A. Evans, Eric Swanson, C. Fadem, Nathan C. Scholl
This paper details the multi-phase approach used by Atlantic Shores to place submerged landscapes identified through geophysical and geotechnical surveys in support of offshore windfarm development into appropriate cultural and archaeological contexts, resulting in more accurate interpretations of potential historical significance. Where these submerged landscapes may be adversely affected by lease development, the multi-phase approach is used to tailor mitigation strategies based on the locally-specific context.
{"title":"Using a Multi-Phase Approach to Place Submerged Landscapes into a Cultural and Archaeological Context","authors":"A. Evans, Eric Swanson, C. Fadem, Nathan C. Scholl","doi":"10.4043/32358-ms","DOIUrl":"https://doi.org/10.4043/32358-ms","url":null,"abstract":"\u0000 This paper details the multi-phase approach used by Atlantic Shores to place submerged landscapes identified through geophysical and geotechnical surveys in support of offshore windfarm development into appropriate cultural and archaeological contexts, resulting in more accurate interpretations of potential historical significance. Where these submerged landscapes may be adversely affected by lease development, the multi-phase approach is used to tailor mitigation strategies based on the locally-specific context.","PeriodicalId":196855,"journal":{"name":"Day 2 Tue, May 02, 2023","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131465348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul Christopher Dixon, Brady Wild, M. Hernáiz, Keith Richard Rush, Greg Neil Smith
In 2009, the Vito field was discovered in more than 1,200 m of water approximately 240 km offshore from New Orleans, Louisiana in the Gulf of Mexico (GoM). The project produces from reservoirs nearly 9,100 m below sea level. This paper provides the efficiencies in constructing the Vito FPS at a single fabrication yard, commissioning, and preparation for offshore installation. This paper is part of a Vito Project series at OTC 2023 and the other papers are listed in the references. The Vito Floating Production System (FPS) has a Lightship of 21,500 mt, Topside Lift Weight of 8,700 mt, and is 86 m Length × 86 m Width overall. Vito FPS fabrication at a single fabrication site included Hull Fabrication, Topside Fabrication, Living Quarters (LQ) Fabrication, Integration, and a majority of the Commissioning Scope. Key drivers to be successful at a single site included demonstratable safe execution, offshore fabrication quality capability, fabrication yard throughput availability, achievable integration execution plan, and competitive pricing. Following a transport to a readiness site adjacent to the Gulf of Mexico, four months of continued commissioning and preparation for offshore installation included the key activities of installation of the Temporary Living Quarters, riser and umbilical installation winches, tow-out and station-keeping rigging; de-preservation, final commissioning and verification of operability of key systems; aviation readiness and safety equipment verification; and final USCG inspections to obtain the Authorization to Proceed Offshore. The efficiencies identified and realized at the single fabrication site during the Vito FPS fabrication execution included focused safety at a single site, simplified quality weld procedures, single interface for detail engineering, simplified procurement delivery plan for Company Provided Items (CPI), efficient preservation strategy, single regulatory interface site, enhanced site team efficiencies in engineering and inspection, and simplified contracting at a single source. The readiness site integrated members of the Construction, Commissioning and Operation teams utilizing a single location to quickly mobilize various vendor teams for a final preparation for offshore installation without the constraints of remote offshore work. A key enabler to select the fabricator was their ability to complete a majority of the commissioning scope on the ground prior to integration of the complete Topside and Hull based on the single lift capability of the new 2 × 15,000 mt gantry cranes, which further increased the efficiency at the single fabrication site. 85% of the commissioning was completed by a Commissioning Management Contractor (CMC) prior to integration including load testing and dynamic commissioning of all the major rotating equipment.
