies. This research aims to meet this critical demand by enhancing the performance of polyamide membranes through innovative chemical tuning of the active layer. By strategically using Boc-protected ethylenediamine (EDA), we can precisely control the membrane’s surface properties. One amino group in EDA is protected with a Boc group, allowing the other to participate in the interfacial polymerization (IP) reaction with meta-phenylenediamine (MPD) and trimesoyl chloride (TMC). This inclusion of Boc-protected EDA enables in situ tuning of the active layer chemistry during polymerization. Subsequent removal of the Boc protection generates hydrophilic ammonium groups on the membrane surface, enhancing its desalination capabilities. As a result, three distinct membranes were fabricated and thoroughly characterized: MPD-TMC (control), MPD-TMC-EDA-Boc, and MPD-TMC-EDA-Deboc. At 20 bar and 2000 ppm NaCl feed, the MPD-TMC-EDA-Deboc membrane demonstrated superior desalination performance with a salt rejection of 98 ± 0.5% and a permeate flux of 25 L m−2 h−1; an increase of 25% compared to the control membrane. For the seawater nanofiltration (NF) permeate with a TDS of 33,700 ppm, a salt rejection of 97% and a permeate flux of 23 L m−2 h−1 was recorded at 20 bar. The MPD-TMC-EDA-Deboc membrane showed enhanced antifouling performance (95 ± 1% flux recovery) compared to the control MPD-TMC membrane with 93 ± 1% flux recovery. The Boc-protection/deprotection strategy demonstrated the high potential of this approach to significantly enhance the performance of polyamide membranes for desalination applications.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-13"},"PeriodicalIF":10.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00362-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1038/s41545-024-00357-y
Alicja Dabrowska, George R. Lewis, Minaleshewa Atlabachew, Susannah J. Salter, Cassi Henderson, Chang Ji, Annike Ehlers, Julian Stirling, Sophie Mower, Lara Allen, Elizabeth Lay, Kara Stuart, Lisa Appavou, Richard Bowman, Tianheng Zhao, Nalin Patel, Alexander Patto, Mark A. Holmes, Jeremy J. Baumberg, Sammy Mahdi
Increasing access to water quality tests in low-income communities is a crucial strategy toward achieving global water equality. Recent studies in the Water Sanitation and Hygiene (WASH) sector underscore the importance of addressing practical concerns in water testing, such as robustness and results communication. In response, we present the WaterScope testing kit; an open-source, validated platform for drinking water quality assessment. It modernises the testing process with the inclusion of a unique cartridge/slider mechanism, machine-learning-enhanced classification and full digitalisation of results. WaterScope’s equivalency to conventional methods for quantifying E. coli is established through extensive validation experiments in both laboratory and field environments. This versatile platform provides potential to expand its applications to test other bacteria, perform colorimetric assays, and analyse clinical samples such as blood/urine samples. We anticipate that the system’s ease-of-use, portability, affordability, robustness, and digital nature will accelerate progress toward global water equality.
{"title":"Expanding access to water quality monitoring with the open-source WaterScope testing platform","authors":"Alicja Dabrowska, George R. Lewis, Minaleshewa Atlabachew, Susannah J. Salter, Cassi Henderson, Chang Ji, Annike Ehlers, Julian Stirling, Sophie Mower, Lara Allen, Elizabeth Lay, Kara Stuart, Lisa Appavou, Richard Bowman, Tianheng Zhao, Nalin Patel, Alexander Patto, Mark A. Holmes, Jeremy J. Baumberg, Sammy Mahdi","doi":"10.1038/s41545-024-00357-y","DOIUrl":"10.1038/s41545-024-00357-y","url":null,"abstract":"Increasing access to water quality tests in low-income communities is a crucial strategy toward achieving global water equality. Recent studies in the Water Sanitation and Hygiene (WASH) sector underscore the importance of addressing practical concerns in water testing, such as robustness and results communication. In response, we present the WaterScope testing kit; an open-source, validated platform for drinking water quality assessment. It modernises the testing process with the inclusion of a unique cartridge/slider mechanism, machine-learning-enhanced classification and full digitalisation of results. WaterScope’s equivalency to conventional methods for quantifying E. coli is established through extensive validation experiments in both laboratory and field environments. This versatile platform provides potential to expand its applications to test other bacteria, perform colorimetric assays, and analyse clinical samples such as blood/urine samples. We anticipate that the system’s ease-of-use, portability, affordability, robustness, and digital nature will accelerate progress toward global water equality.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-10"},"PeriodicalIF":10.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00357-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1038/s41545-024-00364-z
Pay Drechsel, James Bartram, Manzoor Qadir, Kate O. Medlicott
Unsafe water reuse in the informal irrigation sector dominates in the Global South and requires more attention to protect food safety and public health. Promoting formal wastewater use in conjunction with (usually constrained) investment in treatment capacities is not sufficient in LMIC. New approaches and indicators are needed across the formal and informal reuse sectors to increase food safety and monitor progress on safe reuse. Current reuse guidelines need to be updated with greater attention to policy, regulations, investments, and behavior change for a higher implementation potential.
