Melatonin (5-methoxy-N-acetyltryptamine) binds with high affinity and specificity to membrane receptors. Several receptor subtypes exist in different species, of which the mammalian MT1 and MT2 receptors are the best-characterized. They are members of the G protein-coupled receptor superfamily, preferentially coupling to Gi/o proteins but also to other G proteins in a cell-context-depending manner. In this review, experts on melatonin receptors will summarize the current state of the field. We briefly report on the discovery and classification of melatonin receptors, then focus on the molecular structure of human MT1 and MT2 receptors and highlight the importance of molecular simulations to identify new ligands and to understand the structural dynamics of these receptors. We then describe the state-of-the-art of the intracellular signaling pathways activated by melatonin receptors and their complexes. Brief statements on the molecular toolbox available for melatonin receptor studies and future perspectives will round-up this review.
{"title":"Melatonin receptor structure and signaling","authors":"Hiroyuki H. Okamoto, Erika Cecon, Osamu Nureki, Silvia Rivara, Ralf Jockers","doi":"10.1111/jpi.12952","DOIUrl":"https://doi.org/10.1111/jpi.12952","url":null,"abstract":"<p>Melatonin (5-methoxy-<i>N</i>-acetyltryptamine) binds with high affinity and specificity to membrane receptors. Several receptor subtypes exist in different species, of which the mammalian MT<sub>1</sub> and MT<sub>2</sub> receptors are the best-characterized. They are members of the G protein-coupled receptor superfamily, preferentially coupling to G<sub>i/o</sub> proteins but also to other G proteins in a cell-context-depending manner. In this review, experts on melatonin receptors will summarize the current state of the field. We briefly report on the discovery and classification of melatonin receptors, then focus on the molecular structure of human MT<sub>1</sub> and MT<sub>2</sub> receptors and highlight the importance of molecular simulations to identify new ligands and to understand the structural dynamics of these receptors. We then describe the state-of-the-art of the intracellular signaling pathways activated by melatonin receptors and their complexes. Brief statements on the molecular toolbox available for melatonin receptor studies and future perspectives will round-up this review.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 3","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.12952","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140537773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marie Paule Felder-Schmittbuhl, David Hicks, Christophe P. Ribelayaga, Gianluca Tosini
Melatonin is an important player in the regulation of many physiological functions within the body and in the retina. Melatonin synthesis in the retina primarily occurs during the night and its levels are low during the day. Retinal melatonin is primarily synthesized by the photoreceptors, but whether the synthesis occurs in the rods and/or cones is still unclear. Melatonin exerts its influence by binding to G protein-coupled receptors named melatonin receptor type 1 (MT1) and type 2 (MT2). MT1 and MT2 receptors activate a wide variety of signaling pathways and both receptors are present in the vertebrate photoreceptors where they may form MT1/MT2 heteromers (MT1/2h). Studies in rodents have shown that melatonin signaling plays an important role in the regulation of retinal dopamine levels, rod/cone coupling as well as the photopic and scotopic electroretinogram. In addition, melatonin may play an important role in protecting photoreceptors from oxidative stress and can protect photoreceptors from apoptosis. Critically, melatonin signaling is involved in the modulation of photoreceptor viability during aging and other studies have implicated melatonin in the pathogenesis of age-related macular degeneration. Hence melatonin may represent a useful tool in the fight to protect photoreceptors—and other retinal cells—against degeneration due to aging or diseases.
