Maize (Zea mays L.) growth and yield are severely limited by drought stress worldwide. Stomata play crucial roles in transpiration and gas exchange and are thus essential for improving plant water-use efficiency (WUE) to help plants deal with the threat of drought. In this study, we characterized the maize dsd1 (decreased stomatal density 1) mutant, which showed defects in stomatal development, including guard mother cell differentiation, subsidiary cell formation and guard cell maturation. DSD1 encodes the basic helix-loop-helix transcription factor INDUCER OF CBF EXPRESSION b (ZmICEb) and is a homolog of ICE1 in Arabidopsis (Arabidopsis thaliana). DSD1/ZmICEb is expressed in stomatal file cells throughout stomatal development and plays a conserved role in stomatal development across maize and Arabidopsis. Mutations in DSD1/ZmICEb dramatically improved drought tolerance and WUE in maize and reduced yield losses under drought conditions. Therefore, DSD1/ZmICEb represents a promising candidate target gene for the genetic improvement of drought tolerance in maize by manipulating stomatal density.
{"title":"DSD1/ZmICEb regulates stomatal development and drought tolerance in maize.","authors":"Wenqi Zhou, Jun Yin, Yuqian Zhou, Yongsheng Li, Haijun He, Yanzhong Yang, Xiaojuan Wang, Xiaorong Lian, Xiaoyun Dong, Zengke Ma, Liang Chen, Suiwen Hou","doi":"10.1111/jipb.13890","DOIUrl":"https://doi.org/10.1111/jipb.13890","url":null,"abstract":"<p><p>Maize (Zea mays L.) growth and yield are severely limited by drought stress worldwide. Stomata play crucial roles in transpiration and gas exchange and are thus essential for improving plant water-use efficiency (WUE) to help plants deal with the threat of drought. In this study, we characterized the maize dsd1 (decreased stomatal density 1) mutant, which showed defects in stomatal development, including guard mother cell differentiation, subsidiary cell formation and guard cell maturation. DSD1 encodes the basic helix-loop-helix transcription factor INDUCER OF CBF EXPRESSION b (ZmICEb) and is a homolog of ICE1 in Arabidopsis (Arabidopsis thaliana). DSD1/ZmICEb is expressed in stomatal file cells throughout stomatal development and plays a conserved role in stomatal development across maize and Arabidopsis. Mutations in DSD1/ZmICEb dramatically improved drought tolerance and WUE in maize and reduced yield losses under drought conditions. Therefore, DSD1/ZmICEb represents a promising candidate target gene for the genetic improvement of drought tolerance in maize by manipulating stomatal density.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Investigations into the nitrogen-fixing symbiosis between legumes and rhizobia can yield innovative strategies for sustainable agriculture. Legume species of the Inverted Repeat-Lacking Clade (IRLC) and the Dalbergioids, can utilize nodule cysteine-rich (NCR) peptides, a diverse family of peptides characterized by four or six highly conserved cysteine residues, to communicate with their microbial symbionts. These peptides, many of which exhibit antimicrobial properties, induce profound differentiation of bacteroids (semi-autonomous forms of bacteria) within nodule cells. This terminal differentiation endows the bacteroids with the ability to fix nitrogen, at the expense of their reproductive capacity. Notably, a significant number of NCR peptides is expressed in the nodule fixation zone, where the bacteroids have already reached terminal differentiation. Recent discoveries, through forward genetics approaches, have revealed that the functions of NCR peptides extend beyond antimicrobial effects and the promotion of differentiation. They also play a critical role in sustaining the viability of terminally differentiated bacteroids within nodule cells. These findings underscore the multifaceted functions of NCR peptides and highlight the importance of these peptides in mediating communications between host cells and the terminally differentiated bacteroids.
