Masato Kai, Shuichiro Hayashi, Ken Kashikawa, and Mitsuhiro Terakawa
Laser-induced carbonization, which allows for the facile generation of graphitic carbon, is considered a promising technique for fabricating arbitrary conductive microstructures. The morphology and crystallinity of the resulting product are acknowledged to be significantly influenced by laser irradiation conditions. However, unlike discussions pertaining to furnaces where detailed considerations of applied temperature and resulting products are common, discussions on the process of laser-induced carbonization are limited. In recent years, reports have shown that using polydimethylsiloxane (PDMS) as a precursor material not only produces graphitic carbon but also results in the formation of silicon carbide. In this study, we utilized a thermographic camera to measure temperature changes during laser-induced carbonization, aiming to elucidate the correlation between PDMS temperature fluctuations and the morphology and crystallinity of the resulting graphitic carbon. The results demonstrate that the morphology and crystallinity of the graphitic carbon formed through laser-induced carbonization are not solely determined by the maximum temperature in the laser-irradiated area. The temperature changes during laser irradiation play a crucial role in the selective generation of these materials.
{"title":"Temperature measurement and morphological/crystalline differences in the laser-induced carbonization of polydimethylsiloxane","authors":"Masato Kai, Shuichiro Hayashi, Ken Kashikawa, and Mitsuhiro Terakawa","doi":"10.1364/ome.514788","DOIUrl":"https://doi.org/10.1364/ome.514788","url":null,"abstract":"Laser-induced carbonization, which allows for the facile generation of graphitic carbon, is considered a promising technique for fabricating arbitrary conductive microstructures. The morphology and crystallinity of the resulting product are acknowledged to be significantly influenced by laser irradiation conditions. However, unlike discussions pertaining to furnaces where detailed considerations of applied temperature and resulting products are common, discussions on the process of laser-induced carbonization are limited. In recent years, reports have shown that using polydimethylsiloxane (PDMS) as a precursor material not only produces graphitic carbon but also results in the formation of silicon carbide. In this study, we utilized a thermographic camera to measure temperature changes during laser-induced carbonization, aiming to elucidate the correlation between PDMS temperature fluctuations and the morphology and crystallinity of the resulting graphitic carbon. The results demonstrate that the morphology and crystallinity of the graphitic carbon formed through laser-induced carbonization are not solely determined by the maximum temperature in the laser-irradiated area. The temperature changes during laser irradiation play a crucial role in the selective generation of these materials.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"82 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140156513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bhupesh Kumar, Yilin Zhu, Luca Dal Negro, and Sebastian A. Schulz
We present compact integrated speckle spectrometers based on monofractal and multifractal scattering media in a silicon-on-insulator platform. Through both numerical and experimental studies we demonstrate enhanced optical throughput, and hence signal-to-noise ratio, for a number of random structures with tailored multifractal geometries without affecting the spectral decay of the speckle correlation functions. Moreover, we show that the developed multifractal media outperform traditional scattering spectrometers based on uniform random distributions of scattering centers. Our findings establish the potential of low-density random media with multifractal correlations for integrated on-chip applications beyond what is possible with uncorrelated random disorder.
{"title":"High-throughput speckle spectrometers based on multifractal scattering media","authors":"Bhupesh Kumar, Yilin Zhu, Luca Dal Negro, and Sebastian A. Schulz","doi":"10.1364/ome.511275","DOIUrl":"https://doi.org/10.1364/ome.511275","url":null,"abstract":"We present compact integrated speckle spectrometers based on monofractal and multifractal scattering media in a silicon-on-insulator platform. Through both numerical and experimental studies we demonstrate enhanced optical throughput, and hence signal-to-noise ratio, for a number of random structures with tailored multifractal geometries without affecting the spectral decay of the speckle correlation functions. Moreover, we show that the developed multifractal media outperform traditional scattering spectrometers based on uniform random distributions of scattering centers. Our findings establish the potential of low-density random media with multifractal correlations for integrated on-chip applications beyond what is possible with uncorrelated random disorder.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"22 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sumbel Ijaz, Muhammad Qasim Mehmood, Khaled A. Aljaloud, Rifaqat Hussain, Ali H. Alqahtani, and Akram Alomainy
Ideal ultraviolet-visible-infrared (UV-VIS-NIR) absorbers with consistent performance at elevated temperatures and severe climate conditions are crucial to harvest energy for solar-thermophotovoltaic systems (STPVs). As solar energy promises to fulfill the power demands, its efficient utilization through high-performing light-absorbing devices is inevitable. The requirement of high-temperature durability makes conventional plasmonics an infeasible choice, and those highly thermostable refractory metals/their derivatives suitable ones. In this work, a lossy refractory plasmonic material i.e. Zirconium-Nitride-based subwavelength, ultra-broadband, wide-angle, polarization-insensitive, and free-space impedance-matched metasurface absorber in a three-level Pythagorean fractal structure is demonstrated. A comprehensive investigative study is conducted with the successful attainment of more than 90% absorption between ∼ 500–900 nm with a peak of more than 98% at 655 nm. The mean absorption for wideband (200–2500 nm) is 86.01% and it is 91.37% for visible range. The proposed study provides an efficient choice of meta-absorbers for realizing highly efficient STPVs.