{"title":"Vito Project: Host Construction and Commissioning","authors":"Paul Christopher Dixon, Brady Wild, M. Hernáiz, Keith Richard Rush, Greg Neil Smith","doi":"10.4043/32462-ms","DOIUrl":"https://doi.org/10.4043/32462-ms","url":null,"abstract":"\u0000 In 2009, the Vito field was discovered in more than 1,200 m of water approximately 240 km offshore from New Orleans, Louisiana in the Gulf of Mexico (GoM). The project produces from reservoirs nearly 9,100 m below sea level. This paper provides the efficiencies in constructing the Vito FPS at a single fabrication yard, commissioning, and preparation for offshore installation. This paper is part of a Vito Project series at OTC 2023 and the other papers are listed in the references.\u0000 The Vito Floating Production System (FPS) has a Lightship of 21,500 mt, Topside Lift Weight of 8,700 mt, and is 86 m Length × 86 m Width overall. Vito FPS fabrication at a single fabrication site included Hull Fabrication, Topside Fabrication, Living Quarters (LQ) Fabrication, Integration, and a majority of the Commissioning Scope. Key drivers to be successful at a single site included demonstratable safe execution, offshore fabrication quality capability, fabrication yard throughput availability, achievable integration execution plan, and competitive pricing. Following a transport to a readiness site adjacent to the Gulf of Mexico, four months of continued commissioning and preparation for offshore installation included the key activities of installation of the Temporary Living Quarters, riser and umbilical installation winches, tow-out and station-keeping rigging; de-preservation, final commissioning and verification of operability of key systems; aviation readiness and safety equipment verification; and final USCG inspections to obtain the Authorization to Proceed Offshore.\u0000 The efficiencies identified and realized at the single fabrication site during the Vito FPS fabrication execution included focused safety at a single site, simplified quality weld procedures, single interface for detail engineering, simplified procurement delivery plan for Company Provided Items (CPI), efficient preservation strategy, single regulatory interface site, enhanced site team efficiencies in engineering and inspection, and simplified contracting at a single source. The readiness site integrated members of the Construction, Commissioning and Operation teams utilizing a single location to quickly mobilize various vendor teams for a final preparation for offshore installation without the constraints of remote offshore work.\u0000 A key enabler to select the fabricator was their ability to complete a majority of the commissioning scope on the ground prior to integration of the complete Topside and Hull based on the single lift capability of the new 2 × 15,000 mt gantry cranes, which further increased the efficiency at the single fabrication site. 85% of the commissioning was completed by a Commissioning Management Contractor (CMC) prior to integration including load testing and dynamic commissioning of all the major rotating equipment.","PeriodicalId":196855,"journal":{"name":"Day 2 Tue, May 02, 2023","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134370929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In 2009, the Vito field was discovered in more than 4,000 ft of water approximately 150 miles offshore from New Orleans, Louisiana. The project produces from reservoirs nearly 30,000 feet below sea level. The project underwent major redesign to remain competitive, and this paper describes changes within the subsea system. This paper is part of a Vito Project series at OTC 2023, and the other papers are listed in the references. As the industry and market began to change in 2015, the project faced significant financial hurdles, and the project team decided to refresh the field development concept to reduce cost and simplify. This paper focuses on the subsea production system and some of the key decisions leading to the selected design and the approach the team used for making these decisions. It also discusses how the project execution model was established, and the modifications made during project execution to react to schedule challenges, the unprecedented impacts of COVID-19, and a tightening offshore market.
{"title":"Vito Project: Subsea System Goes Back to Basics","authors":"K. Thurston, Karthik R Ramanathan","doi":"10.4043/32318-ms","DOIUrl":"https://doi.org/10.4043/32318-ms","url":null,"abstract":"\u0000 In 2009, the Vito field was discovered in more than 4,000 ft of water approximately 150 miles offshore from New Orleans, Louisiana. The project produces from reservoirs nearly 30,000 feet below sea level. The project underwent major redesign to remain competitive, and this paper describes changes within the subsea system. This paper is part of a Vito Project series at OTC 2023, and the other papers are listed in the references.\u0000 As the industry and market began to change in 2015, the project faced significant financial hurdles, and the project team decided to refresh the field development concept to reduce cost and simplify. This paper focuses on the subsea production system and some of the key decisions leading to the selected design and the approach the team used for making these decisions. It also discusses how the project execution model was established, and the modifications made during project execution to react to schedule challenges, the unprecedented impacts of COVID-19, and a tightening offshore market.","PeriodicalId":196855,"journal":{"name":"Day 2 Tue, May 02, 2023","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130584657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thermoplastic pull-through liners are an effective method or preventing corrosion of carbon steel pipe. Offshore pipelines using thermoplastic liners require a means of welding pipe joints without damaging the heat-sensitive liner. Methods used to date include the use of corrosion- resistant alloy (CRA) connectors that place the plastic liner far enough away from the weld zone to prevent heat from damaging the liner, and thermoplastic connectors that utilize insulation and/or an annular air gap to prevent heat from damaging the plastic liner at the weld zone. In the case of the latter the thermoplastic connectors require electrofusion welding of the connector to the liner in the pipe, which is time consuming. This paper reviews the design and shop tests of a welded joint sealing system that permits the use of insulating thermoplastic connectors that seal to the liner in the steel pipe by means of a mechanical seal. This welded joint sealing system permits far faster joint assembly in the field than other methods, by avoiding the time-consuming processes of CRA welding or electrofusion of the thermoplastic connector to the thermoplastic liner in the steel pipe. The joint assembly process on a lay barge takes seconds per joint and is orders of magnitude faster than other methods, making it economically feasible for use in J-Lay and S-Lay vessels. Hydrostatic pressure tests have proven the welded joint sealing system to consistently prevent liquids from reaching the weld zone at pressures exceeding 500 bar. The key to achieving the mechanical seal is the novel means of locking the thermoplastic liner to the steel pipe wall. By preventing the liner from moving inside the steel pipe, it is possible to provide a fixed seat for the thermoplastic connector to seal against. Weld tests have proven that weld quality is unaffected by the connector and that heat exposure to the connector is below the degradation threshold of its thermoplastic material. The welded joint sealing system provides a cost-efficient, highly repeatable means for protecting the weld zone of thermoplastic lined steel pipe from corrosion. It makes it economically feasible to use thermoplastic liners for the transport of corrosive and hazardous liquids, including the use of specialty thermoplastic liners in case of high temperature sour oil and gas.
