首页 > 最新文献

Optical Materials Express最新文献

英文 中文
Ultrasensitive refractive index sensing of the optical microfiber couplers coated with Ti₃C₂ MXene 涂有 Ti₃C₂ MXene 的光学微纤维耦合器的超灵敏折射率传感技术
IF 2.8 3区 材料科学 Q2 Materials Science Pub Date : 2024-03-18 DOI: 10.1364/ome.520614
Rui Peng, wenchao zhou, Yihui Wu, Zeyuan Song, Haiyang Yu
{"title":"Ultrasensitive refractive index sensing of the optical microfiber couplers coated with Ti₃C₂ MXene","authors":"Rui Peng, wenchao zhou, Yihui Wu, Zeyuan Song, Haiyang Yu","doi":"10.1364/ome.520614","DOIUrl":"https://doi.org/10.1364/ome.520614","url":null,"abstract":"","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140232010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat treatment and fiber drawing effect on the matrix structure and fluorescence lifetime of Er- and Tm-doped silica optical fibers 热处理和光纤拉伸对掺铒和掺铥二氧化硅光纤的基体结构和荧光寿命的影响
IF 2.8 3区 材料科学 Q2 Materials Science Pub Date : 2024-03-18 DOI: 10.1364/ome.520422
P. Vařák, M. Kamrádek, J. Aubrecht, O. Podrazký, Jan Mrázek, I. Bartoň, Alena Michalcová, M. Franczyk, Ryszard Buczynski, I. Kašík, P. Peterka, P. Honzátko
{"title":"Heat treatment and fiber drawing effect on the matrix structure and fluorescence lifetime of Er- and Tm-doped silica optical fibers","authors":"P. Vařák, M. Kamrádek, J. Aubrecht, O. Podrazký, Jan Mrázek, I. Bartoň, Alena Michalcová, M. Franczyk, Ryszard Buczynski, I. Kašík, P. Peterka, P. Honzátko","doi":"10.1364/ome.520422","DOIUrl":"https://doi.org/10.1364/ome.520422","url":null,"abstract":"","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140232660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature measurement and morphological/crystalline differences in the laser-induced carbonization of polydimethylsiloxane 聚二甲基硅氧烷激光诱导碳化过程中的温度测量和形态/晶体差异
IF 2.8 3区 材料科学 Q2 Materials Science Pub Date : 2024-03-14 DOI: 10.1364/ome.514788
Masato Kai, Shuichiro Hayashi, Ken Kashikawa, and Mitsuhiro Terakawa
Laser-induced carbonization, which allows for the facile generation of graphitic carbon, is considered a promising technique for fabricating arbitrary conductive microstructures. The morphology and crystallinity of the resulting product are acknowledged to be significantly influenced by laser irradiation conditions. However, unlike discussions pertaining to furnaces where detailed considerations of applied temperature and resulting products are common, discussions on the process of laser-induced carbonization are limited. In recent years, reports have shown that using polydimethylsiloxane (PDMS) as a precursor material not only produces graphitic carbon but also results in the formation of silicon carbide. In this study, we utilized a thermographic camera to measure temperature changes during laser-induced carbonization, aiming to elucidate the correlation between PDMS temperature fluctuations and the morphology and crystallinity of the resulting graphitic carbon. The results demonstrate that the morphology and crystallinity of the graphitic carbon formed through laser-induced carbonization are not solely determined by the maximum temperature in the laser-irradiated area. The temperature changes during laser irradiation play a crucial role in the selective generation of these materials.