褪黑激素在调节人体和视网膜的许多生理功能方面发挥着重要作用。视网膜中褪黑激素的合成主要发生在夜间,白天含量较低。视网膜上的褪黑激素主要由感光细胞合成,但合成是否发生在视杆细胞和/或视锥细胞尚不清楚。褪黑激素通过与名为褪黑激素受体 1 型(MT1)和 2 型(MT2)的 G 蛋白偶联受体结合来施加影响。MT1和MT2受体可激活多种信号通路,这两种受体都存在于脊椎动物的感光器中,它们可形成MT1/MT2异构体(MT1/2h)。对啮齿类动物的研究表明,褪黑激素信号在调节视网膜多巴胺水平、视杆细胞/视锥细胞耦合以及视网膜光电图和散光光电图方面发挥着重要作用。此外,褪黑激素在保护光感受器免受氧化应激和防止光感受器凋亡方面也发挥着重要作用。重要的是,褪黑激素信号在衰老过程中参与调节光感受器的活力,其他研究也表明褪黑激素与老年性黄斑变性的发病机制有关。因此,褪黑激素可能是保护光感受器和其他视网膜细胞免受衰老或疾病引起的退化的有效工具。
{"title":"Melatonin in the mammalian retina: Synthesis, mechanisms of action and neuroprotection","authors":"Marie Paule Felder-Schmittbuhl, David Hicks, Christophe P. Ribelayaga, Gianluca Tosini","doi":"10.1111/jpi.12951","DOIUrl":"https://doi.org/10.1111/jpi.12951","url":null,"abstract":"<p>Melatonin is an important player in the regulation of many physiological functions within the body and in the retina. Melatonin synthesis in the retina primarily occurs during the night and its levels are low during the day. Retinal melatonin is primarily synthesized by the photoreceptors, but whether the synthesis occurs in the rods and/or cones is still unclear. Melatonin exerts its influence by binding to G protein-coupled receptors named melatonin receptor type 1 (MT<sub>1</sub>) and type 2 (MT<sub>2</sub>). MT<sub>1</sub> and MT<sub>2</sub> receptors activate a wide variety of signaling pathways and both receptors are present in the vertebrate photoreceptors where they may form MT<sub>1</sub>/MT<sub>2</sub> heteromers (MT<sub>1/2h</sub>). Studies in rodents have shown that melatonin signaling plays an important role in the regulation of retinal dopamine levels, rod/cone coupling as well as the photopic and scotopic electroretinogram. In addition, melatonin may play an important role in protecting photoreceptors from oxidative stress and can protect photoreceptors from apoptosis. Critically, melatonin signaling is involved in the modulation of photoreceptor viability during aging and other studies have implicated melatonin in the pathogenesis of age-related macular degeneration. Hence melatonin may represent a useful tool in the fight to protect photoreceptors—and other retinal cells—against degeneration due to aging or diseases.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 3","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.12951","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Homeobox genes encode transcription factors that are widely known to control developmental processes. This is also the case in the pineal gland, a neuroendocrine brain structure devoted to nighttime synthesis of the hormone melatonin. Thus, in accordance with high prenatal gene expression, knockout studies have identified a specific set of homeobox genes that are essential for development of the pineal gland. However, as a special feature of the pineal gland, homeobox gene expression persists into adulthood, and gene product abundance exhibits 24 h circadian rhythms. Recent lines of evidence show that some homeobox genes even control expression of enzymes catalyzing melatonin synthesis. We here review current knowledge of homeobox genes in the rodent pineal gland and suggest a model for dual functions of homeobox gene-encoded transcription factors in developmental and circadian mature neuroendocrine function.
{"title":"Homeobox gene-encoded transcription factors in development and mature circadian function of the rodent pineal gland","authors":"Martin F. Rath","doi":"10.1111/jpi.12950","DOIUrl":"https://doi.org/10.1111/jpi.12950","url":null,"abstract":"<p>Homeobox genes encode transcription factors that are widely known to control developmental processes. This is also the case in the pineal gland, a neuroendocrine brain structure devoted to nighttime synthesis of the hormone melatonin. Thus, in accordance with high prenatal gene expression, knockout studies have identified a specific set of homeobox genes that are essential for development of the pineal gland. However, as a special feature of the pineal gland, homeobox gene expression persists into adulthood, and gene product abundance exhibits 24 h circadian rhythms. Recent lines of evidence show that some homeobox genes even control expression of enzymes catalyzing melatonin synthesis. We here review current knowledge of homeobox genes in the rodent pineal gland and suggest a model for dual functions of homeobox gene-encoded transcription factors in developmental and circadian mature neuroendocrine function.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 3","pages":""},"PeriodicalIF":10.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.12950","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140333215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}