{"title":"Essential roles of nodule cysteine-rich peptides in maintaining the viability of terminally differentiated bacteroids in legume-rhizobia symbiosis.","authors":"Jian Yang, Fengzhan Gao, Huairong Pan","doi":"10.1111/jipb.13891","DOIUrl":"https://doi.org/10.1111/jipb.13891","url":null,"abstract":"<p><p>Investigations into the nitrogen-fixing symbiosis between legumes and rhizobia can yield innovative strategies for sustainable agriculture. Legume species of the Inverted Repeat-Lacking Clade (IRLC) and the Dalbergioids, can utilize nodule cysteine-rich (NCR) peptides, a diverse family of peptides characterized by four or six highly conserved cysteine residues, to communicate with their microbial symbionts. These peptides, many of which exhibit antimicrobial properties, induce profound differentiation of bacteroids (semi-autonomous forms of bacteria) within nodule cells. This terminal differentiation endows the bacteroids with the ability to fix nitrogen, at the expense of their reproductive capacity. Notably, a significant number of NCR peptides is expressed in the nodule fixation zone, where the bacteroids have already reached terminal differentiation. Recent discoveries, through forward genetics approaches, have revealed that the functions of NCR peptides extend beyond antimicrobial effects and the promotion of differentiation. They also play a critical role in sustaining the viability of terminally differentiated bacteroids within nodule cells. These findings underscore the multifaceted functions of NCR peptides and highlight the importance of these peptides in mediating communications between host cells and the terminally differentiated bacteroids.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minmin Du, Chuanlong Sun, Lei Deng, Ming Zhou, Junming Li, Yongchen Du, Zhibiao Ye, Sanwen Huang, Tianlai Li, Jingquan Yu, Chang-Bao Li, Chuanyou Li
The modern cultivated tomato (Solanum lycopersicum) was domesticated from Solanum pimpinellifolium native to the Andes Mountains of South America through a “two-step domestication” process. It was introduced to Europe in the 16th century and later widely cultivated worldwide. Since the late 19th century, breeders, guided by modern genetics, breeding science, and statistical theory, have improved tomatoes into an important fruit and vegetable crop that serves both fresh consumption and processing needs, satisfying diverse consumer demands. Over the past three decades, advancements in modern crop molecular breeding technologies, represented by molecular marker technology, genome sequencing, and genome editing, have significantly transformed tomato breeding paradigms. This article reviews the research progress in the field of tomato molecular breeding, encompassing genome sequencing of germplasm resources, the identification of functional genes for agronomic traits, and the development of key molecular breeding technologies. Based on these advancements, we also discuss the major challenges and perspectives in this field.
{"title":"Molecular breeding of tomato: Advances and challenges","authors":"Minmin Du, Chuanlong Sun, Lei Deng, Ming Zhou, Junming Li, Yongchen Du, Zhibiao Ye, Sanwen Huang, Tianlai Li, Jingquan Yu, Chang-Bao Li, Chuanyou Li","doi":"10.1111/jipb.13879","DOIUrl":"10.1111/jipb.13879","url":null,"abstract":"<p>The modern cultivated tomato (<i>Solanum lycopersicum</i>) was domesticated from <i>Solanum pimpinellifolium</i> native to the Andes Mountains of South America through a “two-step domestication” process. It was introduced to Europe in the 16th century and later widely cultivated worldwide. Since the late 19th century, breeders, guided by modern genetics, breeding science, and statistical theory, have improved tomatoes into an important fruit and vegetable crop that serves both fresh consumption and processing needs, satisfying diverse consumer demands. Over the past three decades, advancements in modern crop molecular breeding technologies, represented by molecular marker technology, genome sequencing, and genome editing, have significantly transformed tomato breeding paradigms. This article reviews the research progress in the field of tomato molecular breeding, encompassing genome sequencing of germplasm resources, the identification of functional genes for agronomic traits, and the development of key molecular breeding technologies. Based on these advancements, we also discuss the major challenges and perspectives in this field.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"67 3","pages":"669-721"},"PeriodicalIF":9.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13879","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Like Sun, Jiaxi Yin, Long Wang, Jingjing Li, Can Hu, Bo Liu, Chenfan Zheng, Jiale Chen, Vasileios Fotopoulos, Qingyao Shu, Meng Jiang
Serotonin (5-hydroxytryptamine (5-HT)) is a pineal hormone and a secondary metabolite related to various hormonal and physiological functions at the organ, tissue, and cellular levels. It is considered increasingly important in regulating animal behavior, but the function of serotonin in plants is far less known. According to recent research, serotonin is vital for plant growth, development, and stress responses, achieved through transcriptional and phytohormonal interplay. Specifically, this review addresses critical gaps in the understanding of serotonin's function in plants by examining its biosynthesis, metabolism, and its multifaceted role in mitigating both abiotic stresses (salinity, drought, heat, cold, and heavy metals) as well as biotic challenges (pathogens, pests, and herbivores). As a pivotal player, it engages in a variety of significant cellular and molecular interactions, including those with reactive oxygen and nitrogen species (RONS), and various phytohormones such as auxin, abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and cytokinin (CK). Advances in serotonin-related research are anticipated to offer a valuable basis for uncovering the regulatory pathways by which serotonin impacts the resilience of crops against abiotic stress.
