The Sapindaceae family, also known as the soapberry family, comprises over 140 genera and approximately 1,900 species, including economically important and popular fruit trees like lychee, longan, rambutan, and ackee; timber trees as the maple and buckeye; and other species that are prized for their abundant secondary metabolites, such as saponins from soapberry and seed oil from yellowhorn. The cover features the letters “SAP”, representing the Sapindaceae genome database SapBase, filled in with images of key species within the Sapindaceae. SapBase is an integrative genomic resource and analysis platform for the Sapindaceae family established by Li et al. (pages 1561–1570). SapBase provides a critical foundation for research on the diverse species within the Sapindaceae.
{"title":"Cover Image:","authors":"","doi":"10.1111/jipb.13525","DOIUrl":"https://doi.org/10.1111/jipb.13525","url":null,"abstract":"<p>The Sapindaceae family, also known as the soapberry family, comprises over 140 genera and approximately 1,900 species, including economically important and popular fruit trees like lychee, longan, rambutan, and ackee; timber trees as the maple and buckeye; and other species that are prized for their abundant secondary metabolites, such as saponins from soapberry and seed oil from yellowhorn. The cover features the letters “SAP”, representing the Sapindaceae genome database SapBase, filled in with images of key species within the Sapindaceae. SapBase is an integrative genomic resource and analysis platform for the Sapindaceae family established by Li et al. (pages 1561–1570). SapBase provides a critical foundation for research on the diverse species within the Sapindaceae.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"66 8","pages":"C1"},"PeriodicalIF":9.3,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13525","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tianqi Qiu, Yuanyuan Su, Nannan Guo, Xinyuan Zhang, Pengfei Jia, Tonglin Mao, Xianling Wang
It has been proposed that cortical fine actin filaments are needed for the morphogenesis of pavement cells (PCs). However, the precise role and regulation mechanisms of actin filaments in PC morphogenesis are not well understood. Here, we found that Arabidopsis thaliana ACTIN DEPOLYMERIZING FACTOR9 (ADF9) is required for the morphogenesis of PC, which is negatively regulated by the R2R3 MYELOBLASTOSIS (MYB) transcription factor MYB52. In adf9 mutants, the lobe number of cotyledon PCs was significantly reduced, while the average lobe length did not differ significantly compared to that of wild type (Col-0), except for the variations in cell area and circularity, whereas the PC shapes in ADF9 overexpression seedlings showed different results. ADF9 decorated actin filaments, and colocalized with plasma membrane. The extent of filament bundling and actin filament bundling activity in adf9 mutant decreased. In addition, MYB52 directly targeted the promoter of ADF9 and negatively regulated its expression. The myb52-2 mutant showed increased lobe number and cell area, reduced cell circularity of PCs, and the PC phenotypes were suppressed when ADF9 was knocked out. Taken together, our data demonstrate that actin filaments play an important role in the morphogenesis of PC and reveal a transcriptional mechanism underlying MYB52 regulation of ADF9-mediated actin filament bundling in PC morphogenesis.