{"title":"Efficient Welded Joint Sealing System for Pipe with Thermoplastic Liners","authors":"Ryan M. Sears, Jose Anisio de Oliveira e Silva","doi":"10.4043/32224-ms","DOIUrl":"https://doi.org/10.4043/32224-ms","url":null,"abstract":"\u0000 Thermoplastic pull-through liners are an effective method or preventing corrosion of carbon steel pipe. Offshore pipelines using thermoplastic liners require a means of welding pipe joints without damaging the heat-sensitive liner. Methods used to date include the use of corrosion- resistant alloy (CRA) connectors that place the plastic liner far enough away from the weld zone to prevent heat from damaging the liner, and thermoplastic connectors that utilize insulation and/or an annular air gap to prevent heat from damaging the plastic liner at the weld zone. In the case of the latter the thermoplastic connectors require electrofusion welding of the connector to the liner in the pipe, which is time consuming.\u0000 This paper reviews the design and shop tests of a welded joint sealing system that permits the use of insulating thermoplastic connectors that seal to the liner in the steel pipe by means of a mechanical seal. This welded joint sealing system permits far faster joint assembly in the field than other methods, by avoiding the time-consuming processes of CRA welding or electrofusion of the thermoplastic connector to the thermoplastic liner in the steel pipe. The joint assembly process on a lay barge takes seconds per joint and is orders of magnitude faster than other methods, making it economically feasible for use in J-Lay and S-Lay vessels.\u0000 Hydrostatic pressure tests have proven the welded joint sealing system to consistently prevent liquids from reaching the weld zone at pressures exceeding 500 bar. The key to achieving the mechanical seal is the novel means of locking the thermoplastic liner to the steel pipe wall. By preventing the liner from moving inside the steel pipe, it is possible to provide a fixed seat for the thermoplastic connector to seal against.\u0000 Weld tests have proven that weld quality is unaffected by the connector and that heat exposure to the connector is below the degradation threshold of its thermoplastic material.\u0000 The welded joint sealing system provides a cost-efficient, highly repeatable means for protecting the weld zone of thermoplastic lined steel pipe from corrosion. It makes it economically feasible to use thermoplastic liners for the transport of corrosive and hazardous liquids, including the use of specialty thermoplastic liners in case of high temperature sour oil and gas.","PeriodicalId":196855,"journal":{"name":"Day 2 Tue, May 02, 2023","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130936731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Kaneko, Tomoya Inoue, Y. Nakagawa, R. Wada, Keisuke Miyoshi, Shungo Abe, Kouhei Kuroda, Kazuhiro Fujita
Detection of early signs of stuck pipe incidents is crucial because of the enormous costs of recovering from the incidents. Previous studies have leaned significantly toward a physics-based or data-science approach. However, both approaches have challenges, such as the uncertainty of the physics-based model and the lack of data in the data-science approach. This study proposes a hybrid approach using physical insights and data science and discusses the possibility of early detection of stuck pipes. The proposed method comprises two steps. In the first step, a data-driven model with physical insights is trained using the historical data of the in situ well to estimate some of the drilling variables. In the second step, the risk of stuck pipe occurrence (hereafter referred to as stuck risk) is calculated based on the historical and current measured data and the estimation of the trained model. This approach is expected to overcome the limitations of the previous methods as it allows the construction of a detection model tuned to the in situ well. In the case studies, models for estimating the top drive torque and standpipe pressure were constructed. The performance of the models is discussed using actual drilling data from drilling fields, including 21 stuck incidents during drilling operations. The proposed method was first examined using short-term output. The output confirmed that the stuck risk increased shortly before the stuck incident occurred in 15 cases. This increase in stuck risk was consistent with physical considerations. Subsequently, this study examined the long-term output over several months; this was rarely done in previous studies. Few false positives were observed in several cases even within this long-term output. Additionally, several model improvements were found to have the potential to further improve its performance. The novelty of our research lies in creating a broad framework for the early sign detection of stuck pipes by using both physical insights and data science methods. The proposed hybrid approach demonstrated the potential to reduce false alarms and improve interpretability compared to previous methods. The framework is highly extensible, and further performance improvements can be expected in the future.
