Pub Date : 2025-01-06DOI: 10.1016/j.nimb.2024.165609
Xueting Liu , Binghuang Duan , Haoxiang Xue , Ashan Ejaz , Tieshan Wang
Gallium arsenide (GaAs) is a direct bandgap semiconductor material known for its excellent radiation resistance. This study investigates the radiation effects on both intrinsic GaAs and n-type GaAs. The samples were irradiated with 100 keV and 2 MeV protons at fluence ranging from 6 × 1014p/cm2 to 1 × 1016p/cm2. The chemical components and surface morphology were characterized by X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM). The XPS results show that proton irradiation changed the chemical composition of the GaAs surface. AFM analysis revealed that proton irradiation induced the formation of hillocks and craters on the GaAs surface, which further merged with increasing fluence. Notably, the surface damage resulting from 100 keV proton irradiation was more severe than that caused by 2 MeV protons. Compared to intrinsic GaAs, n-type GaAs exhibits worse radiation resistance of structural stability.
{"title":"Study of changes in surface composition and morphology of GaAs irradiated with different energies protons","authors":"Xueting Liu , Binghuang Duan , Haoxiang Xue , Ashan Ejaz , Tieshan Wang","doi":"10.1016/j.nimb.2024.165609","DOIUrl":"10.1016/j.nimb.2024.165609","url":null,"abstract":"<div><div>Gallium arsenide (GaAs) is a direct bandgap semiconductor material known for its excellent radiation resistance. This study investigates the radiation effects on both intrinsic GaAs and n-type GaAs. The samples were irradiated with 100 keV and 2 MeV protons at fluence ranging from 6 × 10<sup>14</sup>p/cm<sup>2</sup> to 1 × 10<sup>16</sup>p/cm<sup>2</sup>. The chemical components and surface morphology were characterized by X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM). The XPS results show that proton irradiation changed the chemical composition of the GaAs surface. AFM analysis revealed that proton irradiation induced the formation of hillocks and craters on the GaAs surface, which further merged with increasing fluence. Notably, the surface damage resulting from 100 keV proton irradiation was more severe than that caused by 2 MeV protons. Compared to intrinsic GaAs, n-type GaAs exhibits worse radiation resistance of structural stability.</div></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"560 ","pages":"Article 165609"},"PeriodicalIF":1.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143160339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1016/j.nimb.2024.165607
Henrique Fonteles , T.S. Klippel , Daphne Tórgo , Felipe F. Selau , Bárbara Konrad , Daniel L. Baptista , Jonder Morais , Maria do Carmo Martins Alves , Guido Lenz , Johnny F. Dias , Pedro L. Grande
The use of NPs has increased massively in numerous fields, including environmental sciences, electronics, and medicine. Because of their unique physical, optical, and biological capabilities, gold nanoparticles (AuNPs) are of considerable interest. These nanoparticles have distinct properties that make them useful as nanoprobes for imaging and nanocarriers for efficient drug delivery systems, for example. To harness their full potential in the biomedical area, it is crucial to accurately characterize their size, shape, and biological activity. In this study, the -PIXE technique has been employed to investigate the cellular uptake of these nanoparticles upon interaction with the U87 glioblastoma cell line. This analysis provided information on the internalization and distribution of nanoparticles within the cellular environment. To evaluate the cytotoxic effects of the AuNPs, the MTT assay was performed. This widely used method allows for the assessment of cell viability in the presence of nanoparticles. Lastly, their size was also measured by scanning electron microscopy, yielding a mean diameter of 18 ± 5 nm, which agreed well with previous MEIS results.
