Pub Date : 2024-05-16DOI: 10.1016/j.pbb.2024.173791
Mackenzie C. Gamble , Sophia Miracle , Benjamin R. Williams , Ryan W. Logan
Fentanyl has become the leading driver of opioid overdoses in the United States. Cessation of opioid use represents a challenge as the experience of withdrawal drives subsequent relapse. One of the most prominent withdrawal symptoms that can contribute to opioid craving and vulnerability to relapse is sleep disruption. The endocannabinoid agonist, 2-Arachidonoylglycerol (2-AG), may promote sleep and reduce withdrawal severity; however, the effects of 2-AG on sleep disruption during opioid withdrawal have yet to be assessed. Here, we investigated the effects of 2-AG administration on sleep-wake behavior and diurnal activity in mice during withdrawal from fentanyl. Sleep-wake activity measured via actigraphy was continuously recorded before and after chronic fentanyl administration in both male and female C57BL/6J mice. Immediately following cessation of fentanyl administration, 2-AG was administered intraperitoneally to investigate the impact of endocannabinoid agonism on opioid-induced sleep disruption. We found that female mice maintained higher activity levels in response to chronic fentanyl than male mice. Furthermore, fentanyl administration increased wake and decreased sleep during the light period and inversely increased sleep and decreased wake in the dark period in both sexes. 2-AG treatment increased arousal and decreased sleep in both sexes during first 24-h of withdrawal. On withdrawal day 2, only females showed increased wakefulness with no changes in males, but by withdrawal day 3 male mice displayed decreased rapid-eye movement sleep during the dark period with no changes in female mice. Overall, repeated administration of fentanyl altered sleep and diurnal activity and administration of the endocannabinoid agonist, 2-AG, had sex-specific effects on fentanyl-induced sleep and diurnal changes.
{"title":"Endocannabinoid agonist 2-arachidonoylglycerol differentially alters diurnal activity and sleep during fentanyl withdrawal in male and female mice","authors":"Mackenzie C. Gamble , Sophia Miracle , Benjamin R. Williams , Ryan W. Logan","doi":"10.1016/j.pbb.2024.173791","DOIUrl":"10.1016/j.pbb.2024.173791","url":null,"abstract":"<div><p>Fentanyl has become the leading driver of opioid overdoses in the United States. Cessation of opioid use represents a challenge as the experience of withdrawal drives subsequent relapse. One of the most prominent withdrawal symptoms that can contribute to opioid craving and vulnerability to relapse is sleep disruption. The endocannabinoid agonist, 2-Arachidonoylglycerol (2-AG), may promote sleep and reduce withdrawal severity; however, the effects of 2-AG on sleep disruption during opioid withdrawal have yet to be assessed. Here, we investigated the effects of 2-AG administration on sleep-wake behavior and diurnal activity in mice during withdrawal from fentanyl. Sleep-wake activity measured via actigraphy was continuously recorded before and after chronic fentanyl administration in both male and female C57BL/6J mice. Immediately following cessation of fentanyl administration, 2-AG was administered intraperitoneally to investigate the impact of endocannabinoid agonism on opioid-induced sleep disruption. We found that female mice maintained higher activity levels in response to chronic fentanyl than male mice. Furthermore, fentanyl administration increased wake and decreased sleep during the light period and inversely increased sleep and decreased wake in the dark period in both sexes. 2-AG treatment increased arousal and decreased sleep in both sexes during first 24-h of withdrawal. On withdrawal day 2, only females showed increased wakefulness with no changes in males, but by withdrawal day 3 male mice displayed decreased rapid-eye movement sleep during the dark period with no changes in female mice. Overall, repeated administration of fentanyl altered sleep and diurnal activity and administration of the endocannabinoid agonist, 2-AG, had sex-specific effects on fentanyl-induced sleep and diurnal changes.</p></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"240 ","pages":"Article 173791"},"PeriodicalIF":3.6,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140958654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1016/j.pbb.2024.173789
Robert Lalonde
Milk varieties and specific proteins exhibit anxiolytic-like actions in mice and rats exposed to several tests, the most prominent being the elevated plus-maze. Administrations of αs1-casein, its 91–100 (α-casozepine), 91–97, 91–93, and 91–92 fragments, the 60–69 fragment of β-casein, lactoferrin, β-lactotensin, wheylin-1, wheylin-2, and α-lactalbumin have been reported to increase open arm exploration relative to enclosed arm exploration. Anxiolytic-like actions have also been described for 91–93 and 91–92 fragments of αs1-casein, wheylin-1, α-lactalbumin, and lactoferrin in the open-field. Some effects appear to be mediated by the GABAA receptor complex, since antagonists mitigated the anxiolytic-like actions of αs1-casein, the 91–92 fragment of αs1-casein, and wheylin-1. Other neurotransmitters purported to affect such behaviors include 5HT, dopamine, and neurotensin. Further research is needed to identify their neuropharmacological actions.