激光诱导碳化技术可以方便地生成石墨碳,被认为是制造任意导电微结构的一种有前途的技术。众所周知,激光辐照条件对所产生产品的形态和结晶度有很大影响。然而,与炉子的讨论不同的是,对应用温度和生成物的详细考虑很常见,而对激光诱导碳化过程的讨论却很有限。近年来,有报告显示,使用聚二甲基硅氧烷(PDMS)作为前驱体材料不仅能产生石墨碳,还能形成碳化硅。在本研究中,我们利用热成像摄像机测量激光诱导碳化过程中的温度变化,旨在阐明 PDMS 温度波动与所生成石墨碳的形态和结晶度之间的相关性。结果表明,通过激光诱导碳化形成的石墨碳的形态和结晶度并不完全取决于激光照射区域的最高温度。激光照射过程中的温度变化对这些材料的选择性生成起着至关重要的作用。
{"title":"Temperature measurement and morphological/crystalline differences in the laser-induced carbonization of polydimethylsiloxane","authors":"Masato Kai, Shuichiro Hayashi, Ken Kashikawa, and Mitsuhiro Terakawa","doi":"10.1364/ome.514788","DOIUrl":"https://doi.org/10.1364/ome.514788","url":null,"abstract":"Laser-induced carbonization, which allows for the facile generation of graphitic carbon, is considered a promising technique for fabricating arbitrary conductive microstructures. The morphology and crystallinity of the resulting product are acknowledged to be significantly influenced by laser irradiation conditions. However, unlike discussions pertaining to furnaces where detailed considerations of applied temperature and resulting products are common, discussions on the process of laser-induced carbonization are limited. In recent years, reports have shown that using polydimethylsiloxane (PDMS) as a precursor material not only produces graphitic carbon but also results in the formation of silicon carbide. In this study, we utilized a thermographic camera to measure temperature changes during laser-induced carbonization, aiming to elucidate the correlation between PDMS temperature fluctuations and the morphology and crystallinity of the resulting graphitic carbon. The results demonstrate that the morphology and crystallinity of the graphitic carbon formed through laser-induced carbonization are not solely determined by the maximum temperature in the laser-irradiated area. The temperature changes during laser irradiation play a crucial role in the selective generation of these materials.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140156513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep-learning Empowered Unique and Rapid Optimization of Meta-absorbers for Solar Thermophotovoltaics 利用深度学习对太阳能光热发电元吸收器进行独特而快速的优化
IF 2.8 3区 材料科学 Q2 Materials Science Pub Date : 2024-03-14 DOI: 10.1364/ome.519077
Sadia Noureen, Sumbel Ijaz, Isma Javed, Humberto Cabrera, Marco Zennaro, Muhammad Zubair, Muhammad Qasim Mehmood, Y. Massoud
{"title":"Deep-learning Empowered Unique and Rapid Optimization of Meta-absorbers for Solar Thermophotovoltaics","authors":"Sadia Noureen, Sumbel Ijaz, Isma Javed, Humberto Cabrera, Marco Zennaro, Muhammad Zubair, Muhammad Qasim Mehmood, Y. Massoud","doi":"10.1364/ome.519077","DOIUrl":"https://doi.org/10.1364/ome.519077","url":null,"abstract":"","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140243818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput speckle spectrometers based on multifractal scattering media 基于多分形散射介质的高通量斑点光谱仪
IF 2.8 3区 材料科学 Q2 Materials Science Pub Date : 2024-03-14 DOI: 10.1364/ome.511275
Bhupesh Kumar, Yilin Zhu, Luca Dal Negro, and Sebastian A. Schulz
We present compact integrated speckle spectrometers based on monofractal and multifractal scattering media in a silicon-on-insulator platform. Through both numerical and experimental studies we demonstrate enhanced optical throughput, and hence signal-to-noise ratio, for a number of random structures with tailored multifractal geometries without affecting the spectral decay of the speckle correlation functions. Moreover, we show that the developed multifractal media outperform traditional scattering spectrometers based on uniform random distributions of scattering centers. Our findings establish the potential of low-density random media with multifractal correlations for integrated on-chip applications beyond what is possible with uncorrelated random disorder.