{"title":"Hybrid Approach Using Physical Insights and Data Science for Early Stuck Detection","authors":"T. Kaneko, Tomoya Inoue, Y. Nakagawa, R. Wada, Keisuke Miyoshi, Shungo Abe, Kouhei Kuroda, Kazuhiro Fujita","doi":"10.4043/32532-ms","DOIUrl":"https://doi.org/10.4043/32532-ms","url":null,"abstract":"\u0000 Detection of early signs of stuck pipe incidents is crucial because of the enormous costs of recovering from the incidents. Previous studies have leaned significantly toward a physics-based or data-science approach. However, both approaches have challenges, such as the uncertainty of the physics-based model and the lack of data in the data-science approach. This study proposes a hybrid approach using physical insights and data science and discusses the possibility of early detection of stuck pipes.\u0000 The proposed method comprises two steps. In the first step, a data-driven model with physical insights is trained using the historical data of the in situ well to estimate some of the drilling variables. In the second step, the risk of stuck pipe occurrence (hereafter referred to as stuck risk) is calculated based on the historical and current measured data and the estimation of the trained model. This approach is expected to overcome the limitations of the previous methods as it allows the construction of a detection model tuned to the in situ well. In the case studies, models for estimating the top drive torque and standpipe pressure were constructed. The performance of the models is discussed using actual drilling data from drilling fields, including 21 stuck incidents during drilling operations.\u0000 The proposed method was first examined using short-term output. The output confirmed that the stuck risk increased shortly before the stuck incident occurred in 15 cases. This increase in stuck risk was consistent with physical considerations. Subsequently, this study examined the long-term output over several months; this was rarely done in previous studies. Few false positives were observed in several cases even within this long-term output. Additionally, several model improvements were found to have the potential to further improve its performance.\u0000 The novelty of our research lies in creating a broad framework for the early sign detection of stuck pipes by using both physical insights and data science methods. The proposed hybrid approach demonstrated the potential to reduce false alarms and improve interpretability compared to previous methods. The framework is highly extensible, and further performance improvements can be expected in the future.","PeriodicalId":196855,"journal":{"name":"Day 2 Tue, May 02, 2023","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130977442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kathryn Rovang, Deanne Hargrave, Jennifer Pallestrant, S. Earl
Public acceptance of offshore wind development projects is critical to successfully advancing and accelerating the US energy transition. A newly developed geo-data engagement platform has been designed to help operators and regulators manage the rapidly growing volumes of complex geo-data needed to plan, design, and construct offshore wind farms; this same platform can also be used to build public consensus for mutually beneficial outcomes of the triple bottom line: people, planet, and profit. The web-based platform was developed through a pilot project to help project owners, operators, their contractors, and regulatory agencies increase collaboration and streamline decision-making. Providing a single source for information, the platform integrates public datasets and historical project data with real-time field data, making it possible to track the ongoing site characterization effort while continually evolving the ground model. The ability to access a singular, authoritative source for project geo-data successfully increased collaboration and efficiency among project owners and their teams. Specifically, it supported and tightened critical project timeline decisions, such as adjusting the survey approach during early acquisition, delivering preliminary access to acquired survey data and geotechnical parameters, and integrating final interpreted geophysical data and geotechnical parameters into a ground model. The platform was also used to support the operator’s Construction and Operations Plan (COP) submission to the Bureau of Ocean Energy Management (BOEM), enabling interactive geo-data engagement with government stakeholders, streamlining review, and encouraging feedback on future assessment approaches. There is significant potential to further improve project outcomes by expanding access to public stakeholder groups. From a public perspective, understanding the proposed outcomes and participating in qualifying discussions can be challenging, as access to information and opportunities to engage with decision-makers is limited. In addition, interdependencies and complex feedback loops influence perspectives that can’t be fully understood without a systems thinking approach. This approach involves introducing innovative technology in a larger interconnected organization to kickstart a pressing social challenge. In this case, unifying all stakeholders—including the public—across a collaborative geo-data engagement platform that provides users access to non-proprietary information from the earliest stages mutually benefits the triple bottom line of people, planet, and profit (Elkington):- Social value (People) – A shared geo-data platform can enable meaningful engagement by balancing effective advocacy and inquiry. Citizen perspective stimulates awareness, acceptance, and alternatives with a shared sense of direction.- Environmental value (Planet) – The geo-data acquired in support of a wind farm can also serve as a range of measures to aid