{"title":"Anxiolytic-like effects of milk proteins","authors":"Robert Lalonde","doi":"10.1016/j.pbb.2024.173789","DOIUrl":"10.1016/j.pbb.2024.173789","url":null,"abstract":"<div><p>Milk varieties and specific proteins exhibit anxiolytic-like actions in mice and rats exposed to several tests, the most prominent being the elevated plus-maze. Administrations of α<sub>s1</sub>-casein, its 91–100 (α-casozepine), 91–97, 91–93, and 91–92 fragments, the 60–69 fragment of β-casein, lactoferrin, β-lactotensin, wheylin-1, wheylin-2, and α-lactalbumin have been reported to increase open arm exploration relative to enclosed arm exploration. Anxiolytic-like actions have also been described for 91–93 and 91–92 fragments of α<sub>s1</sub>-casein, wheylin-1, α-lactalbumin, and lactoferrin in the open-field. Some effects appear to be mediated by the GABA<sub>A</sub> receptor complex, since antagonists mitigated the anxiolytic-like actions of α<sub>s1</sub>-casein, the 91–92 fragment of α<sub>s1</sub>-casein, and wheylin-1. Other neurotransmitters purported to affect such behaviors include 5HT, dopamine, and neurotensin. Further research is needed to identify their neuropharmacological actions.</p></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"240 ","pages":"Article 173789"},"PeriodicalIF":3.6,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-09DOI: 10.1016/j.pbb.2024.173788
Xinxin Xu , Fangjuan Li , Chunhua Liu , Yue Wang , Zhuo Yang , Guoming Xie , Tao Zhang
Autism is a complex neurodevelopmental disorder with no effective treatment available currently. Repetitive transcranial magnetic stimulation (rTMS) is emerging as a promising neuromodulation technique to treat autism. However, the mechanism how rTMS works remains unclear, which restrict the clinical application of magnetic stimulation in the autism treatment. In this study, we investigated the effect of low-frequency rTMS on the autistic-like symptoms and explored if this neuroprotective effect was associated with synaptic plasticity and neuroinflammation in the hippocampus. A rat model of autism was established by intraperitoneal injection of valproic acid (VPA) in pregnant rats and male offspring were treated with 1 Hz rTMS daily for two weeks continuously. Behavior tests were performed to identify behavioral abnormality. Synaptic plasticity was measured by in vivo electrophysiological recording and Golgi-Cox staining. Synapse and inflammation associated proteins were detected by immunofluorescence and Western blot analyses. Results showed prenatal VPA-exposed rats exhibited autistic-like and anxiety-like behaviors, and cognitive impairment. Synaptic plasticity deficits and the abnormality expression of synapse-associated proteins were found in the hippocampus of prenatal VPA-exposed rats. Prenatal VPA exposure increased the level of inflammation cytokines and promoted the excessive activation of microglia. rTMS significantly alleviated the prenatal VPA-induced abnormalities including behavioral and synaptic plasticity deficits, and excessive neuroinflammation. TMS maybe a potential strategy for autism therapy via rescuing synaptic plasticity and inhibiting neuroinflammation.