{"title":"The challenge of supporting and monitoring safe wastewater use in agriculture in LMIC","authors":"Pay Drechsel, James Bartram, Manzoor Qadir, Kate O. Medlicott","doi":"10.1038/s41545-024-00364-z","DOIUrl":"10.1038/s41545-024-00364-z","url":null,"abstract":"Unsafe water reuse in the informal irrigation sector dominates in the Global South and requires more attention to protect food safety and public health. Promoting formal wastewater use in conjunction with (usually constrained) investment in treatment capacities is not sufficient in LMIC. New approaches and indicators are needed across the formal and informal reuse sectors to increase food safety and monitor progress on safe reuse. Current reuse guidelines need to be updated with greater attention to policy, regulations, investments, and behavior change for a higher implementation potential.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-3"},"PeriodicalIF":10.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00364-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1038/s41545-024-00363-0
Joo-Youn Nam, Hyunji Eom, Uijeong Han, Eunjin Jwa, Hyojeon Kim, SeungYeob Han, Seoktae Kang, Si-Kyung Cho
In this study, waste nutrient solution (WNS) was used as a catholyte in a bioelectrochemical cell to directly produce hydrogen peroxide (H2O2), after which the H2O2- containing WNS was integrated with the downstream UV oxidation process to meet quality standards for reuse. The generated current in the bioelectrochemical cell was successfully utilized at the cathode to produce H2O2 in WNS using a two-electron oxygen reduction reaction with different reaction times. The cathodic reaction time with the highest H2O2 production (504 ± 5.2 mg l−1) was 48 h, followed by that obtained from 24 h (368 ± 4.1 mg l−1), 12 h (158.8 ± 2.4 mg l−1), and 6 h (121.1 ± 4.1 mg l−1) reaction times. During H2O2 generation, calcium, magnesium, and phosphate in the WNS were recovered in the form of precipitates under alkaline conditions. The H2O2-containing WNS was further treated with different UV doses. After UV/H2O2 treatment, excitation-emission matrix and molecular weight distribution analyses demonstrated that aromatic compounds were reduced. Moreover, the gene expressions of sul1 (up to 95.65%), tetG (up to 93.88%), and aadA (up to 95.32%) were clearly downregulated compared with those of a control sample. Finally, a high disinfection efficiency was achieved with higher UV doses, resulting in successful seed germination. Thus, our results indicate that the developed method can be a promising process for reusing WNS in hydroponic systems.