{"title":"Geo-Data Engagement – A Systems Thinking Approach to Advancing Offshore Wind Farm Development in the US","authors":"Kathryn Rovang, Deanne Hargrave, Jennifer Pallestrant, S. Earl","doi":"10.4043/32405-ms","DOIUrl":"https://doi.org/10.4043/32405-ms","url":null,"abstract":"\u0000 Public acceptance of offshore wind development projects is critical to successfully advancing and accelerating the US energy transition. A newly developed geo-data engagement platform has been designed to help operators and regulators manage the rapidly growing volumes of complex geo-data needed to plan, design, and construct offshore wind farms; this same platform can also be used to build public consensus for mutually beneficial outcomes of the triple bottom line: people, planet, and profit.\u0000 The web-based platform was developed through a pilot project to help project owners, operators, their contractors, and regulatory agencies increase collaboration and streamline decision-making. Providing a single source for information, the platform integrates public datasets and historical project data with real-time field data, making it possible to track the ongoing site characterization effort while continually evolving the ground model.\u0000 The ability to access a singular, authoritative source for project geo-data successfully increased collaboration and efficiency among project owners and their teams. Specifically, it supported and tightened critical project timeline decisions, such as adjusting the survey approach during early acquisition, delivering preliminary access to acquired survey data and geotechnical parameters, and integrating final interpreted geophysical data and geotechnical parameters into a ground model. The platform was also used to support the operator’s Construction and Operations Plan (COP) submission to the Bureau of Ocean Energy Management (BOEM), enabling interactive geo-data engagement with government stakeholders, streamlining review, and encouraging feedback on future assessment approaches.\u0000 There is significant potential to further improve project outcomes by expanding access to public stakeholder groups. From a public perspective, understanding the proposed outcomes and participating in qualifying discussions can be challenging, as access to information and opportunities to engage with decision-makers is limited. In addition, interdependencies and complex feedback loops influence perspectives that can’t be fully understood without a systems thinking approach. This approach involves introducing innovative technology in a larger interconnected organization to kickstart a pressing social challenge. In this case, unifying all stakeholders—including the public—across a collaborative geo-data engagement platform that provides users access to non-proprietary information from the earliest stages mutually benefits the triple bottom line of people, planet, and profit (Elkington):- Social value (People) – A shared geo-data platform can enable meaningful engagement by balancing effective advocacy and inquiry. Citizen perspective stimulates awareness, acceptance, and alternatives with a shared sense of direction.- Environmental value (Planet) – The geo-data acquired in support of a wind farm can also serve as a range of measures to aid","PeriodicalId":196855,"journal":{"name":"Day 2 Tue, May 02, 2023","volume":"107 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123682104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. E. Calderon Medina, J. Obradors-Prats, A. Aplin, S. Jones, M. Rouainia, A. Crook
This study aims to understand the causes of anomalous pore fluid pressures within sedimentary sequences of an active tectonic basin through well log analysis, pressure data evaluation and thermo-hydro-geomechanical modelling. The study focuses on the East Coast Basin (ECB), New Zealand, an active convergent margin, where anomalously high pore pressures have been encountered in deep-water systems at burial depths as shallow as 200 m. A regional investigation including analysis of the Cretaceous to Holocene tectono-stratigraphy and diagenetic histories of the ECB, was combined with seismic and well log interpretation to understand the structural and sedimentation history of the ECB, and thus the main factors that were likely to contribute to overpressure generation/dissipation and porosity loss. 1D hydro-geomechanical models were then built to undertake a parametric study to investigate the effect on porosity and pore pressure evolution of different sedimentation and erosion rates, hiatus periods, different erosion thicknesses, and tectonic compression. The parametric models show that high overpressures can be preserved during rapid erosion events due to the relatively small timeframe for pore pressure dissipation, depending on sediment permeability. Furthermore, only recent erosion events are relevant to the present-day overpressure. In addition, high levels of tectonic compression (12.5 %) applied in recent events can produce both high pore pressure values and significant porosity reduction if the sedimentary column was undercompacted prior to the tectonic compression. Learnings from the parametric studies were used as a starting point to understand controls on the pore pressure and porosity in the Opoutama-1 well, located on the onshore area of the ECB. Results from the Opoutama-1 well show that the high pore pressure registered at shallow depths (< 1 km) in this well is significantly driven by tectonic compression as a result of high subduction rates (presently 48 mm/yr). Disequilibrium compaction also contributed to overpressure generation due to high sedimentation rates (up to ~3000 m/Ma). However, much of the disequilibrium compaction-related overpressure was dissipated during uplift, hiatus, and erosion. Where overpressure is preserved, it is related to thick (up to 1 km) mudstone packages deposited during the Cretaceous to Holocene, thin low permeable layers of limestones deposited during the Miocene to Pliocene and marl intervals with high content of smectite.