{"title":"Low-frequency repetitive transcranial magnetic stimulation alleviates abnormal behavior in valproic acid rat model of autism through rescuing synaptic plasticity and inhibiting neuroinflammation","authors":"Xinxin Xu , Fangjuan Li , Chunhua Liu , Yue Wang , Zhuo Yang , Guoming Xie , Tao Zhang","doi":"10.1016/j.pbb.2024.173788","DOIUrl":"10.1016/j.pbb.2024.173788","url":null,"abstract":"<div><p>Autism is a complex neurodevelopmental disorder with no effective treatment available currently. Repetitive transcranial magnetic stimulation (rTMS) is emerging as a promising neuromodulation technique to treat autism. However, the mechanism how rTMS works remains unclear, which restrict the clinical application of magnetic stimulation in the autism treatment. In this study, we investigated the effect of low-frequency rTMS on the autistic-like symptoms and explored if this neuroprotective effect was associated with synaptic plasticity and neuroinflammation in the hippocampus. A rat model of autism was established by intraperitoneal injection of valproic acid (VPA) in pregnant rats and male offspring were treated with 1 Hz rTMS daily for two weeks continuously. Behavior tests were performed to identify behavioral abnormality. Synaptic plasticity was measured by in vivo electrophysiological recording and Golgi-Cox staining. Synapse and inflammation associated proteins were detected by immunofluorescence and Western blot analyses. Results showed prenatal VPA-exposed rats exhibited autistic-like and anxiety-like behaviors, and cognitive impairment. Synaptic plasticity deficits and the abnormality expression of synapse-associated proteins were found in the hippocampus of prenatal VPA-exposed rats. Prenatal VPA exposure increased the level of inflammation cytokines and promoted the excessive activation of microglia. rTMS significantly alleviated the prenatal VPA-induced abnormalities including behavioral and synaptic plasticity deficits, and excessive neuroinflammation. TMS maybe a potential strategy for autism therapy via rescuing synaptic plasticity and inhibiting neuroinflammation.</p></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"240 ","pages":"Article 173788"},"PeriodicalIF":3.6,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1016/j.pbb.2024.173787
Margaret C. Wardle , Heather E. Webber , Jin H. Yoon , Angela M. Heads , Angela L. Stotts , Scott D. Lane , Joy M. Schmitz
Behavioral therapies are considered best practices in the treatment of substance use disorders (SUD) and used as first-line approaches for SUDs without FDA-approved pharmacotherapies. Decades of research on the neuroscience of drug reward and addiction have informed the development of current leading behavioral therapies that, while differing in focus and technique, have in common the overarching goal of shifting reward responding away from drug and toward natural non-drug rewards. This review begins by describing key neurobiological processes of reward in addiction, followed by a description of how various behavioral therapies address specific reward processes. Based on this review, a conceptual ‘map’ is crafted to pinpoint gaps and areas of overlap, serving as a guide for selecting and integrating behavioral therapies.
{"title":"Behavioral therapies targeting reward mechanisms in substance use disorders","authors":"Margaret C. Wardle , Heather E. Webber , Jin H. Yoon , Angela M. Heads , Angela L. Stotts , Scott D. Lane , Joy M. Schmitz","doi":"10.1016/j.pbb.2024.173787","DOIUrl":"10.1016/j.pbb.2024.173787","url":null,"abstract":"<div><p>Behavioral therapies are considered best practices in the treatment of substance use disorders (SUD) and used as first-line approaches for SUDs without FDA-approved pharmacotherapies. Decades of research on the neuroscience of drug reward and addiction have informed the development of current leading behavioral therapies that, while differing in focus and technique, have in common the overarching goal of shifting reward responding away from drug and toward natural non-drug rewards. This review begins by describing key neurobiological processes of reward in addiction, followed by a description of how various behavioral therapies address specific reward processes. Based on this review, a conceptual ‘map’ is crafted to pinpoint gaps and areas of overlap, serving as a guide for selecting and integrating behavioral therapies.</p></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"240 ","pages":"Article 173787"},"PeriodicalIF":3.6,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140857493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-28DOI: 10.1016/j.pbb.2024.173779
Bartosz Bobula, Magdalena Kusek, Grzegorz Hess
The use of a selective serotonin reuptake inhibitor fluoxetine in depression during pregnancy and the postpartum period might increase the risk of affective disorders and cognitive symptoms in progeny. In animal models, maternal exposure to fluoxetine throughout gestation and lactation negatively affects the behavior of the offspring. Little is known about the effects of maternal fluoxetine on synaptic transmission and plasticity in the offspring cerebral cortex. During pregnancy and lactation C57BL/6J mouse dams received fluoxetine (7.5 mg/kg/day) with drinking water. Female offspring mice received intraperitoneal injections of the selective 5-HT7 receptor antagonist SB 269970 (2.5 mg/kg) for 7 days. Whole-cell and field potential electrophysiological recordings were performed in the medial prefrontal cortex (mPFC) ex vivo brain slices. Perinatal exposure to fluoxetine resulted in decreased field potentials and impaired long-term potentiation (LTP) in layer II/III of the mPFC of female young adult offspring. Neither the intrinsic excitability nor spontaneous excitatory postsynaptic currents were altered in layer II/III mPFC pyramidal neurons. In mPFC slices obtained from fluoxetine-treated mice that were administered SB 269970 both field potentials and LTP magnitude were restored and did not differ from controls. Treatment of fluoxetine-exposed mice with a selective 5-HT7 receptor antagonist, SB 269970, normalizes synaptic transmission and restores the potential for plasticity in the mPFC of mice exposed in utero and postnatally to fluoxetine.