{"title":"Role of serotonin in plant stress responses: Quo vadis?","authors":"Like Sun, Jiaxi Yin, Long Wang, Jingjing Li, Can Hu, Bo Liu, Chenfan Zheng, Jiale Chen, Vasileios Fotopoulos, Qingyao Shu, Meng Jiang","doi":"10.1111/jipb.13882","DOIUrl":"https://doi.org/10.1111/jipb.13882","url":null,"abstract":"<p><p>Serotonin (5-hydroxytryptamine (5-HT)) is a pineal hormone and a secondary metabolite related to various hormonal and physiological functions at the organ, tissue, and cellular levels. It is considered increasingly important in regulating animal behavior, but the function of serotonin in plants is far less known. According to recent research, serotonin is vital for plant growth, development, and stress responses, achieved through transcriptional and phytohormonal interplay. Specifically, this review addresses critical gaps in the understanding of serotonin's function in plants by examining its biosynthesis, metabolism, and its multifaceted role in mitigating both abiotic stresses (salinity, drought, heat, cold, and heavy metals) as well as biotic challenges (pathogens, pests, and herbivores). As a pivotal player, it engages in a variety of significant cellular and molecular interactions, including those with reactive oxygen and nitrogen species (RONS), and various phytohormones such as auxin, abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and cytokinin (CK). Advances in serotonin-related research are anticipated to offer a valuable basis for uncovering the regulatory pathways by which serotonin impacts the resilience of crops against abiotic stress.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA interference (RNAi) is increasingly used for plant protection against pathogens and pests. However, the traditional delivery method causes plant tissue damage, is affected by environmental factors, and faces difficulties in penetrating the barriers of cell walls and the limitations of plant species, ultimately leading to low delivery efficiency. With advances in nanotechnology, nanomaterials (NMs) have been identified as effective carriers for nucleic acid delivery because of their ability to operate independently of external mechanical forces, prevent degradation by bioenzymes, exhibit good biocompatibility, and offer high loading capacity. This review summarizes the application of NM-mediated RNAi against plant pathogens and pests, focusing on how different NMs break through the cell barriers of plants, pathogens, and pests according to their size, morphology, and charge characteristics. Furthermore, we discuss the advantages and improvement strategies of NMs as nucleic acid delivery carriers, alongside assessing their potential application for the management of plant pathogens and pests.
{"title":"Engineered nanotransporters for efficient RNAi delivery in plant protection applications.","authors":"Yue Xing, Hao Jiang, Lin Cai","doi":"10.1111/jipb.13887","DOIUrl":"https://doi.org/10.1111/jipb.13887","url":null,"abstract":"<p><p>RNA interference (RNAi) is increasingly used for plant protection against pathogens and pests. However, the traditional delivery method causes plant tissue damage, is affected by environmental factors, and faces difficulties in penetrating the barriers of cell walls and the limitations of plant species, ultimately leading to low delivery efficiency. With advances in nanotechnology, nanomaterials (NMs) have been identified as effective carriers for nucleic acid delivery because of their ability to operate independently of external mechanical forces, prevent degradation by bioenzymes, exhibit good biocompatibility, and offer high loading capacity. This review summarizes the application of NM-mediated RNAi against plant pathogens and pests, focusing on how different NMs break through the cell barriers of plants, pathogens, and pests according to their size, morphology, and charge characteristics. Furthermore, we discuss the advantages and improvement strategies of NMs as nucleic acid delivery carriers, alongside assessing their potential application for the management of plant pathogens and pests.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143623050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small peptides (SPs) are pivotal signaling molecules that play essential roles in the precise regulation of plant growth, development, and stress responses. Recent advancements in sequencing technologies, bioinformatics approaches, and biochemical and molecular techniques have significantly enhanced the accuracy of SP identification, unveiling their diverse biological functions in plants. This review provides a comprehensive overview of the characteristics and methodologies for identifying SPs in plants. It highlights recent discoveries regarding the biological roles and signaling pathways of SPs in regulating plant growth, development, and plant–microbial interactions, as well as their contributions to plant resilience under various environmental stresses, including abiotic stress, nutrient deficiencies, and biotic challenges. Additionally, we discuss current insights into the potential applications of SPs and outline future research directions aimed at leveraging these molecules to enhance plant adaptation to environmental challenges. By integrating recent findings, this review lays a foundation for advancing the understanding and utilization of SPs to improve plant resilience and productivity.