{"title":"1D Hydro-Geomechanical Modelling of Pore Pressure on an Active Convergent Margin: East Coast Basin, New Zealand","authors":"E. E. Calderon Medina, J. Obradors-Prats, A. Aplin, S. Jones, M. Rouainia, A. Crook","doi":"10.4043/32406-ms","DOIUrl":"https://doi.org/10.4043/32406-ms","url":null,"abstract":"\u0000 This study aims to understand the causes of anomalous pore fluid pressures within sedimentary sequences of an active tectonic basin through well log analysis, pressure data evaluation and thermo-hydro-geomechanical modelling. The study focuses on the East Coast Basin (ECB), New Zealand, an active convergent margin, where anomalously high pore pressures have been encountered in deep-water systems at burial depths as shallow as 200 m.\u0000 A regional investigation including analysis of the Cretaceous to Holocene tectono-stratigraphy and diagenetic histories of the ECB, was combined with seismic and well log interpretation to understand the structural and sedimentation history of the ECB, and thus the main factors that were likely to contribute to overpressure generation/dissipation and porosity loss. 1D hydro-geomechanical models were then built to undertake a parametric study to investigate the effect on porosity and pore pressure evolution of different sedimentation and erosion rates, hiatus periods, different erosion thicknesses, and tectonic compression. The parametric models show that high overpressures can be preserved during rapid erosion events due to the relatively small timeframe for pore pressure dissipation, depending on sediment permeability. Furthermore, only recent erosion events are relevant to the present-day overpressure. In addition, high levels of tectonic compression (12.5 %) applied in recent events can produce both high pore pressure values and significant porosity reduction if the sedimentary column was undercompacted prior to the tectonic compression.\u0000 Learnings from the parametric studies were used as a starting point to understand controls on the pore pressure and porosity in the Opoutama-1 well, located on the onshore area of the ECB. Results from the Opoutama-1 well show that the high pore pressure registered at shallow depths (< 1 km) in this well is significantly driven by tectonic compression as a result of high subduction rates (presently 48 mm/yr). Disequilibrium compaction also contributed to overpressure generation due to high sedimentation rates (up to ~3000 m/Ma). However, much of the disequilibrium compaction-related overpressure was dissipated during uplift, hiatus, and erosion. Where overpressure is preserved, it is related to thick (up to 1 km) mudstone packages deposited during the Cretaceous to Holocene, thin low permeable layers of limestones deposited during the Miocene to Pliocene and marl intervals with high content of smectite.","PeriodicalId":196855,"journal":{"name":"Day 2 Tue, May 02, 2023","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128771074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonathan Evan Cabrera, Graham Patrick Bradford, Ralph Stephen Lewthwaite
This paper provides an overview of the design of the Vito topsides production train and the overall approach to achieve a minimum technical scope, a simplistic design, and limit the payload to 10,000 st. A 10,000 st topsides target was utilized in order to fabricate a single topsides module and integrate the deck with the hull in a single lift, which were key enablers to maximize flexibility and efficiency in construction and commissioning. Efforts to design the topsides production train included focusing on an integrated approach with the wells and flow assurance teams to optimize the end-to-end design and enable the elimination of unnecessary topsides equipment, thereby reducing the total topsides footprint and weight. The topsides design focused on an "industry solution," by partnering with industry firms to evaluate the minimal equipment required to meet the nameplate capacity of 100,000 bopd. Redundant equipment, whose function could be accommodated via other equipment, was eliminated and the production train was optimized as an overall system, rather than focusing on individual equipment design. Key challenges included reducing the overall weight of the original Vito concept by 75% through rigorous evaluations of what the "minimal scope" should include. This was achieved through setting aggressive targets, actively managing design and scope growth to meet the targeted lift weight, designing and operating a facility that "looks different," balancing expected availability of the facility with weight and cost trade-offs, limiting future expandability, and reducing Personnel Onboard (POB). The end result was a radical redesign of the Vito Floating Production System (FPS) with simplified equipment and systems designed against minimum technical specifications, resulting in a weight reduction of the host by ~75% allowing for a much more efficient use of Company's CAPEX (Capital Expenditure) and an industry competitive FPS (Floating Production System). This paper is part of a Vito Project series at OTC 2023, and the other papers are listed in the references.