{"title":"The 5-HT7 receptor antagonist SB 269970 ameliorates maternal fluoxetine exposure-induced impairment of synaptic plasticity in the prefrontal cortex of the offspring female mice","authors":"Bartosz Bobula, Magdalena Kusek, Grzegorz Hess","doi":"10.1016/j.pbb.2024.173779","DOIUrl":"10.1016/j.pbb.2024.173779","url":null,"abstract":"<div><p>The use of a selective serotonin reuptake inhibitor fluoxetine in depression during pregnancy and the postpartum period might increase the risk of affective disorders and cognitive symptoms in progeny. In animal models, maternal exposure to fluoxetine throughout gestation and lactation negatively affects the behavior of the offspring. Little is known about the effects of maternal fluoxetine on synaptic transmission and plasticity in the offspring cerebral cortex. During pregnancy and lactation C57BL/6J mouse dams received fluoxetine (7.5 mg/kg/day) with drinking water. Female offspring mice received intraperitoneal injections of the selective 5-HT<sub>7</sub> receptor antagonist SB 269970 (2.5 mg/kg) for 7 days. Whole-cell and field potential electrophysiological recordings were performed in the medial prefrontal cortex (mPFC) ex vivo brain slices. Perinatal exposure to fluoxetine resulted in decreased field potentials and impaired long-term potentiation (LTP) in layer II/III of the mPFC of female young adult offspring. Neither the intrinsic excitability nor spontaneous excitatory postsynaptic currents were altered in layer II/III mPFC pyramidal neurons. In mPFC slices obtained from fluoxetine-treated mice that were administered SB 269970 both field potentials and LTP magnitude were restored and did not differ from controls. Treatment of fluoxetine-exposed mice with a selective 5-HT<sub>7</sub> receptor antagonist, SB 269970, normalizes synaptic transmission and restores the potential for plasticity in the mPFC of mice exposed in utero and postnatally to fluoxetine.</p></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"240 ","pages":"Article 173779"},"PeriodicalIF":3.6,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009130572400073X/pdfft?md5=5290e2879ac707dfdec0807778ac6884&pid=1-s2.0-S009130572400073X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140857494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-27DOI: 10.1016/j.pbb.2024.173778
Daniel Moreira Alves da Silva, Iardja Stéfane Lopes Sales, João Victor Souza Oliveira, Manuel Alves dos Santos Júnior, Manoela de Oliveira Rebouças, José Tiago Valentim, Larice de Carvalho Vale, Victor Celso Cavalcanti Capibaribe, Michele Albuquerque Jales de Carvalho, Pedro Everson Alexandre de Aquino, Danielle Silveira Macêdo, Francisca Cléa Florenço de Sousa
Depression and anxiety disorders have their pathophysiologies linked to inflammation and oxidative stress. In this context, celecoxib (CLX) and etoricoxib (ETR) inhibit cyclooxygenase 2 (COX-2), an enzyme expressed by cells involved in the inflammatory process and found in the brain. Studies have been using CLX as a possible drug in the treatment of depression, although its mechanisms at the central nervous system level are not fully elucidated. In this study, the effects of CLX and ETR on behavioral, oxidative, and inflammatory changes induced by systemic exposure to Escherichia coli lipopolysaccharide (LPS) were evaluated in adult male swiss mice. For ten days, the animals received intraperitoneal injections of LPS at 0.5 mg/kg. From the sixth to the tenth day, one hour after LPS exposure, they were treated orally with CLX (15 mg/kg), ETR (10 mg/kg), or fluoxetine (FLU) (20 mg/kg). Twenty-four hours after the last oral administration, the animals underwent evaluation of locomotor activity (open field test), predictive tests for depressive-like behavior (forced swim and tail suspension tests), and anxiolytic-like effect (elevated plus maze and hole board tests). Subsequently, the hippocampus, prefrontal cortex and striatum were dissected for the measurement of oxidative and nitrosative parameters (malondialdehyde, nitrite, and glutathione) and quantification of pro-inflammatory cytokines (IL-1β and IL-6). LPS induced depressive and anxious-like behavior, and treatment with CLX or ETR was able to reverse most of the behavioral changes. It was evidenced that nitrosative stress and the degree of lipid peroxidation induced by LPS were reduced in different brain areas after treatment with the drugs, as well as the endogenous defense system against free radicals was strengthened. CLX and ETR also significantly reduced LPS-induced cytokine levels. These data are expected to expand information on the role of inflammation in depression and anxiety and provide insights into possible mechanisms of COX-2 inhibitors in psychiatric disorders with a neurobiological basis in inflammation and oxidative stress.