{"title":"UV-VIS-NIR absorber to harvest energy for solar thermophotovoltaics","authors":"Sumbel Ijaz, Muhammad Qasim Mehmood, Khaled A. Aljaloud, Rifaqat Hussain, Ali H. Alqahtani, and Akram Alomainy","doi":"10.1364/ome.517791","DOIUrl":"https://doi.org/10.1364/ome.517791","url":null,"abstract":"Ideal ultraviolet-visible-infrared (UV-VIS-NIR) absorbers with consistent performance at elevated temperatures and severe climate conditions are crucial to harvest energy for solar-thermophotovoltaic systems (STPVs). As solar energy promises to fulfill the power demands, its efficient utilization through high-performing light-absorbing devices is inevitable. The requirement of high-temperature durability makes conventional plasmonics an infeasible choice, and those highly thermostable refractory metals/their derivatives suitable ones. In this work, a lossy refractory plasmonic material i.e. Zirconium-Nitride-based subwavelength, ultra-broadband, wide-angle, polarization-insensitive, and free-space impedance-matched metasurface absorber in a three-level Pythagorean fractal structure is demonstrated. A comprehensive investigative study is conducted with the successful attainment of more than 90% absorption between ∼ 500–900 nm with a peak of more than 98% at 655 nm. The mean absorption for wideband (200–2500 nm) is 86.01% and it is 91.37% for visible range. The proposed study provides an efficient choice of meta-absorbers for realizing highly efficient STPVs.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"87 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The article demonstrates the design and modelling of CuGaTe2 direct bandgap (1.18 eV) chalcopyrite-based photodetector (PD), which has superb optical and electronic characteristics and shows remarkable performance on the photodetector. The photodetector has been investigated throughout the work by switching width, carrier and defect densities of particular layers and also the interface defect density of particular interfaces. The various layers have been optimized for the higher performance of the PD. Also, the impression of various device resistances has been analyzed. The JSC and VOC of the heterostructure photodetector is found to be 38.27 mA/cm2 and 0.94 V, in turn. The maximum responsivity, R and detectivity, D* are found to be 0.663A/W and 1.367 × 1016 Jones at a wavelength of 920 nm. The spectral response has a very high value in the range of 800 to 1000 nm light wavelength, which confirmed that this device is capable of detecting the near infrared (NIR) region of light. This work gives important guidance for the manufacture of CGT material-based photodetectors with higher performance.
{"title":"Unveiling the potentiality of a self-powered CGT chalcopyrite-based photodetector: theoretical insights","authors":"Md. Islahur Rahman Ebon, Md. Alamin Hossain Pappu, Sheikh Noman Shiddique, and Jaker Hossain","doi":"10.1364/ome.519847","DOIUrl":"https://doi.org/10.1364/ome.519847","url":null,"abstract":"The article demonstrates the design and modelling of CuGaTe<sub>2</sub> direct bandgap (1.18 eV) chalcopyrite-based photodetector (PD), which has superb optical and electronic characteristics and shows remarkable performance on the photodetector. The photodetector has been investigated throughout the work by switching width, carrier and defect densities of particular layers and also the interface defect density of particular interfaces. The various layers have been optimized for the higher performance of the PD. Also, the impression of various device resistances has been analyzed. The J<sub>SC</sub> and V<sub>OC</sub> of the heterostructure photodetector is found to be 38.27 mA/cm<sup>2</sup> and 0.94 V, in turn. The maximum responsivity, R and detectivity, D* are found to be 0.663A/W and 1.367 × 10<sup>16</sup> Jones at a wavelength of 920 nm. The spectral response has a very high value in the range of 800 to 1000 nm light wavelength, which confirmed that this device is capable of detecting the near infrared (NIR) region of light. This work gives important guidance for the manufacture of CGT material-based photodetectors with higher performance.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"11 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hybrid Photonics: Integration, Design and Devices feature issue: publisher’s note","authors":"Sébastien Cueff, Joyce Poon, Dries Van Thourhout, and Laurent Vivien","doi":"10.1364/ome.523203","DOIUrl":"https://doi.org/10.1364/ome.523203","url":null,"abstract":"“Invited” was added to the title of a paper [Opt. Mater. Express <b>14</b>, 862 (2024) [CrossRef] <span aria-hidden=\"true\"> </span>] in error.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"23 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We propose a terahertz metasurface that can independently regulate linearly circularly polarized waves. It consists of the top layer “O-O” metal pattern, polyimide layer, middle layer “I” shaped metal pattern, polyimide layer, and metal substrate from top to bottom. By using the phase principle of Pancharatnam Berry (PB) for encoding and arrangement, the metasurface generates vortex beams with different topological charges under circularly polarized terahertz wave incidence, and achieves focusing shift at different positions. Combining the convolution theorem for encoding arrangement, the metasurface can achieve focused vortex function under circularly polarized terahertz wave incidence. The designed metasurface can also generate Airy beam under linearly polarized terahertz wave incidence. The simulation results indicate that under different polarization (linear/circular polarization) terahertz wave incidence, the metasurface can achieve different functions, which provides a new approach for flexible control of terahertz waves.