{"title":"Vito FPS: Designing a Simple, Light-Weight, Single Lift Topsides","authors":"Jonathan Evan Cabrera, Graham Patrick Bradford, Ralph Stephen Lewthwaite","doi":"10.4043/32518-ms","DOIUrl":"https://doi.org/10.4043/32518-ms","url":null,"abstract":"\u0000 This paper provides an overview of the design of the Vito topsides production train and the overall approach to achieve a minimum technical scope, a simplistic design, and limit the payload to 10,000 st. A 10,000 st topsides target was utilized in order to fabricate a single topsides module and integrate the deck with the hull in a single lift, which were key enablers to maximize flexibility and efficiency in construction and commissioning. Efforts to design the topsides production train included focusing on an integrated approach with the wells and flow assurance teams to optimize the end-to-end design and enable the elimination of unnecessary topsides equipment, thereby reducing the total topsides footprint and weight. The topsides design focused on an \"industry solution,\" by partnering with industry firms to evaluate the minimal equipment required to meet the nameplate capacity of 100,000 bopd. Redundant equipment, whose function could be accommodated via other equipment, was eliminated and the production train was optimized as an overall system, rather than focusing on individual equipment design.\u0000 Key challenges included reducing the overall weight of the original Vito concept by 75% through rigorous evaluations of what the \"minimal scope\" should include. This was achieved through setting aggressive targets, actively managing design and scope growth to meet the targeted lift weight, designing and operating a facility that \"looks different,\" balancing expected availability of the facility with weight and cost trade-offs, limiting future expandability, and reducing Personnel Onboard (POB).\u0000 The end result was a radical redesign of the Vito Floating Production System (FPS) with simplified equipment and systems designed against minimum technical specifications, resulting in a weight reduction of the host by ~75% allowing for a much more efficient use of Company's CAPEX (Capital Expenditure) and an industry competitive FPS (Floating Production System).\u0000 This paper is part of a Vito Project series at OTC 2023, and the other papers are listed in the references.","PeriodicalId":196855,"journal":{"name":"Day 2 Tue, May 02, 2023","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127798520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rob Rabei, Steven Freeman, Eli Adams, Pradeep Pillai
In 2009, the Vito field was discovered in more than 4,000 ft of water approximately 150 miles offshore from New Orleans, Louisiana. The project produces from Miocene-aged reservoirs nearly 30,000 feet below sea level. The Vito project was the first deep water project to require in-well retrievable gas-lift systems with metal-to-metal seals capable of sustaining a differential of 17 Ksi and injection rates of 15 MMscf/day. This paper provides an overview of Vito's drilling and completions, in-well gas-lift system, development process, validation and testing requirements, key challenges encountered during the project, and the technologies. This paper is part of a Vito Project series at OTC 2023, and the other papers are listed in the references. The Vito Phase 1 project consisted of 8 producer wells with slim hole and open hole gravel pack design. The project wells were drilled with an Ultra-Deepwater Dual-Activity rig. The Gas-Lift Development Team worked with vendors to identify technology gaps with existing gas-lift system to project requirements. A validation process was created by the project using the following standards: API 19G 1,2,3, QAQC, ASME, FEA, CFD & Non-metallic Standards, company standards along with partner TR2385 document to establish design, manufacturing, and validation testing guidelines to ensure the highest level of reliability possible for a gas-lift system. The project team worked alongside the vendors to design and test concepts that eventually became the project's gas-lift system. The riserless section was drilled in a batch form and was benchmarked as a world-class performance against the company fleet performance. The majority of the subsequent deepening drilling and completion operations were benchmarked as best-in-class performing wells, thanks to the implementation of competitively scoped well designs, vendor engagement and well on well learning curve improvements. The gas-lift system key challenges included understanding the phase envelope of the injection gas and potential issues that may provide for long term integrity of the well, locating testing facilities to handle 10 Ksi injection pressure with up to 15 MMscf/day of injection rates, welding and heat treatment of Inconel side pocket mandrels, long term Arrhenius testing of non-metallics, developing robust QCP plans for manufacturing, and conducting an in-well SIT (systems integration test) of the KOT (kickover tool) systems.
{"title":"Vito Project: Drilling & Completions – World Class Riserless Batch Set Performance, Best-in Class Deepening Performance, In-Well Barrier Gas-Lift System, 17 Ksi Barrier Checks, 15 MMSCF/Day Injection Rate","authors":"Rob Rabei, Steven Freeman, Eli Adams, Pradeep Pillai","doi":"10.4043/32414-ms","DOIUrl":"https://doi.org/10.4043/32414-ms","url":null,"abstract":"\u0000 In 2009, the Vito field was discovered in more than 4,000 ft of water approximately 150 miles offshore from New Orleans, Louisiana. The project produces from Miocene-aged reservoirs nearly 30,000 feet below sea level. The Vito project was the first deep water project to require in-well retrievable gas-lift systems with metal-to-metal seals capable of sustaining a differential of 17 Ksi and injection rates of 15 MMscf/day. This paper provides an overview of Vito's drilling and completions, in-well gas-lift system, development process, validation and testing requirements, key challenges encountered during the project, and the technologies. This paper is part of a Vito Project series at OTC 2023, and the other papers are listed in the references.