{"title":"Cyclooxygenase-2 inhibitors alleviated depressive and anxious-like behaviors in mice exposed to lipopolysaccharide: Involvement of oxidative stress and neuroinflammation","authors":"Daniel Moreira Alves da Silva, Iardja Stéfane Lopes Sales, João Victor Souza Oliveira, Manuel Alves dos Santos Júnior, Manoela de Oliveira Rebouças, José Tiago Valentim, Larice de Carvalho Vale, Victor Celso Cavalcanti Capibaribe, Michele Albuquerque Jales de Carvalho, Pedro Everson Alexandre de Aquino, Danielle Silveira Macêdo, Francisca Cléa Florenço de Sousa","doi":"10.1016/j.pbb.2024.173778","DOIUrl":"https://doi.org/10.1016/j.pbb.2024.173778","url":null,"abstract":"<div><p>Depression and anxiety disorders have their pathophysiologies linked to inflammation and oxidative stress. In this context, celecoxib (CLX) and etoricoxib (ETR) inhibit cyclooxygenase 2 (COX-2), an enzyme expressed by cells involved in the inflammatory process and found in the brain. Studies have been using CLX as a possible drug in the treatment of depression, although its mechanisms at the central nervous system level are not fully elucidated. In this study, the effects of CLX and ETR on behavioral, oxidative, and inflammatory changes induced by systemic exposure to <em>Escherichia coli</em> lipopolysaccharide (LPS) were evaluated in adult male swiss mice. For ten days, the animals received intraperitoneal injections of LPS at 0.5 mg/kg. From the sixth to the tenth day, one hour after LPS exposure, they were treated orally with CLX (15 mg/kg), ETR (10 mg/kg), or fluoxetine (FLU) (20 mg/kg). Twenty-four hours after the last oral administration, the animals underwent evaluation of locomotor activity (open field test), predictive tests for depressive-like behavior (forced swim and tail suspension tests), and anxiolytic-like effect (elevated plus maze and hole board tests). Subsequently, the hippocampus, prefrontal cortex and striatum were dissected for the measurement of oxidative and nitrosative parameters (malondialdehyde, nitrite, and glutathione) and quantification of pro-inflammatory cytokines (IL-1β and IL-6). LPS induced depressive and anxious-like behavior, and treatment with CLX or ETR was able to reverse most of the behavioral changes. It was evidenced that nitrosative stress and the degree of lipid peroxidation induced by LPS were reduced in different brain areas after treatment with the drugs, as well as the endogenous defense system against free radicals was strengthened. CLX and ETR also significantly reduced LPS-induced cytokine levels. These data are expected to expand information on the role of inflammation in depression and anxiety and provide insights into possible mechanisms of COX-2 inhibitors in psychiatric disorders with a neurobiological basis in inflammation and oxidative stress.</p></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"240 ","pages":"Article 173778"},"PeriodicalIF":3.6,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140818749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-27DOI: 10.1016/j.pbb.2024.173776
Harley M. Buechler , Mousumi Sumi , Indu Mithra Madhuranthakam , Christa Donegan , Frank DiGiorgio Jr. , Alisha A. Acosta , Sarah Uribe , Mohammad A. Rahman , Alison Sorbello , Bradford D. Fischer , Thomas M. Keck
Alcohol use disorder (AUD) affects >15 million people in the United States. Current pharmacotherapeutic treatments for AUD are only modestly effective, necessitating the identification of new targets for medications development. The cannabinoid receptor type 1 (CB1) has been a target of interest for the development of medications for substance use disorders and other compulsive disorders. However, CB1 antagonists/inverse agonists (e.g., rimonabant) have severe side effects that limit their clinical utility, including anxiety, depression, and suicide. Recent development of CB1 negative allosteric modulators (NAMs), including PSNCBAM-1, may provide an alternative mechanism of attenuating CB1 signaling with reduced side effects. PSNCBAM-1 has not yet been evaluated for effects in models of AUD. In this study, we investigated the effects of the CB1 NAM, PSNCBAM-1, in rodent models of AUD using adult male mice. PSNCBAM-1 dose-dependently attenuated oral ethanol self-administration (8 % w/v ethanol in water), significantly reducing ethanol rewards at a dose of 30 mg/kg, but not at 10 or 18 mg/kg. PSNCBAM-1 also dose-dependently attenuated palatable food self-administration (diluted vanilla Ensure), significantly reducing food rewards at 18 and 30 mg/kg PSNCBAM-1. PSNCBAM-1 did not affect conditioned place preference for 2 g/kg ethanol. These results suggest PSNCBAM-1 reduces ethanol-taking behavior via a nonspecific hypophagic effect and does not reduce the rewarding effects of ethanol.