{"title":"Decoding small peptides: Regulators of plant growth and stress resilience","authors":"Fei Xiao, Huapeng Zhou, Honghui Lin","doi":"10.1111/jipb.13873","DOIUrl":"10.1111/jipb.13873","url":null,"abstract":"<p>Small peptides (SPs) are pivotal signaling molecules that play essential roles in the precise regulation of plant growth, development, and stress responses. Recent advancements in sequencing technologies, bioinformatics approaches, and biochemical and molecular techniques have significantly enhanced the accuracy of SP identification, unveiling their diverse biological functions in plants. This review provides a comprehensive overview of the characteristics and methodologies for identifying SPs in plants. It highlights recent discoveries regarding the biological roles and signaling pathways of SPs in regulating plant growth, development, and plant–microbial interactions, as well as their contributions to plant resilience under various environmental stresses, including abiotic stress, nutrient deficiencies, and biotic challenges. Additionally, we discuss current insights into the potential applications of SPs and outline future research directions aimed at leveraging these molecules to enhance plant adaptation to environmental challenges. By integrating recent findings, this review lays a foundation for advancing the understanding and utilization of SPs to improve plant resilience and productivity.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"67 3","pages":"596-631"},"PeriodicalIF":9.3,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jipb.13873","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143584055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mitogen-activated protein kinase (MAPK) cascades play a fundamental role in plant immunity by transducing external signals inside plant cells. Here, we defined a wheat MAPK cascade, composed of the mitogen-activated protein kinase kinase (MAPKK) TaMKK2 and its downstream MAPK TaMAPK6, which phosphorylates the core immune regulator TaSGT1 (suppressor of G2 allele of Skp1), resulting in enhanced nuclear entry of TaSGT1, thereby conferring resistance against the devastating wheat pathogen Puccinia striiformis f. sp. tritici (Pst). Hence, we identified a TaMKK2-TaMAPK6-TaSGT1 signaling cascade that contributes to wheat stripe rust resistance. During infection, Pst secrets a haustorium-associated secreted protein 215 (HASP215), that targets TaMKK2 and interferes with the interaction of TaMKK2 with TaMAPK6 to suppress TaMAPK6 phosphorylation and activation, thereby leading to reduced capacity of TaMAPK6 to phosphorylate TaSGT1. Consequently, inhibition of TaMAPK6-mediated TaSGT1 phosphorylation resulted in decreased nuclear translocation of TaSGT1 and suppressed plant immunity. Our work elucidates the positive function of TaMKK2-TaMAPK6 cascade in wheat immunity by regulating the immune component TaSGT1, and its regulation by the rust effector HASP215, providing new insights into the MAPK cascade on crop immunity and the pathogenicity mechanism of obligate biotrophic fungus.
{"title":"Wheat MAPK cascade mediates SGT1 nuclear entry targeted by a stripe rust effector.","authors":"Weixue Shu, Tong Yan, Shuyuan Jing, Pengfei Gan, Jianfeng Wang, Zeyu Hu, Jinren Zhao, Xin Fan, Zhensheng Kang, Chunlei Tang, Xiaojie Wang","doi":"10.1111/jipb.13888","DOIUrl":"https://doi.org/10.1111/jipb.13888","url":null,"abstract":"<p><p>Mitogen-activated protein kinase (MAPK) cascades play a fundamental role in plant immunity by transducing external signals inside plant cells. Here, we defined a wheat MAPK cascade, composed of the mitogen-activated protein kinase kinase (MAPKK) TaMKK2 and its downstream MAPK TaMAPK6, which phosphorylates the core immune regulator TaSGT1 (suppressor of G2 allele of Skp1), resulting in enhanced nuclear entry of TaSGT1, thereby conferring resistance against the devastating wheat pathogen Puccinia striiformis f. sp. tritici (Pst). Hence, we identified a TaMKK2-TaMAPK6-TaSGT1 signaling cascade that contributes to wheat stripe rust resistance. During infection, Pst secrets a haustorium-associated secreted protein 215 (HASP215), that targets TaMKK2 and interferes with the interaction of TaMKK2 with TaMAPK6 to suppress TaMAPK6 phosphorylation and activation, thereby leading to reduced capacity of TaMAPK6 to phosphorylate TaSGT1. Consequently, inhibition of TaMAPK6-mediated TaSGT1 phosphorylation resulted in decreased nuclear translocation of TaSGT1 and suppressed plant immunity. Our work elucidates the positive function of TaMKK2-TaMAPK6 cascade in wheat immunity by regulating the immune component TaSGT1, and its regulation by the rust effector HASP215, providing new insights into the MAPK cascade on crop immunity and the pathogenicity mechanism of obligate biotrophic fungus.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143584057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This commentary on Liu et al. (2025 JIPB) discusses the groundbreaking discovery that hydrogen sulfide (H2S) modulates guard cell function by inhibiting inward-rectifying potassium channels through protein persulfidation, providing novel insights into the molecular mechanisms governing stomatal regulation and opening new avenues for enhancing plant stress resilience.