{"title":"Unravelling the UV/H2O2 process using bioelectrochemically synthesized H2O2 to reuse waste nutrient solution","authors":"Joo-Youn Nam, Hyunji Eom, Uijeong Han, Eunjin Jwa, Hyojeon Kim, SeungYeob Han, Seoktae Kang, Si-Kyung Cho","doi":"10.1038/s41545-024-00363-0","DOIUrl":"10.1038/s41545-024-00363-0","url":null,"abstract":"In this study, waste nutrient solution (WNS) was used as a catholyte in a bioelectrochemical cell to directly produce hydrogen peroxide (H2O2), after which the H2O2- containing WNS was integrated with the downstream UV oxidation process to meet quality standards for reuse. The generated current in the bioelectrochemical cell was successfully utilized at the cathode to produce H2O2 in WNS using a two-electron oxygen reduction reaction with different reaction times. The cathodic reaction time with the highest H2O2 production (504 ± 5.2 mg l−1) was 48 h, followed by that obtained from 24 h (368 ± 4.1 mg l−1), 12 h (158.8 ± 2.4 mg l−1), and 6 h (121.1 ± 4.1 mg l−1) reaction times. During H2O2 generation, calcium, magnesium, and phosphate in the WNS were recovered in the form of precipitates under alkaline conditions. The H2O2-containing WNS was further treated with different UV doses. After UV/H2O2 treatment, excitation-emission matrix and molecular weight distribution analyses demonstrated that aromatic compounds were reduced. Moreover, the gene expressions of sul1 (up to 95.65%), tetG (up to 93.88%), and aadA (up to 95.32%) were clearly downregulated compared with those of a control sample. Finally, a high disinfection efficiency was achieved with higher UV doses, resulting in successful seed germination. Thus, our results indicate that the developed method can be a promising process for reusing WNS in hydroponic systems.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-9"},"PeriodicalIF":10.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00363-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.1038/s41545-024-00335-4
Benedict Winchester, Gan Huang, Hamish Beath, Philip Sandwell, Jiajun Cen, Jenny Nelson, Christos N. Markides
We compare the performance of photovoltaic (PV), flat-plate and evacuated-tube solar-thermal (ST), and hybrid photovoltaic-thermal (PV-T) collectors to meet the energy demands of multi-effect distillation (MED) desalination plants across four locations. We consider three scales: 1700 m3day−1, 120 m3day−1 and 3 m3day−1. We find a strong dependence of the capacity and configuration of the solar collectors on both the cost of sourcing electricity from the grid and the specific collector employed. We find specific costs as low as 7.8, 3.4 and 3.7 USDm−3 for the three plant capacities. We find that solar-driven systems optimised for the lowest specific cost result in CO2eq emissions equal to, or higher than, those from grid-driven reverse osmosis (RO) and in line with PV-RO. This highlights the need to consider the environmental footprint of these systems to ensure that desalination is in line with the United Nations’ Sustainable Development Goal 6.
{"title":"Lifetime optimisation of integrated thermally and electrically driven solar desalination plants","authors":"Benedict Winchester, Gan Huang, Hamish Beath, Philip Sandwell, Jiajun Cen, Jenny Nelson, Christos N. Markides","doi":"10.1038/s41545-024-00335-4","DOIUrl":"10.1038/s41545-024-00335-4","url":null,"abstract":"We compare the performance of photovoltaic (PV), flat-plate and evacuated-tube solar-thermal (ST), and hybrid photovoltaic-thermal (PV-T) collectors to meet the energy demands of multi-effect distillation (MED) desalination plants across four locations. We consider three scales: 1700 m3day−1, 120 m3day−1 and 3 m3day−1. We find a strong dependence of the capacity and configuration of the solar collectors on both the cost of sourcing electricity from the grid and the specific collector employed. We find specific costs as low as 7.8, 3.4 and 3.7 USDm−3 for the three plant capacities. We find that solar-driven systems optimised for the lowest specific cost result in CO2eq emissions equal to, or higher than, those from grid-driven reverse osmosis (RO) and in line with PV-RO. This highlights the need to consider the environmental footprint of these systems to ensure that desalination is in line with the United Nations’ Sustainable Development Goal 6.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-15"},"PeriodicalIF":10.4,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00335-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-13DOI: 10.1038/s41545-024-00358-x
Yeongho Sung, Hyeon-Ju Jeon, Daehun Kim, Min-Seo Kim, Jaeyeop Choi, Hwan Ryul Jo, Junghwan Oh, O-Joun Lee, Hae Gyun Lim
Internal pipe corrosion within water distribution systems leads to iron oxide deposits on pipe walls, potentially contaminating the water supply. Consuming iron oxide-contaminated water can cause significant health issues such as gastrointestinal infections, dermatological problems, and lymph node complications. Therefore, non-destructive and continuous monitoring of pipe corrosion is imperative for water sustainability initiatives. This study introduces a dual-mode methodology utilizing advanced ultrasound technology and convolutional neural networks (CNN) to quantify pipe corrosion. Scanning acoustic microscopy (SAM) employs high-frequency ultrasound to generate high-resolution images of pipe thickness, indicating iron oxide accumulation. SAM also captures internal pipe data to measure iron oxide concentration in the water. This data, analyzed by CNN, achieves an impressive 95% accuracy. This dual-mode system effectively assesses both the extent of pipe corrosion and water contamination, exemplifying the successful integration of SAM and CNN for precise and reliable monitoring.