{"title":"The CB1 negative allosteric modulator PSNCBAM-1 reduces ethanol self-administration via a nonspecific hypophagic effect","authors":"Harley M. Buechler , Mousumi Sumi , Indu Mithra Madhuranthakam , Christa Donegan , Frank DiGiorgio Jr. , Alisha A. Acosta , Sarah Uribe , Mohammad A. Rahman , Alison Sorbello , Bradford D. Fischer , Thomas M. Keck","doi":"10.1016/j.pbb.2024.173776","DOIUrl":"https://doi.org/10.1016/j.pbb.2024.173776","url":null,"abstract":"<div><p>Alcohol use disorder (AUD) affects >15 million people in the United States. Current pharmacotherapeutic treatments for AUD are only modestly effective, necessitating the identification of new targets for medications development. The cannabinoid receptor type 1 (CB1) has been a target of interest for the development of medications for substance use disorders and other compulsive disorders. However, CB1 antagonists/inverse agonists (e.g., rimonabant) have severe side effects that limit their clinical utility, including anxiety, depression, and suicide. Recent development of CB1 negative allosteric modulators (NAMs), including PSNCBAM-1, may provide an alternative mechanism of attenuating CB1 signaling with reduced side effects. PSNCBAM-1 has not yet been evaluated for effects in models of AUD. In this study, we investigated the effects of the CB1 NAM, PSNCBAM-1, in rodent models of AUD using adult male mice. PSNCBAM-1 dose-dependently attenuated oral ethanol self-administration (8 % w/v ethanol in water), significantly reducing ethanol rewards at a dose of 30 mg/kg, but not at 10 or 18 mg/kg. PSNCBAM-1 also dose-dependently attenuated palatable food self-administration (diluted vanilla Ensure), significantly reducing food rewards at 18 and 30 mg/kg PSNCBAM-1. PSNCBAM-1 did not affect conditioned place preference for 2 g/kg ethanol. These results suggest PSNCBAM-1 reduces ethanol-taking behavior via a nonspecific hypophagic effect and does not reduce the rewarding effects of ethanol.</p></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"240 ","pages":"Article 173776"},"PeriodicalIF":3.6,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0091305724000704/pdfft?md5=11958bccae806308ed829f8cfd75d7d7&pid=1-s2.0-S0091305724000704-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140815787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.1016/j.pbb.2024.173777
Susan Schenk , Julia A. Horsfield , Linda Dwoskin , Sheri L. Johnson
Research using zebrafish (Danio rerio) has begun to provide novel information in many fields, including the behavioral pharmacology of drug use and misuse. There have been limited studies on the effects of methamphetamine in adult zebrafish and the parameters of exposure (dose, test session length) have not been well-documented. Behavior following drug exposure is generally measured during relatively short sessions (6–10 min is common) in a novel tank environment. Many procedural variables (isolation, netting, novel tank) elicit anxiety-like behavior that is most apparent during the initial portion of a test session. This anxiety-like behavior might mask the initial effects of methamphetamine. During longer test sessions, these anxiety-like responses would be expected to habituate and drug effects should become more apparent. To test this idea, we measured several locomotor activity responses for 50-min following a range of methamphetamine doses (0.1–3.0 mg/L via immersion in methamphetamine solution). Methamphetamine failed to alter swimming velocity, distance travelled, or freezing time. In contrast, methamphetamine produced a dose-dependent decrease in time spent in the bottom of the tank, an increase in the number of visits to the top of the tank, and an increase in the number of transitions along the sides of the tank. The effects of methamphetamine were apparent 10–20 min following exposure and generally persisted throughout the session. These findings indicate that longer test sessions are required to measure methamphetamine-induced changes in behavior in zebrafish, as has been shown in other laboratory animals. The results also suggest that anxiety-like responses associated with various procedural aspects (netting, isolation, novel test apparatus) likely interfere with the ability to observe many behavioral effects of methamphetamine in zebrafish. Based on the current results, habituation to testing procedures to reduce anxiety-like behaviors is recommended in determining the effects of methamphetamine in zebrafish.