我们提出了一种能独立调节线性圆极化波的太赫兹元表面。它由顶层 "O-O "型金属图案、聚酰亚胺层、中间层 "I "型金属图案、聚酰亚胺层和金属基板自上而下组成。利用 Pancharatnam Berry(PB)的相位原理进行编码和排列,元表面在圆极化太赫兹波入射下产生具有不同拓扑电荷的涡流束,并在不同位置实现聚焦偏移。结合卷积定理进行编码排列,元表面可在圆极化太赫兹波入射下实现聚焦涡旋功能。所设计的元表面还能在线性极化太赫兹波入射下产生艾里波束。仿真结果表明,在不同极化(线极化/圆极化)太赫兹波入射下,元表面可以实现不同的功能,这为灵活控制太赫兹波提供了一种新方法。
{"title":"Independently regulating linearly and circularly polarized terahertz wave metasurface","authors":"Jiu-sheng Li, Ruo-tong Huang, and Ri-hui Xiong","doi":"10.1364/ome.519712","DOIUrl":"https://doi.org/10.1364/ome.519712","url":null,"abstract":"We propose a terahertz metasurface that can independently regulate linearly circularly polarized waves. It consists of the top layer “O-O” metal pattern, polyimide layer, middle layer “I” shaped metal pattern, polyimide layer, and metal substrate from top to bottom. By using the phase principle of Pancharatnam Berry (PB) for encoding and arrangement, the metasurface generates vortex beams with different topological charges under circularly polarized terahertz wave incidence, and achieves focusing shift at different positions. Combining the convolution theorem for encoding arrangement, the metasurface can achieve focused vortex function under circularly polarized terahertz wave incidence. The designed metasurface can also generate Airy beam under linearly polarized terahertz wave incidence. The simulation results indicate that under different polarization (linear/circular polarization) terahertz wave incidence, the metasurface can achieve different functions, which provides a new approach for flexible control of terahertz waves.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"11 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tugba Temel, Robert T. Murray, Li Wang, Weidong Chen, André Schirrmacher, Ronan A. Battle, and Valentin Petrov
A PPLN non-resonant optical parametric oscillator injection-seeded by narrowband sub-100-mW CW radiation at the signal wavelength produces > 3 W idler average power at 2376 nm for a 20-kHz repetition rate, with a sub-2-nm spectral linewidth. The maximum quantum efficiency reaches 39.5%, roughly 1.4 times higher compared to narrowband operation achieved with a volume Bragg grating at the same pump level. Seed levels as low as 40 mW are sufficient to produce the desired spectral narrowing effect.
{"title":"Narrowband-seeded PPLN non-resonant optical parametric oscillator","authors":"Tugba Temel, Robert T. Murray, Li Wang, Weidong Chen, André Schirrmacher, Ronan A. Battle, and Valentin Petrov","doi":"10.1364/ome.517919","DOIUrl":"https://doi.org/10.1364/ome.517919","url":null,"abstract":"A PPLN non-resonant optical parametric oscillator injection-seeded by narrowband sub-100-mW CW radiation at the signal wavelength produces > 3 W idler average power at 2376 nm for a 20-kHz repetition rate, with a sub-2-nm spectral linewidth. The maximum quantum efficiency reaches 39.5%, roughly 1.4 times higher compared to narrowband operation achieved with a volume Bragg grating at the same pump level. Seed levels as low as 40 mW are sufficient to produce the desired spectral narrowing effect.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"34 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julia Brandt, Guido Dittrich, Marc Thelen, Hagen Renner, Patrick Huber, Manfred Eich, and Alexander Petrov
The optical properties of dielectric materials with subwavelength cylindrical pores are commonly described by effective medium models. We compare the Maxwell Garnett and the Bruggeman effective medium models for porous silicon with simulations and experiments for the case of polarization orthogonal to the pore axis. The Maxwell Garnett model matches the results of the simulations even up to very high porosities. An experimental study of the effective permittivity of macroporous and mesoporous silicon is conducted by analyzing the Fabry-Pérot oscillations in the long-wavelength limit. These experimental results are also consistent with the Maxwell Garnett model. We advocate using this model for media with cylindrical pores in the future.