输水系统的内部管道腐蚀会导致氧化铁沉积在管壁上,从而可能污染供水。饮用被氧化铁污染的水会导致严重的健康问题,如肠胃感染、皮肤病和淋巴结并发症。因此,对管道腐蚀进行非破坏性的连续监测对于水资源的可持续发展至关重要。本研究介绍了一种利用先进超声技术和卷积神经网络(CNN)量化管道腐蚀的双模式方法。扫描声学显微镜(SAM)利用高频超声波生成管道厚度的高分辨率图像,显示氧化铁的累积情况。SAM 还能捕捉管道内部数据,测量水中的氧化铁浓度。这些数据经 CNN 分析后,准确率高达 95%。这种双模式系统可有效评估管道腐蚀和水污染的程度,是成功整合 SAM 和 CNN 以进行精确可靠监测的典范。
{"title":"Internal pipe corrosion assessment method in water distribution system using ultrasound and convolutional neural networks","authors":"Yeongho Sung, Hyeon-Ju Jeon, Daehun Kim, Min-Seo Kim, Jaeyeop Choi, Hwan Ryul Jo, Junghwan Oh, O-Joun Lee, Hae Gyun Lim","doi":"10.1038/s41545-024-00358-x","DOIUrl":"10.1038/s41545-024-00358-x","url":null,"abstract":"Internal pipe corrosion within water distribution systems leads to iron oxide deposits on pipe walls, potentially contaminating the water supply. Consuming iron oxide-contaminated water can cause significant health issues such as gastrointestinal infections, dermatological problems, and lymph node complications. Therefore, non-destructive and continuous monitoring of pipe corrosion is imperative for water sustainability initiatives. This study introduces a dual-mode methodology utilizing advanced ultrasound technology and convolutional neural networks (CNN) to quantify pipe corrosion. Scanning acoustic microscopy (SAM) employs high-frequency ultrasound to generate high-resolution images of pipe thickness, indicating iron oxide accumulation. SAM also captures internal pipe data to measure iron oxide concentration in the water. This data, analyzed by CNN, achieves an impressive 95% accuracy. This dual-mode system effectively assesses both the extent of pipe corrosion and water contamination, exemplifying the successful integration of SAM and CNN for precise and reliable monitoring.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-10"},"PeriodicalIF":10.4,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00358-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-13DOI: 10.1038/s41545-024-00360-3
Delal E. Al Momani, Fathima Arshad, Inas Taha, Dalaver H. Anjum, Linda Zou
This study synthesized three MoS₂ morphologies—nanospheres, nanoplatelets, and nanosheets—under varied conditions and incorporated them into chitosan membranes. TEM confirmed unique morphologies and crystallinity. Clean water flux showed that the nanoplatelet (P-CM) membrane had the highest flux due to higher porosity. The P-CM membrane excelled in removing Mn²⁺ and Zn²⁺ ions, achieving 93.0 ± 0.5% and 90.4 ± 1.5% removal, outperforming membranes with nanospheres (S-CM) and nanosheets (T-CM). Its superior performance is attributed to thicker nanoplatelets forming more water channels. The MoS₂‘s tri-layered structure generated reactive oxygen species (ROS) via H₂O₂ catalysis, contributing to enhanced heavy metal removal. These adsorptive-catalytic membranes combine adsorption with catalytic decomposition of heavy metals, highlighting the work’s novelty and superior performance. The membranes demonstrated excellent flux recovery and reusability (96.0 ± 0.5% for P-CM) after chemical cleaning. The findings emphasize the impact of nanomaterial morphologies on membrane performance in water treatment and environmental remediation.