{"title":"Cellular uptake of gold nanoparticles in glioblastoma cells revealed by μ-PIXE","authors":"Henrique Fonteles , T.S. Klippel , Daphne Tórgo , Felipe F. Selau , Bárbara Konrad , Daniel L. Baptista , Jonder Morais , Maria do Carmo Martins Alves , Guido Lenz , Johnny F. Dias , Pedro L. Grande","doi":"10.1016/j.nimb.2024.165607","DOIUrl":"10.1016/j.nimb.2024.165607","url":null,"abstract":"<div><div>The use of NPs has increased massively in numerous fields, including environmental sciences, electronics, and medicine. Because of their unique physical, optical, and biological capabilities, gold nanoparticles (AuNPs) are of considerable interest. These nanoparticles have distinct properties that make them useful as nanoprobes for imaging and nanocarriers for efficient drug delivery systems, for example. To harness their full potential in the biomedical area, it is crucial to accurately characterize their size, shape, and biological activity. In this study, the <span><math><mi>μ</mi></math></span>-PIXE technique has been employed to investigate the cellular uptake of these nanoparticles upon interaction with the U87 glioblastoma cell line. This analysis provided information on the internalization and distribution of nanoparticles within the cellular environment. To evaluate the cytotoxic effects of the AuNPs, the MTT assay was performed. This widely used method allows for the assessment of cell viability in the presence of nanoparticles. Lastly, their size was also measured by scanning electron microscopy, yielding a mean diameter of 18 ± 5 nm, which agreed well with previous MEIS results.</div></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"560 ","pages":"Article 165607"},"PeriodicalIF":1.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143160314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1016/j.nimb.2024.165603
Sijia Li , Lingtong Yan , Heyang Sun , Xiangqian Feng , Li Li
Textile relics are susceptible to microbial infestation, making sterilization imperative. Electron beam irradiation offers an eco-friendly solution. In practical operations, work distance of electron beam source, irradiation dose, and electron energy all influence sterilization efficacy and the integrity of artifact matrix. By utilizing Geant4 simulations, we studied the interaction between electron beams and the matrix of textiles (protein and cellulose) under different irradiation conditions. For low-energy electron beams, the irradiation distance in a nitrogen atmosphere significantly affects the energy deposition rate with a constant matrix thickness. When the energy is below 1 MeV, both the electron energy and the work distance notably influence the energy deposition rate of the beam. As the energy increases beyond 1 MeV, this influence becomes less significant. Additionally, the depth of 99% energy deposition is less than 1 mm for protein at electron energies below 0.4 MeV and for cellulose below 0.45 MeV.
{"title":"Geant4 simulation of electron beam penetration behavior in textile artifacts matrix","authors":"Sijia Li , Lingtong Yan , Heyang Sun , Xiangqian Feng , Li Li","doi":"10.1016/j.nimb.2024.165603","DOIUrl":"10.1016/j.nimb.2024.165603","url":null,"abstract":"<div><div>Textile relics are susceptible to microbial infestation, making sterilization imperative. Electron beam irradiation offers an eco-friendly solution. In practical operations, work distance of electron beam source, irradiation dose, and electron energy all influence sterilization efficacy and the integrity of artifact matrix. By utilizing Geant4 simulations, we studied the interaction between electron beams and the matrix of textiles (protein and cellulose) under different irradiation conditions. For low-energy electron beams, the irradiation distance in a nitrogen atmosphere significantly affects the energy deposition rate with a constant matrix thickness. When the energy is below 1 MeV, both the electron energy and the work distance notably influence the energy deposition rate of the beam. As the energy increases beyond 1 MeV, this influence becomes less significant. Additionally, the depth of 99% energy deposition is less than 1 mm for protein at electron energies below 0.4 MeV and for cellulose below 0.45 MeV.</div></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"560 ","pages":"Article 165603"},"PeriodicalIF":1.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143160338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1016/j.nimb.2024.165576
Meng Wang , Wei Zhang , Bo Xin , Jie Gao , Liqun Shi , Hongliang Zhang
To precisely quantify the deuterium (D) concentration at significant depths and enhance the understanding of D distribution in zirconium (Zr) films, the proton elastic scattering cross-section of Zr was measured on an Au/Zr/Ti thin film. The measurement was conducted at laboratory angles of 165° and 170° over an energy range of 1.5–5.0 MeV. Non-Rutherford scattering was observed at proton energies exceeding 4.43 MeV. By combining proton backscattering (PBS) and nuclear reaction analysis (NRA) at different energies, a highly precise quantification of D concentrations within deuterated zirconium film, with depth resolution below 500 nm, was achieved. Additionally, we established initial assessments of Zr, Mo, and D atom concentrations in the ZrDx/Mo film, laying the groundwork for future studies.