{"title":"A paradigm shift in stomatal regulation: H<sub>2</sub>S as a persulfidation-driven modulator of potassium channels.","authors":"Jing Zhang, Hongfei Li, Yanjie Xie","doi":"10.1111/jipb.13886","DOIUrl":"https://doi.org/10.1111/jipb.13886","url":null,"abstract":"<p><p>This commentary on Liu et al. (2025 JIPB) discusses the groundbreaking discovery that hydrogen sulfide (H<sub>2</sub>S) modulates guard cell function by inhibiting inward-rectifying potassium channels through protein persulfidation, providing novel insights into the molecular mechanisms governing stomatal regulation and opening new avenues for enhancing plant stress resilience.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143584053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Synthetic microbial communities (SynComs) are a promising tool for making full use of the beneficial functions imparted by whole bacterial consortia. However, the complexity of reconstructed SynComs often limits their application in sustainable agriculture. Furthermore, inter-strain interactions are often neglected during SynCom construction. Here, we propose a strategy for constructing a simplified and functional SynCom (sfSynCom) by using elite helper strains that significantly improve the beneficial functions of the core symbiotic strain, here Bradyrhizobium elkanii BXYD3, to sustain the growth of soybean (Glycine max). We first identified helper strains that significantly promote nodulation and nitrogen fixation in soybean mediated by BXYD3. Two of these helper strains assigned to the Pantoea taxon produce acyl homoserine lactones, which significantly enhanced the colonization and infection of soybean by BXYD3. Finally, we constructed a sfSynCom from these core and helper strains. This sfSynCom based on the core-helper strategy was more effective at promoting nodulation than inoculation with BXYD3 alone and achieved effects comparable to those of a complex elite SynCom previously constructed on the basis of potential beneficial functions between microbes and plants alone. Our results suggest that considering interactions between strains as well as those between strains and the host plant might allow construction of sfSynComs.
{"title":"A simplified SynCom based on core-helper strain interactions enhances symbiotic nitrogen fixation in soybean.","authors":"Yanjun Li, Ruirui Li, Ran Liu, Junhao Shi, Xiaofan Qiu, Jianfeng Lei, Xu Zhao, Cunhu Wang, Minghai Ge, Huan Xu, Pengyao Miao, Zhongwei Li, Keke Yi, Hong Liao, Yongjia Zhong","doi":"10.1111/jipb.13881","DOIUrl":"https://doi.org/10.1111/jipb.13881","url":null,"abstract":"<p><p>Synthetic microbial communities (SynComs) are a promising tool for making full use of the beneficial functions imparted by whole bacterial consortia. However, the complexity of reconstructed SynComs often limits their application in sustainable agriculture. Furthermore, inter-strain interactions are often neglected during SynCom construction. Here, we propose a strategy for constructing a simplified and functional SynCom (sfSynCom) by using elite helper strains that significantly improve the beneficial functions of the core symbiotic strain, here Bradyrhizobium elkanii BXYD3, to sustain the growth of soybean (Glycine max). We first identified helper strains that significantly promote nodulation and nitrogen fixation in soybean mediated by BXYD3. Two of these helper strains assigned to the Pantoea taxon produce acyl homoserine lactones, which significantly enhanced the colonization and infection of soybean by BXYD3. Finally, we constructed a sfSynCom from these core and helper strains. This sfSynCom based on the core-helper strategy was more effective at promoting nodulation than inoculation with BXYD3 alone and achieved effects comparable to those of a complex elite SynCom previously constructed on the basis of potential beneficial functions between microbes and plants alone. Our results suggest that considering interactions between strains as well as those between strains and the host plant might allow construction of sfSynComs.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The transcription factor bHLH25 acts as a H2O2 sensor in rice. Oxidized bHLH25 boosts lignin production to strengthen cell walls against pathogens, while non-oxidized bHLH25 activates phytoalexins to inhibit pathogen growth. This dual role balances defense and growth, offering a potential strategy for engineering disease-resistant crops without yield loss.
{"title":"The multifaceted bHLH25 in H₂O₂-mediated immune responses.","authors":"Guozhi Bi, Jian-Min Zhou","doi":"10.1111/jipb.13878","DOIUrl":"https://doi.org/10.1111/jipb.13878","url":null,"abstract":"<p><p>The transcription factor bHLH25 acts as a H<sub>2</sub>O<sub>2</sub> sensor in rice. Oxidized bHLH25 boosts lignin production to strengthen cell walls against pathogens, while non-oxidized bHLH25 activates phytoalexins to inhibit pathogen growth. This dual role balances defense and growth, offering a potential strategy for engineering disease-resistant crops without yield loss.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}