{"title":"Methamphetamine effects in zebrafish (Danio rerio) depend on behavioral endpoint, dose and test session duration","authors":"Susan Schenk , Julia A. Horsfield , Linda Dwoskin , Sheri L. Johnson","doi":"10.1016/j.pbb.2024.173777","DOIUrl":"10.1016/j.pbb.2024.173777","url":null,"abstract":"<div><p>Research using zebrafish (<em>Danio rerio</em>) has begun to provide novel information in many fields, including the behavioral pharmacology of drug use and misuse. There have been limited studies on the effects of methamphetamine in adult zebrafish and the parameters of exposure (dose, test session length) have not been well-documented. Behavior following drug exposure is generally measured during relatively short sessions (6–10 min is common) in a novel tank environment. Many procedural variables (isolation, netting, novel tank) elicit anxiety-like behavior that is most apparent during the initial portion of a test session. This anxiety-like behavior might mask the initial effects of methamphetamine. During longer test sessions, these anxiety-like responses would be expected to habituate and drug effects should become more apparent. To test this idea, we measured several locomotor activity responses for 50-min following a range of methamphetamine doses (0.1–3.0 mg/L via immersion in methamphetamine solution). Methamphetamine failed to alter swimming velocity, distance travelled, or freezing time. In contrast, methamphetamine produced a dose-dependent decrease in time spent in the bottom of the tank, an increase in the number of visits to the top of the tank, and an increase in the number of transitions along the sides of the tank. The effects of methamphetamine were apparent 10–20 min following exposure and generally persisted throughout the session. These findings indicate that longer test sessions are required to measure methamphetamine-induced changes in behavior in zebrafish, as has been shown in other laboratory animals. The results also suggest that anxiety-like responses associated with various procedural aspects (netting, isolation, novel test apparatus) likely interfere with the ability to observe many behavioral effects of methamphetamine in zebrafish. Based on the current results, habituation to testing procedures to reduce anxiety-like behaviors is recommended in determining the effects of methamphetamine in zebrafish.</p></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"240 ","pages":"Article 173777"},"PeriodicalIF":3.6,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0091305724000716/pdfft?md5=e7671ac6548c1094e93633db295b5794&pid=1-s2.0-S0091305724000716-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140764161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.1016/j.pbb.2024.173771
Jermaine D. Jones , Caroline A. Arout , Rachel Luba , Dillon Murugesan , Gabriela Madera , Liam Gorsuch , Rebecca Schusterman , Suky Martinez
In the United States, the societal costs associated with drug use surpass $500 billion annually. The rewarding and reinforcing properties that drive the use of these addictive substances are typically examined concerning the neurobiological effects responsible for their abuse potential. In this review, terms such as “abuse potential,” “drug,” and “addictive properties” are used due to their relevance to the methodological, theoretical, and conceptual framework for understanding the phenomenon of drug-taking behavior and the associated body of preclinical and clinical literature. The use of these terms is not intended to cast aspersions on individuals with substance use disorders (SUD). Understanding what motivates substance use has been a focus of SUD research for decades. Much of this corpus of work has focused on the shared effects of each drug class to increase dopaminergic transmission within the central reward pathways of the brain, or the “reward center.” However, the precise influence of each drug class on dopamine signaling, and the extent thereof, differs considerably. Furthermore, the aforementioned substances have effects on several neurobiological targets that mediate and modulate their addictive properties. The current manuscript sought to review the influence of drug class on the rewarding effects of each of the major pharmacological classes of addictive drugs (i.e., psychostimulants, opioids, nicotine, alcohol, and cannabinoids). Our review suggests that even subtle differences in drug effects can result in significant variability in the subjective experience of the drug, altering rewarding and other reinforcing effects. Additionally, this review will argue that reward (i.e., the attractive and motivational property of a stimulus) alone is not sufficient to explain the abuse liability of these substances. Instead, abuse potential is best examined as a function of both positive and negative reinforcing drug effects (i.e., stimuli that the subject will work to attain and stimuli that the subject will work to end or avoid, respectively). Though reward is central to drug use, the factors that motivate and maintain drug taking are varied and complex, with much to be elucidated.
{"title":"The influence of drug class on reward in substance use disorders","authors":"Jermaine D. Jones , Caroline A. Arout , Rachel Luba , Dillon Murugesan , Gabriela Madera , Liam Gorsuch , Rebecca Schusterman , Suky Martinez","doi":"10.1016/j.pbb.2024.173771","DOIUrl":"10.1016/j.pbb.2024.173771","url":null,"abstract":"<div><p>In the United States, the societal costs associated with drug use surpass $500 billion annually. The rewarding and reinforcing properties that drive the use of these addictive substances are typically examined concerning the neurobiological effects responsible for their abuse potential. In this review, terms such as “abuse potential,” “drug,” and “addictive properties” are used due to their relevance to the methodological, theoretical, and conceptual framework for understanding the phenomenon of drug-taking behavior and the associated body of preclinical and clinical literature. The use of these terms is not intended to cast aspersions on individuals with substance use disorders (SUD). Understanding what motivates substance use has been a focus of SUD research for decades. Much of this