{"title":"Measurement of proton elastic scattering cross-section of Zr and deuterium distribution in thick ZrDx films","authors":"Meng Wang , Wei Zhang , Bo Xin , Jie Gao , Liqun Shi , Hongliang Zhang","doi":"10.1016/j.nimb.2024.165576","DOIUrl":"10.1016/j.nimb.2024.165576","url":null,"abstract":"<div><div>To precisely quantify the deuterium (D) concentration at significant depths and enhance the understanding of D distribution in zirconium (Zr) films, the proton elastic scattering cross-section of Zr was measured on an Au/Zr/Ti thin film. The measurement was conducted at laboratory angles of 165° and 170° over an energy range of 1.5–5.0 MeV. Non-Rutherford scattering was observed at proton energies exceeding 4.43 MeV. By combining proton backscattering (PBS) and nuclear reaction analysis (NRA) at different energies, a highly precise quantification of D concentrations within deuterated zirconium film, with depth resolution below 500 nm, was achieved. Additionally, we established initial assessments of Zr, Mo, and D atom concentrations in the ZrD<sub>x</sub>/Mo film, laying the groundwork for future studies.</div></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"559 ","pages":"Article 165576"},"PeriodicalIF":1.4,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142701502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1016/j.nimb.2024.165566
J. Jarošík , C. Bonaldi , C. Fontana , W. Geerts , M. Macías , S. Oberstedt , M. Štefánik , A. Tsinganis , V. Wagner
This paper describes cross-section measurements of fast-neutron-induced reactions using the neutron activation method. The study employed two accelerator-driven fast neutron sources, each possessing distinct characteristics during irradiation of analogous sets of samples. Specifically, the neutron source at the NPI Řež relied on the p+Li(C) reaction, while MONNET at JRC Geel utilized the d+TiT(Ag) reaction for neutron production. Building upon prior experiments conducted at NPI, we present new cross-sections for reactions, some of which suffer from a dearth of experimental data. The results presented in this paper originate from samples of Al, Au, Bi, Co, NaF, and Y that were irradiated with neutrons at energies of 17.6(3) MeV, and 18.5(4) MeV at MONNET, and an energy of 22.5(8) MeV at the NPI. Following neutron irradiation, the samples were analysed using gamma-ray spectrometry. Cross-sections of several fast-neutron-induced reactions were determined on the basis of the measurement of neutron spectra and corresponding reaction yields. By comparing the results of analogous experiments conducted in different experimental setups, it becomes possible to assess systematic uncertainties. The obtained cross-sections may contribute to the further development of both advanced nuclear reactors and to a more precise fast-neutron dosimetry.
{"title":"Comparison of fast-neutron-induced reaction cross-sections in 27Al, 197Au, 209Bi, 59Co, 19F, 23Na, and 89Y in quasi-monoenergetic fields of p+Li and d+TiT neutron sources","authors":"J. Jarošík , C. Bonaldi , C. Fontana , W. Geerts , M. Macías , S. Oberstedt , M. Štefánik , A. Tsinganis , V. Wagner","doi":"10.1016/j.nimb.2024.165566","DOIUrl":"10.1016/j.nimb.2024.165566","url":null,"abstract":"<div><div>This paper describes cross-section measurements of fast-neutron-induced reactions using the neutron activation method. The study employed two accelerator-driven fast neutron sources, each possessing distinct characteristics during irradiation of analogous sets of samples. Specifically, the neutron source at the NPI Řež relied on the p+Li(C) reaction, while MONNET at JRC Geel utilized the d+TiT(Ag) reaction for neutron production. Building upon prior experiments conducted at NPI, we present new cross-sections for reactions, some of which suffer from a dearth of experimental data. The results presented in this paper originate from samples of Al, Au, Bi, Co, NaF, and Y that were irradiated with neutrons at energies of 17.6(3) MeV, and 18.5(4) MeV at MONNET, and an energy of 22.5(8) MeV at the NPI. Following neutron irradiation, the samples were analysed using gamma-ray spectrometry. Cross-sections of several fast-neutron-induced reactions were determined on the basis of the measurement of neutron spectra and corresponding reaction yields. By comparing the results of analogous experiments conducted in different experimental setups, it becomes possible to assess systematic uncertainties. The obtained cross-sections may contribute to the further development of both advanced nuclear reactors and to a more precise fast-neutron dosimetry.</div></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"559 ","pages":"Article 165566"},"PeriodicalIF":1.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142702353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical short-range order (CSRO) is an important structure in high/medium entropy alloys (H/MEAs), which has a significant influence on the mechanical properties of irradiated materials. In this work, molecular dynamics (MD) simulations are performed to investigate the effects of CSRO on the point defect evolution during displacement cascade in medium-entropy CrCoNi alloys. To validate the influence of CSRO on point defects, multi-displacement cascades were initially conducted on the alloy. The results indicate that the CSRO structure can notably diminish dislocation and defect densities. Then, the influence of the CSRO structure on point defects under single displacement cascade was discussed. Both the peak number of point defects and the number of surviving point defects decrease with the increasing degree of CSRO during the single displacement cascade, indicating that the CSRO enhances the irradiation-resistance of irradiated materials. The Ni-rich region in CSRO can inhibit the formation of point defects due to its higher formation energy barrier. While the Co-Cr region in CSRO was found to promote the migration of point defects that can facilitate their recombination due to the lower migration energy. The current work provides new insights into understanding the evolution of irradiation-induced defects and mechanical properties of irradiated M/HEAs.