{"title":"Effect of different MoS2 morphologies on the formation and performance of adsorptive-catalytic nanocomposite membranes","authors":"Delal E. Al Momani, Fathima Arshad, Inas Taha, Dalaver H. Anjum, Linda Zou","doi":"10.1038/s41545-024-00360-3","DOIUrl":"10.1038/s41545-024-00360-3","url":null,"abstract":"This study synthesized three MoS₂ morphologies—nanospheres, nanoplatelets, and nanosheets—under varied conditions and incorporated them into chitosan membranes. TEM confirmed unique morphologies and crystallinity. Clean water flux showed that the nanoplatelet (P-CM) membrane had the highest flux due to higher porosity. The P-CM membrane excelled in removing Mn²⁺ and Zn²⁺ ions, achieving 93.0 ± 0.5% and 90.4 ± 1.5% removal, outperforming membranes with nanospheres (S-CM) and nanosheets (T-CM). Its superior performance is attributed to thicker nanoplatelets forming more water channels. The MoS₂‘s tri-layered structure generated reactive oxygen species (ROS) via H₂O₂ catalysis, contributing to enhanced heavy metal removal. These adsorptive-catalytic membranes combine adsorption with catalytic decomposition of heavy metals, highlighting the work’s novelty and superior performance. The membranes demonstrated excellent flux recovery and reusability (96.0 ± 0.5% for P-CM) after chemical cleaning. The findings emphasize the impact of nanomaterial morphologies on membrane performance in water treatment and environmental remediation.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-12"},"PeriodicalIF":10.4,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00360-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-12DOI: 10.1038/s41545-024-00359-w
Yuan Bai, Yinhu Wu, Ziwei Zhang, Yu Mao, Ruining Wang, Xin Tong, Song Xue, Haobin Wang, Hongying Hu
Molecular weight (MW) of organics was one of the important factors influencing membrane fouling propensity. This study identified critical foulants of reverse osmosis (RO) membranes in reclaimed water by MW fractionation. MW > 10 kDa component was identified as the critical fouling contributor (CFC) in secondary effluent (SE), which accounted for only 13 ± 5% of dissolved organic carbon (DOC) but contributed to 86 ± 11% of flux decline. Throughout 12-month monitoring, SE and MW > 10 kDa component showed a similar fouling variation tendency: apparently higher fouling potential in winter and lower in summer, while MW < 10 kDa component presented minor fouling changes. Morphology of membrane fouled by CFC characterized a smooth and thick foulant layer on membrane surface. CFC was mainly composed of proteins and polysaccharides, and a protein-polysaccharide-protein “sandwich” fouling layer structure was preferentially formed on membrane surface. extended Derjaguin–Landau-Verwey–Overbeek (xDLVO) analysis demonstrated that strong attractive interactions between CFC and membrane surface dominated the fouling process. Furthermore, computational fluid dynamics (CFD) simulation revealed strong filtration resistance of CFC, confirming its significant fouling potential. Dual effects including attractive interactions and advantageous ridge-and-valley surface appearance accounted for the significant fouling propensity of MW > 10 kDa component and glean valuable insights into RO fouling mechanisms of reclaimed water in practical application.