我们在硅-绝缘体平台上展示了基于单分形和多分形散射介质的紧凑型集成斑点光谱仪。通过数值和实验研究,我们证明了在不影响斑点相关函数光谱衰减的情况下,采用定制多分形几何结构的随机结构可提高光学吞吐量和信噪比。此外,我们还发现所开发的多分形介质优于基于均匀随机散射中心分布的传统散射光谱仪。我们的研究结果确立了具有多分形相关性的低密度随机介质在片上集成应用的潜力,超越了无相关随机无序介质的应用范围。
{"title":"High-throughput speckle spectrometers based on multifractal scattering media","authors":"Bhupesh Kumar, Yilin Zhu, Luca Dal Negro, and Sebastian A. Schulz","doi":"10.1364/ome.511275","DOIUrl":"https://doi.org/10.1364/ome.511275","url":null,"abstract":"We present compact integrated speckle spectrometers based on monofractal and multifractal scattering media in a silicon-on-insulator platform. Through both numerical and experimental studies we demonstrate enhanced optical throughput, and hence signal-to-noise ratio, for a number of random structures with tailored multifractal geometries without affecting the spectral decay of the speckle correlation functions. Moreover, we show that the developed multifractal media outperform traditional scattering spectrometers based on uniform random distributions of scattering centers. Our findings establish the potential of low-density random media with multifractal correlations for integrated on-chip applications beyond what is possible with uncorrelated random disorder.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UV-VIS-NIR absorber to harvest energy for solar thermophotovoltaics 紫外-可见-近红外吸收器为太阳能光热发电收集能量
IF 2.8 3区 材料科学 Q2 Materials Science Pub Date : 2024-03-14 DOI: 10.1364/ome.517791
Sumbel Ijaz, Muhammad Qasim Mehmood, Khaled A. Aljaloud, Rifaqat Hussain, Ali H. Alqahtani, and Akram Alomainy
Ideal ultraviolet-visible-infrared (UV-VIS-NIR) absorbers with consistent performance at elevated temperatures and severe climate conditions are crucial to harvest energy for solar-thermophotovoltaic systems (STPVs). As solar energy promises to fulfill the power demands, its efficient utilization through high-performing light-absorbing devices is inevitable. The requirement of high-temperature durability makes conventional plasmonics an infeasible choice, and those highly thermostable refractory metals/their derivatives suitable ones. In this work, a lossy refractory plasmonic material i.e. Zirconium-Nitride-based subwavelength, ultra-broadband, wide-angle, polarization-insensitive, and free-space impedance-matched metasurface absorber in a three-level Pythagorean fractal structure is demonstrated. A comprehensive investigative study is conducted with the successful attainment of more than 90% absorption between ∼ 500–900 nm with a peak of more than 98% at 655 nm. The mean absorption for wideband (200–2500 nm) is 86.01% and it is 91.37% for visible range. The proposed study provides an efficient choice of meta-absorbers for realizing highly efficient STPVs.
理想的紫外-可见-红外(UV-VIS-NIR)吸收器在高温和恶劣的气候条件下仍能保持稳定的性能,这对太阳能热光电系统(STPV)的能量收集至关重要。由于太阳能有望满足电力需求,因此通过高性能的光吸收装置高效利用太阳能势在必行。对高温耐久性的要求使得传统的等离子体成为不可行的选择,而那些高耐热性难熔金属/其衍生物则是合适的选择。在这项工作中,展示了一种有损耐火质子材料,即基于锆氮化物的亚波长、超宽带、广角、偏振不敏感和自由空间阻抗匹配的元表面吸收器,具有三层毕达哥拉斯分形结构。研究人员进行了全面的调查研究,成功地实现了 ∼ 500-900 nm 波长范围内超过 90% 的吸收率,在 655 nm 波长处的吸收率峰值超过 98%。宽波段(200-2500 nm)的平均吸收率为 86.01%,可见光范围为 91.37%。这项研究为实现高效 STPV 提供了有效的元吸收剂选择。
{"title":"UV-VIS-NIR absorber to harvest energy for solar thermophotovoltaics","authors":"Sumbel Ijaz, Muhammad Qasim Mehmood, Khaled A. Aljaloud, Rifaqat Hussain, Ali H. Alqahtani, and Akram Alomainy","doi":"10.1364/ome.517791","DOIUrl":"https://doi.org/10.1364/ome.517791","url":null,"abstract":"Ideal ultraviolet-visible-infrared (UV-VIS-NIR) absorbers with consistent performance at elevated temperatures and severe climate conditions are crucial to harvest energy for solar-thermophotovoltaic systems (STPVs). As solar energy promises to fulfill the power demands, its efficient utilization through high-performing light-absorbing devices is inevitable. The requirement of high-temperature durability makes conventional plasmonics an infeasible choice, and those highly thermostable refractory metals/their derivatives suitable ones. In this work, a lossy refractory plasmonic material i.e. Zirconium-Nitride-based subwavelength, ultra-broadband, wide-angle, polarization-insensitive, and free-space impedance-matched metasurface absorber in a three-level Pythagorean fractal structure is demonstrated. A comprehensive investigative study is conducted with the successful attainment of more than 90% absorption between ∼ 500–900 nm with a peak of more than 98% at 655 nm. The mean absorption for wideband (200–2500 nm) is 86.01% and it is 91.37% for visible range. The proposed study provides an efficient choice of meta-absorbers for realizing highly efficient STPVs.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