{"title":"Effects of chemical short-range order on displacement cascade in medium-entropy CrCoNi alloys","authors":"Yuzhou Liang, Chuanlong Xu, Xiaobao Tian, Qingyuan Wang, Wentao Jiang, Haidong Fan","doi":"10.1016/j.nimb.2024.165581","DOIUrl":"10.1016/j.nimb.2024.165581","url":null,"abstract":"<div><div>Chemical short-range order (CSRO) is an important structure in high/medium entropy alloys (H/MEAs), which has a significant influence on the mechanical properties of irradiated materials. In this work, molecular dynamics (MD) simulations are performed to investigate the effects of CSRO on the point defect evolution during displacement cascade in medium-entropy CrCoNi alloys. To validate the influence of CSRO on point defects, multi-displacement cascades were initially conducted on the alloy. The results indicate that the CSRO structure can notably diminish dislocation and defect densities. Then, the influence of the CSRO structure on point defects under single displacement cascade was discussed. Both the peak number of point defects and the number of surviving point defects decrease with the increasing degree of CSRO during the single displacement cascade, indicating that the CSRO enhances the irradiation-resistance of irradiated materials. The Ni-rich region in CSRO can inhibit the formation of point defects due to its higher formation energy barrier. While the Co-Cr region in CSRO was found to promote the migration of point defects that can facilitate their recombination due to the lower migration energy. The current work provides new insights into understanding the evolution of irradiation-induced defects and mechanical properties of irradiated M/HEAs.</div></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"559 ","pages":"Article 165581"},"PeriodicalIF":1.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142701614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Activation cross sections for 7Li-induced reactions on natTi were measured to discuss the suitability of selected reactions as monitor ones. The cross sections for the production of 54,52gMn, 51,49,48Cr, 48V, and 48,47,46Sc were determined for the first time. Additionally, the thick target yields of 54,52gMn, 51Cr, 48V, and 48,47,46Sc were experimentally measured and compared with the yields calculated from the measured cross sections. The agreement between the experimental and calculated thick target yields validates the reliability of the experimental data measured in this work. The 7Li-induced reactions on natTi for the production of 54,52gMn, and 51Cr are recommended as monitor reactions.