{"title":"On the applicability of the Maxwell Garnett effective medium model to media with a high density of cylindrical pores","authors":"Julia Brandt, Guido Dittrich, Marc Thelen, Hagen Renner, Patrick Huber, Manfred Eich, and Alexander Petrov","doi":"10.1364/ome.516125","DOIUrl":"https://doi.org/10.1364/ome.516125","url":null,"abstract":"The optical properties of dielectric materials with subwavelength cylindrical pores are commonly described by effective medium models. We compare the Maxwell Garnett and the Bruggeman effective medium models for porous silicon with simulations and experiments for the case of polarization orthogonal to the pore axis. The Maxwell Garnett model matches the results of the simulations even up to very high porosities. An experimental study of the effective permittivity of macroporous and mesoporous silicon is conducted by analyzing the Fabry-Pérot oscillations in the long-wavelength limit. These experimental results are also consistent with the Maxwell Garnett model. We advocate using this model for media with cylindrical pores in the future.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"1 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, an optical trapping technique is employed to manipulate the scatterer distribution within a random laser medium. By focusing the trapping beams into small regions within the three-dimensional scattering medium, the scattering particles around them are concentrated in those regions, resulting in an inhomogeneous scatterer distribution. The experimental results show that optical trapping increases the maximum spike intensity in the emission spectrum. Furthermore, the spectral spike intensity depends on the power of the trap spots. The relationship between the maximum and average spike intensities in the emission spectra exhibits a characteristic observed in other random lasers with inhomogeneous scatterer distributions.
{"title":"Random laser emission from dye-doped gain media with optically trapped scattering particles","authors":"Takashi Okamoto, Naomichi Yokoi, and Takashi Kaku","doi":"10.1364/ome.510961","DOIUrl":"https://doi.org/10.1364/ome.510961","url":null,"abstract":"In this study, an optical trapping technique is employed to manipulate the scatterer distribution within a random laser medium. By focusing the trapping beams into small regions within the three-dimensional scattering medium, the scattering particles around them are concentrated in those regions, resulting in an inhomogeneous scatterer distribution. The experimental results show that optical trapping increases the maximum spike intensity in the emission spectrum. Furthermore, the spectral spike intensity depends on the power of the trap spots. The relationship between the maximum and average spike intensities in the emission spectra exhibits a characteristic observed in other random lasers with inhomogeneous scatterer distributions.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"25 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Production of flat optics incorporating subwavelength features, particularly at visible frequencies, remains a significant challenge. Here, we establish a framework for the design of effective medium metasurfaces (EMM), relying on nanoimprinting of mesoporous silicon to realize a patterned refractive index n(x,y) corresponding to an arbitrary transmitted phase profile ϕ(x,y). The method is used to design the stamp profile required to produce a Fresnel lens and the theoretical performance of the metalens is examined using the finite-difference time-domain method. Additionally, we demonstrate neural network aided Monte Carlo analysis as a method to model the effects of metasurface fabrications errors on EMM performance and process yield.
{"title":"Effective medium metasurfaces using nanoimprinting of the refractive index: design, performance, and predictive tolerance analysis","authors":"Matthew Panipinto and Judson D. Ryckman","doi":"10.1364/ome.515617","DOIUrl":"https://doi.org/10.1364/ome.515617","url":null,"abstract":"Production of flat optics incorporating subwavelength features, particularly at visible frequencies, remains a significant challenge. Here, we establish a framework for the design of effective medium metasurfaces (EMM), relying on nanoimprinting of mesoporous silicon to realize a patterned refractive index <i>n</i>(x,y) corresponding to an arbitrary transmitted phase profile <i>ϕ</i>(x,y). The method is used to design the stamp profile required to produce a Fresnel lens and the theoretical performance of the metalens is examined using the finite-difference time-domain method. Additionally, we demonstrate neural network aided Monte Carlo analysis as a method to model the effects of metasurface fabrications errors on EMM performance and process yield.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"113 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}