{"title":"Molecular weight insight into critical component contributing to reverse osmosis membrane fouling in wastewater reclamation","authors":"Yuan Bai, Yinhu Wu, Ziwei Zhang, Yu Mao, Ruining Wang, Xin Tong, Song Xue, Haobin Wang, Hongying Hu","doi":"10.1038/s41545-024-00359-w","DOIUrl":"10.1038/s41545-024-00359-w","url":null,"abstract":"Molecular weight (MW) of organics was one of the important factors influencing membrane fouling propensity. This study identified critical foulants of reverse osmosis (RO) membranes in reclaimed water by MW fractionation. MW > 10 kDa component was identified as the critical fouling contributor (CFC) in secondary effluent (SE), which accounted for only 13 ± 5% of dissolved organic carbon (DOC) but contributed to 86 ± 11% of flux decline. Throughout 12-month monitoring, SE and MW > 10 kDa component showed a similar fouling variation tendency: apparently higher fouling potential in winter and lower in summer, while MW < 10 kDa component presented minor fouling changes. Morphology of membrane fouled by CFC characterized a smooth and thick foulant layer on membrane surface. CFC was mainly composed of proteins and polysaccharides, and a protein-polysaccharide-protein “sandwich” fouling layer structure was preferentially formed on membrane surface. extended Derjaguin–Landau-Verwey–Overbeek (xDLVO) analysis demonstrated that strong attractive interactions between CFC and membrane surface dominated the fouling process. Furthermore, computational fluid dynamics (CFD) simulation revealed strong filtration resistance of CFC, confirming its significant fouling potential. Dual effects including attractive interactions and advantageous ridge-and-valley surface appearance accounted for the significant fouling propensity of MW > 10 kDa component and glean valuable insights into RO fouling mechanisms of reclaimed water in practical application.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-12"},"PeriodicalIF":10.4,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00359-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-12DOI: 10.1038/s41545-024-00361-2
Jie Hu, Ran Yin, Jinfeng Wang, Hongqiang Ren
While the anaerobic-anoxic-oxic (AAO) process is the most widely applied biological wastewater treatment process in municipal wastewater treatment plants (WWTPs), it struggles to meet the increasing demands on biological toxicity control of the treated effluent. To tackle this challenge, this study develops machine learning (ML)-based models for optimizing the AAO treatment process towards improving its toxicity reduction efficacy for the effluent. The water quality parameters, treatment process parameters, and biological toxicity information (based on the nematode bioassay) of the effluent collected from 122 WWTPs in China are used to train the models. The validated models accurately predict the effluent’s quality parameters (average R2 = 0.81) and the biological toxicity reduction ratio of treatment process (R2 = 0.86). To further improve the toxicity reduction, we developed a multiple objective optimization framework to optimize the AAO process via unit process recombination. In the short-range unit combination, the toxicity reduction ratio of the four-unit combined processes (up to 79.8% of anaerobic-aerobic-anaerobic-aerobic) is significantly higher than others. After optimization, it helps to improve the average toxicity reduction efficacy of 122 WWTPs from 48.6% to 70.7%, with a maximum of 87.5%. The methodologies and findings derived from this work are expected to provide the foundation for the optimization, expansion, and technical transformation of biological wastewater treatment in WWTPs.
{"title":"Data driven multiple objective optimization of AAO process towards wastewater effluent biological toxicity reduction","authors":"Jie Hu, Ran Yin, Jinfeng Wang, Hongqiang Ren","doi":"10.1038/s41545-024-00361-2","DOIUrl":"10.1038/s41545-024-00361-2","url":null,"abstract":"While the anaerobic-anoxic-oxic (AAO) process is the most widely applied biological wastewater treatment process in municipal wastewater treatment plants (WWTPs), it struggles to meet the increasing demands on biological toxicity control of the treated effluent. To tackle this challenge, this study develops machine learning (ML)-based models for optimizing the AAO treatment process towards improving its toxicity reduction efficacy for the effluent. The water quality parameters, treatment process parameters, and biological toxicity information (based on the nematode bioassay) of the effluent collected from 122 WWTPs in China are used to train the models. The validated models accurately predict the effluent’s quality parameters (average R2 = 0.81) and the biological toxicity reduction ratio of treatment process (R2 = 0.86). To further improve the toxicity reduction, we developed a multiple objective optimization framework to optimize the AAO process via unit process recombination. In the short-range unit combination, the toxicity reduction ratio of the four-unit combined processes (up to 79.8% of anaerobic-aerobic-anaerobic-aerobic) is significantly higher than others. After optimization, it helps to improve the average toxicity reduction efficacy of 122 WWTPs from 48.6% to 70.7%, with a maximum of 87.5%. The methodologies and findings derived from this work are expected to provide the foundation for the optimization, expansion, and technical transformation of biological wastewater treatment in WWTPs.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-11"},"PeriodicalIF":10.4,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00361-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}