\u0000 The Vito Phase 1 project consisted of 8 producer wells with slim hole and open hole gravel pack design. The project wells were drilled with an Ultra-Deepwater Dual-Activity rig. The Gas-Lift Development Team worked with vendors to identify technology gaps with existing gas-lift system to project requirements. A validation process was created by the project using the following standards: API 19G 1,2,3, QAQC, ASME, FEA, CFD & Non-metallic Standards, company standards along with partner TR2385 document to establish design, manufacturing, and validation testing guidelines to ensure the highest level of reliability possible for a gas-lift system. The project team worked alongside the vendors to design and test concepts that eventually became the project's gas-lift system.\u0000 The riserless section was drilled in a batch form and was benchmarked as a world-class performance against the company fleet performance. The majority of the subsequent deepening drilling and completion operations were benchmarked as best-in-class performing wells, thanks to the implementation of competitively scoped well designs, vendor engagement and well on well learning curve improvements. The gas-lift system key challenges included understanding the phase envelope of the injection gas and potential issues that may provide for long term integrity of the well, locating testing facilities to handle 10 Ksi injection pressure with up to 15 MMscf/day of injection rates, welding and heat treatment of Inconel side pocket mandrels, long term Arrhenius testing of non-metallics, developing robust QCP plans for manufacturing, and conducting an in-well SIT (systems integration test) of the KOT (kickover tool) systems.","PeriodicalId":196855,"journal":{"name":"Day 2 Tue, May 02, 2023","volume":"288 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133120568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The transition towards renewable energy and the electrification of various industry sectors will undoubtedly lead to higher resource demand of our society. Metals like copper, cobalt or rare-earth metals are the basis of these new technologies. However, these elements are not yet available in sufficient quantities in our economic cycle. Hence, more material would be required to be extracted from open pit land mining. A suitable and promising alternative to land deposits are seabed mineral resources. The focus of this work is the development and analysis of a new method to explore seafloor massive sulfides (SMS) with regards to minimizing footprint of the operation in all aspects. SMS reservoirs are mostly found in water depths between 2000m and 4000m. To explore these deposits in the deep sea a concept study based on a vertical trench cutting system has been developed. The extreme environmental conditions require mechanical calculations of the template stability on highly inclined slopes. Furthermore, the cutter tool performance and wear behavior are investigated on a test stand through cutting into rock probes, which have comparable mechanical properties as massive sulfides. The technical feasibility of the separation system was analyzed by computational fluid dynamic models simulating multiple-phase flow and its behavior. For bulk sampling of massive sulfides two potential concepts were examined and compared against each other. The main difference is the conveying method of the sample material to the ocean surface. A discontinuous lifting system with a collector bucket has major advantages in contrast to a riser system. During short exploration campaigns substantial energy and cost savings were estimated for a mechanical intermittent ore transportation. The first results regarding the effectiveness of the separation container could be demonstrated. The separation process takes place in a large scale hydrocyclone in-situ on the seafloor. The ground stability for the landing and leveling of the deep sea sampling unit was verified. Key aspect of the vertical trench cutting approach is the minimal environmental impact during the whole exploration phase. At the same time this system enables to retrieve large amounts of sample material in an economical way.
{"title":"Vertical Exploration Approach for Seafloor Massive Sulfide Deposits","authors":"Stefan Wegerer, Matthias Semel, L. Weixler","doi":"10.4043/32485-ms","DOIUrl":"https://doi.org/10.4043/32485-ms","url":null,"abstract":"\u0000 The transition towards renewable energy and the electrification of various industry sectors will undoubtedly lead to higher resource demand of our society. Metals like copper, cobalt or rare-earth metals are the basis of these new technologies. However, these elements are not yet available in sufficient quantities in our economic cycle. Hence, more material would be required to be extracted from open pit land mining. A suitable and promising alternative to land deposits are seabed mineral resources. The focus of this work is the development and analysis of a new method to explore seafloor massive sulfides (SMS) with regards to minimizing footprint of the operation in all aspects.\u0000 SMS reservoirs are mostly found in water depths between 2000m and 4000m. To explore these deposits in the deep sea a concept study based on a vertical trench cutting system has been developed. The extreme environmental conditions require mechanical calculations of the template stability on highly inclined slopes. Furthermore, the cutter tool performance and wear behavior are investigated on a test stand through cutting into rock probes, which have comparable mechanical properties as massive sulfides. The technical feasibility of the separation system was analyzed by computational fluid dynamic models simulating multiple-phase flow and its behavior.\u0000 For bulk sampling of massive sulfides two potential concepts were examined and compared against each other. The main difference is the conveying method of the sample material to the ocean surface. A discontinuous lifting system with a collector bucket has major advantages in contrast to a riser system. During short exploration campaigns substantial energy and cost savings were estimated for a mechanical intermittent ore transportation. The first results regarding the effectiveness of the separation container could be demonstrated. The separation process takes place in a large scale hydrocyclone in-situ on the seafloor. The ground stability for the landing and leveling of the deep sea sampling unit was verified.\u0000 Key aspect of the vertical trench cutting approach is the minimal environmental impact during the whole exploration phase. At the same time this system enables to retrieve large amounts of sample material in an economical way.","PeriodicalId":196855,"journal":{"name":"Day 2 Tue, May 02, 2023","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125141984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}