InAs Quantum Dots with Narrow Photoluminescence Linewidth for Lower Threshold Current Density in 1.55 μm Lasers 具有窄光致发光线宽的 InAs 量子点,可在 1.55 μm 激光器中降低阈值电流密度
IF 2.8 3区 材料科学 Q2 Materials Science Pub Date : 2024-03-13 DOI: 10.1364/ome.521709
Bin Wang, Xuezhe Yu, Y. Zeng, Weijie Gao, Wei Chen, Hao Shen, Kedi Ma, Hongxiao Li, Zizhuo Liu, Hui Su, Qin li, Yongqiang Ning, Lijun Wang
{"title":"InAs Quantum Dots with Narrow Photoluminescence Linewidth for Lower Threshold Current Density in 1.55 μm Lasers","authors":"Bin Wang, Xuezhe Yu, Y. Zeng, Weijie Gao, Wei Chen, Hao Shen, Kedi Ma, Hongxiao Li, Zizhuo Liu, Hui Su, Qin li, Yongqiang Ning, Lijun Wang","doi":"10.1364/ome.521709","DOIUrl":"https://doi.org/10.1364/ome.521709","url":null,"abstract":"","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140247109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the potentiality of a self-powered CGT chalcopyrite-based photodetector: theoretical insights 揭示基于黄铜矿的自供电 CGT 光电探测器的潜力:理论见解
IF 2.8 3区 材料科学 Q2 Materials Science Pub Date : 2024-03-12 DOI: 10.1364/ome.519847
Md. Islahur Rahman Ebon, Md. Alamin Hossain Pappu, Sheikh Noman Shiddique, and Jaker Hossain
The article demonstrates the design and modelling of CuGaTe2 direct bandgap (1.18 eV) chalcopyrite-based photodetector (PD), which has superb optical and electronic characteristics and shows remarkable performance on the photodetector. The photodetector has been investigated throughout the work by switching width, carrier and defect densities of particular layers and also the interface defect density of particular interfaces. The various layers have been optimized for the higher performance of the PD. Also, the impression of various device resistances has been analyzed. The JSC and VOC of the heterostructure photodetector is found to be 38.27 mA/cm2 and 0.94 V, in turn. The maximum responsivity, R and detectivity, D* are found to be 0.663A/W and 1.367 × 1016 Jones at a wavelength of 920 nm. The spectral response has a very high value in the range of 800 to 1000 nm light wavelength, which confirmed that this device is capable of detecting the near infrared (NIR) region of light. This work gives important guidance for the manufacture of CGT material-based photodetectors with higher performance.
文章展示了基于黄铜矿的 CuGaTe2 直接带隙(1.18 eV)光电探测器(PD)的设计和建模,该光电探测器具有极佳的光学和电子特性,并在光电探测器上表现出卓越的性能。在整个研究过程中,我们通过切换特定层的宽度、载流子密度和缺陷密度,以及特定界面的界面缺陷密度,对该光电探测器进行了研究。为了提高光电探测器的性能,对各层进行了优化。此外,还分析了各种器件电阻的影响。异质结构光电探测器的 JSC 和 VOC 分别为 38.27 mA/cm2 和 0.94 V。波长为 920 nm 时,最大响应率 R 和检测率 D* 分别为 0.663A/W 和 1.367 × 1016 Jones。光谱响应在 800 到 1000 nm 的光波长范围内具有非常高的值,这证实该装置能够检测近红外(NIR)光区。这项工作为制造具有更高性能的 CGT 材料光电探测器提供了重要指导。
{"title":"Unveiling the potentiality of a self-powered CGT chalcopyrite-based photodetector: theoretical insights","authors":"Md. Islahur Rahman Ebon, Md. Alamin Hossain Pappu, Sheikh Noman Shiddique, and Jaker Hossain","doi":"10.1364/ome.519847","DOIUrl":"https://doi.org/10.1364/ome.519847","url":null,"abstract":"The article demonstrates the design and modelling of CuGaTe<sub>2</sub> direct bandgap (1.18 eV) chalcopyrite-based photodetector (PD), which has superb optical and electronic characteristics and shows remarkable performance on the photodetector. The photodetector has been investigated throughout the work by switching width, carrier and defect densities of particular layers and also the interface defect density of particular interfaces. The various layers have been optimized for the higher performance of the PD. Also, the impression of various device resistances has been analyzed. The J<sub>SC</sub> and V<sub>OC</sub> of the heterostructure photodetector is found to be 38.27 mA/cm<sup>2</sup> and 0.94 V, in turn. The maximum responsivity, R and detectivity, D* are found to be 0.663A/W and 1.367 × 10<sup>16</sup> Jones at a wavelength of 920 nm. The spectral response has a very high value in the range of 800 to 1000 nm light wavelength, which confirmed that this device is capable of detecting the near infrared (NIR) region of light. This work gives important guidance for the manufacture of CGT material-based photodetectors with higher performance.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid Photonics: Integration, Design and Devices feature issue: publisher’s note 混合光子学:集成、设计与器件》特刊:出版商说明
IF 2.8 3区 材料科学 Q2 Materials Science Pub Date : 2024-03-11 DOI: 10.1364/ome.523203
Sébastien Cueff, Joyce Poon, Dries Van Thourhout, and Laurent Vivien
“Invited” was added to the title of a paper [Opt. Mater. Express 14, 862 (2024) [CrossRef] ] in error.