{"title":"Activation cross sections of 7Li-induced reactions on natTi: Implications for monitor reactions","authors":"Masayuki Aikawa , Saki Goto , Damdinsuren Gantumur , Dagvadorj Ichinkhorloo , Naoyuki Ukon , Naohiko Otuka , Sándor Takács , Hiromitsu Haba","doi":"10.1016/j.nimb.2024.165579","DOIUrl":"10.1016/j.nimb.2024.165579","url":null,"abstract":"<div><div>Activation cross sections for <sup>7</sup>Li-induced reactions on <sup>nat</sup>Ti were measured to discuss the suitability of selected reactions as monitor ones. The cross sections for the production of <sup>54,52g</sup>Mn, <sup>51,49,48</sup>Cr, <sup>48</sup>V, and <sup>48,47,46</sup>Sc were determined for the first time. Additionally, the thick target yields of <sup>54,52g</sup>Mn, <sup>51</sup>Cr, <sup>48</sup>V, and <sup>48,47,46</sup>Sc were experimentally measured and compared with the yields calculated from the measured cross sections. The agreement between the experimental and calculated thick target yields validates the reliability of the experimental data measured in this work. The <sup>7</sup>Li-induced reactions on <sup>nat</sup>Ti for the production of <sup>54,52g</sup>Mn, and <sup>51</sup>Cr are recommended as monitor reactions.</div></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"559 ","pages":"Article 165579"},"PeriodicalIF":1.4,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142702352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1016/j.nimb.2024.165580
Siming Wang , Yifei Yang , Rong Yang , Xuemei Zhang
The single electron detachment (SED) cross sections for Rh−, Ir− in collision with He, Ne, Ar, Kr, Xe in the energy range of 10 keV ≤ E ≤ 30 keV are measured by using the growth rate method. A position sensitive detector based on Multi-Channel plate (MCP) is used to measure undetached negative ions and produced neutrals. The SED cross sections increase as the incident velocity increases. These data are compared with our previous experimental data of Co− and Ir− colliding with Kr and Xe. Although the ground state electron configurations of Co−, Rh−, Ir− are all d8s2, the SED cross sections of Rh− are found to be much lower than those of Co− and Ir−.
{"title":"Experimental study of single-electron detachment for Rh−, Ir− in collision with noble gases","authors":"Siming Wang , Yifei Yang , Rong Yang , Xuemei Zhang","doi":"10.1016/j.nimb.2024.165580","DOIUrl":"10.1016/j.nimb.2024.165580","url":null,"abstract":"<div><div>The single electron detachment (SED) cross sections for Rh<sup>−</sup>, Ir<sup>−</sup> in collision with He, Ne, Ar, Kr, Xe in the energy range of 10 keV <em>≤ E ≤</em> 30 keV are measured by using the growth rate method. A position sensitive detector based on Multi-Channel plate (MCP) is used to measure undetached negative ions and produced neutrals. The SED cross sections increase as the incident velocity increases. These data are compared with our previous experimental data of Co<sup>−</sup> and Ir<sup>−</sup> colliding with Kr and Xe. Although the ground state electron configurations of Co<sup>−</sup>, Rh<sup>−</sup>, Ir<sup>−</sup> are all d<sup>8</sup>s<sup>2</sup>, the SED cross sections of Rh<sup>−</sup> are found to be much lower than those of Co<sup>−</sup> and Ir<sup>−</sup>.</div></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"559 ","pages":"Article 165580"},"PeriodicalIF":1.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142702351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The precision of 10Be measurements by accelerator mass spectrometry (AMS) relies on the intensity of BeO- currents from Cs-sputtered samples. We conducted an experiment to determine the effect of cathode materials on BeO- currents for AMS measurements. The peak currents of stainless-steel cathodes were slightly higher than those of Cu cathodes, indicating the benefits of using the former for measuring low-level samples. However, this slight difference may be counteracted by longer measurement times. The difference in the BeO- currents is attributed to competitive ionization between BeO and cathode materials. Fe, the primary element in stainless steel, has a significantly lower electron affinity compared to Cu, resulting in reduced electron consumption for BeO ionization. This phenomenon mirrors the effect of metal-matrix selection on BeO- current intensity. These results are relevant for optimizing beam currents of other nuclides in AMS measurements and are beneficial for studies conducted using SNICS ion sources.