有人提出,铺层细胞(PC)的形态发生需要皮层细肌动蛋白丝。然而,肌动蛋白丝在 PC 形态发生中的确切作用和调控机制还不十分清楚。在这里,我们发现拟南芥ACTIN DEPOLYMERIZING FACTOR9(ADF9)是PC形态发生所必需的,它受R2R3 MYELOBLASTOSIS(MYB)转录因子MYB52的负调控。在adf9突变体中,子叶PC的叶片数明显减少,而平均叶片长度与野生型(Col-0)相比除细胞面积和圆度变化外没有明显差异,而ADF9过表达幼苗的PC形状则表现出不同的结果。ADF9 修饰肌动蛋白丝,并与质膜共定位。adf9突变体的丝束化程度和肌动蛋白丝束化活性降低。此外,MYB52直接靶向ADF9的启动子,负调控其表达。myb52-2突变体的细胞叶数量和细胞面积增加,PC细胞的圆周率降低,而敲除ADF9后PC表型受到抑制。综上所述,我们的数据证明了肌动蛋白丝在PC形态发生中的重要作用,并揭示了MYB52调控ADF9介导的肌动蛋白丝束在PC形态发生中的转录机制。
{"title":"MYB52 negatively regulates ADF9-meditated actin filament bundling in Arabidopsis pavement cell morphogenesis.","authors":"Tianqi Qiu, Yuanyuan Su, Nannan Guo, Xinyuan Zhang, Pengfei Jia, Tonglin Mao, Xianling Wang","doi":"10.1111/jipb.13762","DOIUrl":"https://doi.org/10.1111/jipb.13762","url":null,"abstract":"<p><p>It has been proposed that cortical fine actin filaments are needed for the morphogenesis of pavement cells (PCs). However, the precise role and regulation mechanisms of actin filaments in PC morphogenesis are not well understood. Here, we found that Arabidopsis thaliana ACTIN DEPOLYMERIZING FACTOR9 (ADF9) is required for the morphogenesis of PC, which is negatively regulated by the R2R3 MYELOBLASTOSIS (MYB) transcription factor MYB52. In adf9 mutants, the lobe number of cotyledon PCs was significantly reduced, while the average lobe length did not differ significantly compared to that of wild type (Col-0), except for the variations in cell area and circularity, whereas the PC shapes in ADF9 overexpression seedlings showed different results. ADF9 decorated actin filaments, and colocalized with plasma membrane. The extent of filament bundling and actin filament bundling activity in adf9 mutant decreased. In addition, MYB52 directly targeted the promoter of ADF9 and negatively regulated its expression. The myb52-2 mutant showed increased lobe number and cell area, reduced cell circularity of PCs, and the PC phenotypes were suppressed when ADF9 was knocked out. Taken together, our data demonstrate that actin filaments play an important role in the morphogenesis of PC and reveal a transcriptional mechanism underlying MYB52 regulation of ADF9-mediated actin filament bundling in PC morphogenesis.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xia Jin, Xiaoshuang Li, Jaime A. Teixeira da Silva, Xuncheng Liu
Lysine acetylation, an evolutionarily conserved post-translational protein modification, is reversibly catalyzed by lysine acetyltransferases and lysine deacetylases. Lysine acetylation, which was first discovered on histones, mainly functions to configure the structure of chromatin and regulate gene transcriptional activity. Over the past decade, with advances in high-resolution mass spectrometry, a vast and growing number of non-histone proteins modified by acetylation in various plant species have been identified. Lysine acetylation of non-histone proteins is widely involved in regulating biological processes in plants such as photosynthesis, energy metabolism, hormone signal transduction and stress responses. Moreover, in plants, lysine acetylation plays crucial roles in regulating enzyme activity, protein stability, protein interaction and subcellular localization. This review summarizes recent progress in our understanding of the biological functions and mechanisms of non-histone protein acetylation in plants. Research prospects in this field are also noted.