"在一篇论文[Opt.Mater.Express 14, 862 (2024) [CrossRef] ] 错误。
{"title":"Hybrid Photonics: Integration, Design and Devices feature issue: publisher’s note","authors":"Sébastien Cueff, Joyce Poon, Dries Van Thourhout, and Laurent Vivien","doi":"10.1364/ome.523203","DOIUrl":"https://doi.org/10.1364/ome.523203","url":null,"abstract":"“Invited” was added to the title of a paper [Opt. Mater. Express <b>14</b>, 862 (2024) [CrossRef] <span aria-hidden=\"true\"> </span>] in error.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Independently regulating linearly and circularly polarized terahertz wave metasurface 独立调节线性和圆极化太赫兹波元表面
IF 2.8 3区 材料科学 Q2 Materials Science Pub Date : 2024-03-11 DOI: 10.1364/ome.519712
Jiu-sheng Li, Ruo-tong Huang, and Ri-hui Xiong
We propose a terahertz metasurface that can independently regulate linearly circularly polarized waves. It consists of the top layer “O-O” metal pattern, polyimide layer, middle layer “I” shaped metal pattern, polyimide layer, and metal substrate from top to bottom. By using the phase principle of Pancharatnam Berry (PB) for encoding and arrangement, the metasurface generates vortex beams with different topological charges under circularly polarized terahertz wave incidence, and achieves focusing shift at different positions. Combining the convolution theorem for encoding arrangement, the metasurface can achieve focused vortex function under circularly polarized terahertz wave incidence. The designed metasurface can also generate Airy beam under linearly polarized terahertz wave incidence. The simulation results indicate that under different polarization (linear/circular polarization) terahertz wave incidence, the metasurface can achieve different functions, which provides a new approach for flexible control of terahertz waves.
我们提出了一种能独立调节线性圆极化波的太赫兹元表面。它由顶层 "O-O "型金属图案、聚酰亚胺层、中间层 "I "型金属图案、聚酰亚胺层和金属基板自上而下组成。利用 Pancharatnam Berry(PB)的相位原理进行编码和排列,元表面在圆极化太赫兹波入射下产生具有不同拓扑电荷的涡流束,并在不同位置实现聚焦偏移。结合卷积定理进行编码排列,元表面可在圆极化太赫兹波入射下实现聚焦涡旋功能。所设计的元表面还能在线性极化太赫兹波入射下产生艾里波束。仿真结果表明,在不同极化(线极化/圆极化)太赫兹波入射下,元表面可以实现不同的功能,这为灵活控制太赫兹波提供了一种新方法。
{"title":"Independently regulating linearly and circularly polarized terahertz wave metasurface","authors":"Jiu-sheng Li, Ruo-tong Huang, and Ri-hui Xiong","doi":"10.1364/ome.519712","DOIUrl":"https://doi.org/10.1364/ome.519712","url":null,"abstract":"We propose a terahertz metasurface that can independently regulate linearly circularly polarized waves. It consists of the top layer “O-O” metal pattern, polyimide layer, middle layer “I” shaped metal pattern, polyimide layer, and metal substrate from top to bottom. By using the phase principle of Pancharatnam Berry (PB) for encoding and arrangement, the metasurface generates vortex beams with different topological charges under circularly polarized terahertz wave incidence, and achieves focusing shift at different positions. Combining the convolution theorem for encoding arrangement, the metasurface can achieve focused vortex function under circularly polarized terahertz wave incidence. The designed metasurface can also generate Airy beam under linearly polarized terahertz wave incidence. The simulation results indicate that under different polarization (linear/circular polarization) terahertz wave incidence, the metasurface can achieve different functions, which provides a new approach for flexible control of terahertz waves.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Optical Materials Express
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1