{"title":"Influence of cathode materials on BeO currents in cosmogenic 10Be measurements using a SNICS ion source and accelerator mass spectrometry","authors":"Atsunori Nakamura , Takeyasu Yamagata , Hiroyuki Matsuzaki","doi":"10.1016/j.nimb.2024.165562","DOIUrl":"10.1016/j.nimb.2024.165562","url":null,"abstract":"<div><div>The precision of <sup>10</sup>Be measurements by accelerator mass spectrometry (AMS) relies on the intensity of BeO<sup>-</sup> currents from Cs-sputtered samples. We conducted an experiment to determine the effect of cathode materials on BeO<sup>-</sup> currents for AMS measurements. The peak currents of stainless-steel cathodes were slightly higher than those of Cu cathodes, indicating the benefits of using the former for measuring low-level samples. However, this slight difference may be counteracted by longer measurement times. The difference in the BeO<sup>-</sup> currents is attributed to competitive ionization between BeO and cathode materials. Fe, the primary element in stainless steel, has a significantly lower electron affinity compared to Cu, resulting in reduced electron consumption for BeO ionization. This phenomenon mirrors the effect of metal-matrix selection on BeO<sup>-</sup> current intensity. These results are relevant for optimizing beam currents of other nuclides in AMS measurements and are beneficial for studies conducted using SNICS ion sources.</div></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"558 ","pages":"Article 165562"},"PeriodicalIF":1.4,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1016/j.nimb.2024.165575
A.M. Abdelmonem , Samah K. Elshamndy , M.S. Ali
Gamma-ray, neutron, electrons and ions interactions in seven composites were theoretical radiological studied. Alloy A, alloy B, alloy C, solder, zirconium, filler, and acrylic are investigated which used in dentistry and have densities between 1.104 and 15.522 g/cm3. Additionally, an experimental investigation for the last three composites against gamma-ray (137Cs and 60Co) with NaI(Tl) detector, total gamma-ray and fast neutron using 252Cf neutron source were measured using by stilbene detector. Phy-X/PSD, MRCS program, and the Monte Carlo-based MATLAB software for Neutron Attenuation Properties (MCCNAP) were also used to calculate the fast neutron removal cross-section (FNRCS) at 4.5 MeV. Alloys A, B, and C had the greatest FNRCS and MRC values, respectively, averaged at 0.187 and 0.222 cm−1. Phy-X/PSD and Py-MLBUF programs were used to evaluate gamma radiation interaction parameters across a wide energy range from 0.015 − 15 MeV. For all forms of radiation studied, Alloy A, Alloy B, and Alloy C have been found to be the best photon shield composites. SRIM Monte Carlo software computed the range of C4+, H+, He2+ and Au3+, and ions across a wide energy range (0.01–20 MeV) of ions, and the ESTAR NIST program deduced the total stopping power (TSP) and continuous slowing down approximation (CSDA) range values for electron interactions across a wide energy range (0.01–1000 MeV) of electron. Both TPS and CSDA range data showed that Alloys A, B, and C were preferred over other samples, and the ranges of investigated ions increased with decreasing sample density but rose with projectile energies across all samples.
{"title":"Studying of radiation attenuation and interaction parameters of some materials used in dental applications","authors":"A.M. Abdelmonem , Samah K. Elshamndy , M.S. Ali","doi":"10.1016/j.nimb.2024.165575","DOIUrl":"10.1016/j.nimb.2024.165575","url":null,"abstract":"<div><div>Gamma-ray, neutron, electrons and ions interactions in seven composites were theoretical radiological studied. Alloy A, alloy B, alloy C, solder, zirconium, filler, and acrylic are investigated which used in dentistry and have densities between 1.104 and 15.522 g/cm<sup>3</sup>. Additionally, an experimental investigation for the last three composites against gamma-ray (<sup>137</sup>Cs and <sup>60</sup>Co) with NaI(Tl) detector, total gamma-ray and fast neutron using <sup>252</sup>Cf neutron source were measured using by stilbene detector. Phy-X/PSD, MRCS program, and the Monte Carlo-based MATLAB software for Neutron Attenuation Properties (MCCNAP) were also used to calculate the fast neutron removal cross-section (FNRCS) at 4.5 MeV. Alloys A, B, and C had the greatest FNRCS and MRC values, respectively, averaged at 0.187 and 0.222 cm<sup>−1</sup>. Phy-X/PSD and Py-MLBUF programs were used to evaluate gamma radiation interaction parameters across a wide energy range from 0.015 − 15 MeV. For all forms of radiation studied, Alloy A, Alloy B, and Alloy C have been found to be the best photon shield composites. SRIM Monte Carlo software computed the range of C<sup>4+</sup>, H<sup>+</sup>, He<sup>2+</sup> and Au<sup>3+</sup>, and ions across a wide energy range (0.01–20 MeV) of ions, and the ESTAR NIST program deduced the total stopping power (TSP) and continuous slowing down approximation (CSDA) range values for electron interactions across a wide energy range (0.01–1000 MeV) of electron. Both TPS and CSDA range data showed that Alloys A, B, and C were preferred over other samples, and the ranges of investigated ions increased with decreasing sample density but rose with projectile energies across all samples.</div></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"558 ","pages":"Article 165575"},"PeriodicalIF":1.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}