{"title":"Functions and mechanisms of non-histone protein acetylation in plants","authors":"Xia Jin, Xiaoshuang Li, Jaime A. Teixeira da Silva, Xuncheng Liu","doi":"10.1111/jipb.13756","DOIUrl":"10.1111/jipb.13756","url":null,"abstract":"<p>Lysine acetylation, an evolutionarily conserved post-translational protein modification, is reversibly catalyzed by lysine acetyltransferases and lysine deacetylases. Lysine acetylation, which was first discovered on histones, mainly functions to configure the structure of chromatin and regulate gene transcriptional activity. Over the past decade, with advances in high-resolution mass spectrometry, a vast and growing number of non-histone proteins modified by acetylation in various plant species have been identified. Lysine acetylation of non-histone proteins is widely involved in regulating biological processes in plants such as photosynthesis, energy metabolism, hormone signal transduction and stress responses. Moreover, in plants, lysine acetylation plays crucial roles in regulating enzyme activity, protein stability, protein interaction and subcellular localization. This review summarizes recent progress in our understanding of the biological functions and mechanisms of non-histone protein acetylation in plants. Research prospects in this field are also noted.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"66 10","pages":"2087-2101"},"PeriodicalIF":9.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13756","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guo Wen, Bei Wu, Yi Wang, Ting Wu, Zhenhai Han, Xinzhong Zhang
Dissecting the genetic control of apple fruit harvest date (AFHD) into multiple Mendelian factors poses a significant challenge in modern genetics. Here, a quantitative trait locus (QTL) for AFHD was fine-mapped to the NAC transcription factor (TF) MdNAC18 within the interval defined by the overlap of QTLs Z03.5/Z03.6 and F03.2/F03.3. One direct target of MdNAC18 is the ethylene biosynthesis gene MdACO1. The single nucleotide polymorphisms (SNPs) SNP517 and SNP958 in the MdNAC18 coding sequence modulated activation of MdACO1 by MdNAC18. SNP1229 in the MdACO1 promoter destroyed the MdNAC18 binding site and thus abolished MdNAC18 binding. SNP517 and SNP958 also affected MdNAC18 activation of the TF gene MdARF5; MdARF5 activates the ethylene biosynthesis gene MdACS1. SNP517 and SNP958 in MdNAC18, SNP1229 and SNP769 (linked to InDel62) in MdACO1, and InDel162 in MdACS1 constituted a genetic variation network. The genetic effect of this network on AFHD was estimated as 60.3 d, accounting for 52.6% of the phenotype variation of the training population. The joint effects of these polymorphisms increased the accuracy of a genomics-assisted prediction (GAP) model for AFHD (r = 0.7125). Together, our results suggest that genetic variation in MdNAC18 affects AFHD by modulating ethylene biosynthesis and provide an optimized GAP model for apple breeding.
{"title":"Natural variations in MdNAC18 exert major genetic effect on apple fruit harvest date by regulating ethylene biosynthesis genes.","authors":"Guo Wen, Bei Wu, Yi Wang, Ting Wu, Zhenhai Han, Xinzhong Zhang","doi":"10.1111/jipb.13757","DOIUrl":"https://doi.org/10.1111/jipb.13757","url":null,"abstract":"<p><p>Dissecting the genetic control of apple fruit harvest date (AFHD) into multiple Mendelian factors poses a significant challenge in modern genetics. Here, a quantitative trait locus (QTL) for AFHD was fine-mapped to the NAC transcription factor (TF) MdNAC18 within the interval defined by the overlap of QTLs Z03.5/Z03.6 and F03.2/F03.3. One direct target of MdNAC18 is the ethylene biosynthesis gene MdACO1. The single nucleotide polymorphisms (SNPs) SNP517 and SNP958 in the MdNAC18 coding sequence modulated activation of MdACO1 by MdNAC18. SNP1229 in the MdACO1 promoter destroyed the MdNAC18 binding site and thus abolished MdNAC18 binding. SNP517 and SNP958 also affected MdNAC18 activation of the TF gene MdARF5; MdARF5 activates the ethylene biosynthesis gene MdACS1. SNP517 and SNP958 in MdNAC18, SNP1229 and SNP769 (linked to InDel62) in MdACO1, and InDel162 in MdACS1 constituted a genetic variation network. The genetic effect of this network on AFHD was estimated as 60.3 d, accounting for 52.6% of the phenotype variation of the training population. The joint effects of these polymorphisms increased the accuracy of a genomics-assisted prediction (GAP) model for AFHD (r = 0.7125). Together, our results suggest that genetic variation in MdNAC18 affects AFHD by modulating ethylene biosynthesis and provide an optimized GAP model for apple breeding.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The programmable nuclease TnpB is significantly smaller than Cas9, can edit genes in medicinal plants, including Artemisia annua, Salvia miltiorrhiza, Scutellaria baicalensis, Isatis indigotica, and Codonopsis pilosula, and has potential uses in molecular breeding to enhance crop yield and quality.