corpus of work has focused on the shared effects of each drug class to increase dopaminergic transmission within the central reward pathways of the brain, or the “reward center.” However, the precise influence of each drug class on dopamine signaling, and the extent thereof, differs considerably. Furthermore, the aforementioned substances have effects on several neurobiological targets that mediate and modulate their addictive properties. The current manuscript sought to review the influence of drug class on the rewarding effects of each of the major pharmacological classes of addictive drugs (i.e., psychostimulants, opioids, nicotine, alcohol, and cannabinoids). Our review suggests that even subtle differences in drug effects can result in significant variability in the subjective experience of the drug, altering rewarding and other reinforcing effects. Additionally, this review will argue that reward (i.e., the attractive and motivational property of a stimulus) alone is not sufficient to explain the abuse liability of these substances. Instead, abuse potential is best examined as a function of both positive and negative reinforcing drug effects (i.e., stimuli that the subject will work to attain and stimuli that the subject will work to end or avoid, respectively). Though reward is central to drug use, the factors that motivate and maintain drug taking are varied and complex, with much to be elucidated.</p></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"240 ","pages":"Article 173771"},"PeriodicalIF":3.6,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140796403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23DOI: 10.1016/j.pbb.2024.173775
You Yang , Dongyu Zhou , Su Min , Di Liu , Mou Zou , Chang Yu , Lihao Chen , Jia Huang , Ruiyang Hong
Electroconvulsive shock (ECS) is utilized to treat depression but may cause learning/memory impairments, which may be ameliorated by anesthetics through the modulation of hippocampal synaptic plasticity. Given that synaptic plasticity is governed by aerobic glycolysis, it remains unclear whether anesthetics modulate aerobic glycolysis to enhance learning and memory function. Depression-like behavior in rats was induced by chronic mild unpredictable stress (CUMS), with anhedonia assessed via sucrose preference test (SPT). Depressive-like behaviors and spatial learning/memory were assessed with forced swim test (FST), open field test (OFT), and Morris water maze (MWM) test. Changes in aerobic glycolysis and synaptic plasticity in the hippocampal region of depressive-like rats post-ECS were documented using immunofluorescence analysis, Western blot, Lactate Assay Kit and transmission electron microscopy. Both the OFT and FST indicated that ECS was effective in alleviating depressive-like behaviors. The MWM test demonstrated that anesthetics were capable of attenuating ECS-induced learning and memory deficits. Immunofluorescence analysis, Western blot, Lactate Assay Kit and transmission electron microscopy revealed that the decline in learning and memory abilities in ECS-induced depressive-like rats was correlated with decreased aerobic glycolysis, and that the additional use of ciprofol or propofol ameliorated these alterations. Adding the glycolysis inhibitor 2-DG diminished the ameliorative effects of the anesthetic. No significant difference was observed between ciprofol and propofol in enhancing aerobic glycolysis in astrocytes and synaptic plasticity after ECS. These findings may contribute to understanding the mechanisms by which anesthetic drugs modulate learning and memory impairment after ECS in depressive-like behavior rats.
{"title":"Ciprofol ameliorates ECS-induced learning and memory impairment by modulating aerobic glycolysis in the hippocampus of depressive-like rats","authors":"You Yang , Dongyu Zhou , Su Min , Di Liu , Mou Zou , Chang Yu , Lihao Chen , Jia Huang , Ruiyang Hong","doi":"10.1016/j.pbb.2024.173775","DOIUrl":"https://doi.org/10.1016/j.pbb.2024.173775","url":null,"abstract":"<div><p>Electroconvulsive shock (ECS) is utilized to treat depression but may cause learning/memory impairments, which may be ameliorated by anesthetics through the modulation of hippocampal synaptic plasticity. Given that synaptic plasticity is governed by aerobic glycolysis, it remains unclear whether anesthetics modulate aerobic glycolysis to enhance learning and memory function. Depression-like behavior in rats was induced by chronic mild unpredictable stress (CUMS), with anhedonia assessed via sucrose preference test (SPT). Depressive-like behaviors and spatial learning/memory were assessed with forced swim test (FST), open field test (OFT), and Morris water maze (MWM) test. Changes in aerobic glycolysis and synaptic plasticity in the hippocampal region of depressive-like rats post-ECS were documented using immunofluorescence analysis, Western blot, Lactate Assay Kit and transmission electron microscopy. Both the OFT and FST indicated that ECS was effective in alleviating depressive-like behaviors. The MWM test demonstrated that anesthetics were capable of attenuating ECS-induced learning and memory deficits. Immunofluorescence analysis, Western blot, Lactate Assay Kit and transmission electron microscopy revealed that the decline in learning and memory abilities in ECS-induced depressive-like rats was correlated with decreased aerobic glycolysis, and that the additional use of ciprofol or propofol ameliorated these alterations. Adding the glycolysis inhibitor 2-DG diminished the ameliorative effects of the anesthetic. No significant difference was observed between ciprofol and propofol in enhancing aerobic glycolysis in astrocytes and synaptic plasticity after ECS. These findings may contribute to understanding the mechanisms by which anesthetic drugs modulate learning and memory impairment after ECS in depressive-like behavior rats.</p></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"239 ","pages":"Article 173775"},"PeriodicalIF":3.6,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0091305724000698/pdfft?md5=2c40467ab07a0d311042b5e934c96144&pid=1-s2.0-S0091305724000698-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140650772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}