首页 > 最新文献

Particle & Particle Systems Characterization最新文献

英文 中文
Twisted Bilayer Graphene: A Journey Through Recent Advances and Future Perspectives 扭曲双层石墨烯:通过最近的进展和未来的展望之旅
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-10-12 DOI: 10.1002/ppsc.202300125
R. Ajay Rakkesh, P. N. Blessy Rebecca, T. B. Naveen, D. Durgalakshmi, S. Balakumar
Abstract Twisted bilayer graphene (TBG) has emerged as a fascinating research frontier in condensed matter physics and materials science. This review article comprehensively overviews recent advances and future perspectives in studying TBG. The challenges associated with fabricating and characterizing TBG structures, including precise control of the twist angle and accurate determination of electronic properties, are discussed. Furthermore, the intriguing phenomena observed in TBG, such as superconductivity, insulating phases, and correlated electron states, shedding light on their underlying mechanisms, are explored. Scalability and device integration of TBG are explored, along with potential engineering strategies to tailor its properties for specific applications. By synthesizing and analyzing the latest scientific reports, a roadmap for further research is provided and the promising prospects for TBG are highlighted.
摘要扭曲双层石墨烯(TBG)已成为凝聚态物理和材料科学领域一个引人注目的研究前沿。本文综述了近年来TBG的研究进展及展望。讨论了与制造和表征TBG结构相关的挑战,包括扭曲角的精确控制和电子特性的精确测定。此外,在TBG中观察到的有趣现象,如超导性、绝缘相和相关电子态,揭示了它们的潜在机制。探讨了TBG的可扩展性和设备集成,以及针对特定应用定制其特性的潜在工程策略。通过对最新科学报道的综合分析,提出了进一步研究的路线图,并强调了TBG的发展前景。
{"title":"Twisted Bilayer Graphene: A Journey Through Recent Advances and Future Perspectives","authors":"R. Ajay Rakkesh, P. N. Blessy Rebecca, T. B. Naveen, D. Durgalakshmi, S. Balakumar","doi":"10.1002/ppsc.202300125","DOIUrl":"https://doi.org/10.1002/ppsc.202300125","url":null,"abstract":"Abstract Twisted bilayer graphene (TBG) has emerged as a fascinating research frontier in condensed matter physics and materials science. This review article comprehensively overviews recent advances and future perspectives in studying TBG. The challenges associated with fabricating and characterizing TBG structures, including precise control of the twist angle and accurate determination of electronic properties, are discussed. Furthermore, the intriguing phenomena observed in TBG, such as superconductivity, insulating phases, and correlated electron states, shedding light on their underlying mechanisms, are explored. Scalability and device integration of TBG are explored, along with potential engineering strategies to tailor its properties for specific applications. By synthesizing and analyzing the latest scientific reports, a roadmap for further research is provided and the promising prospects for TBG are highlighted.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"91 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136013582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual Stimuli‐Responsive Ternary Core‐Shell Polystyrene@Pnipam‐Pedot Latexes 双重刺激-响应三元核-壳Polystyrene@Pnipam - Pedot乳胶
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-10-12 DOI: 10.1002/ppsc.202300096
Lyudmyla O. Vretik, Yuriy V. Noskov, Oksana M. Chepurna, Nikolay A. Ogurtsov, Olena A. Nikolaeva, Andrii I. Marynin, Tymish Y. Ohulchanskyy, Alexander A. Pud
Abstract The ability of stimuli‐responsive materials to respond to external stimuli depends on their intra‐ and intermolecular interactions, which, in turn, are governed by changes in the material composition. Here, the importance of these factors for new heat and light‐sensitive latexes of core‐shell nanoparticles is reported with the polystyrene core, the poly(N‐isopropylacrylamide) (PNIPAM) shell containing doped poly(3,4‐ethylenedioxythiophene) (PEDOT). It is found that hydrogen bonding, C═O─π aromatic, hydrophilic‐hydrophobic interactions in the shell cause conformational changes in PNIPAM similar to those occurring in the PNIPAM coil‐globule transition. Depending on the EDOT:PS@PNIPAM feed ratio and the PEDOT content in PNIPAM shells, these interactions and changes affect nanoparticle sizes and are responsible for shifting the lower critical solution temperature (LCST) of PNIPAM in the shell from 32.1 to 33.9 °C. The core‐shell morphology of nanoparticles is maintained only for latexes with EDOT feed to ≈9 wt.%. At the higher EDOT content, PNIPAM shells are destroyed. Synthesized PS@PNIPAM‐PEDOT latexes demonstrate temperature‐dependent behavior and produce a photothermal effect under NIR irradiation, which allows for a rise of their temperature above LCST. This dual stimuli (heat and light) responsiveness suggests an important possibility for these latexes to be used for drug or diagnostic agent delivery.
刺激反应材料对外部刺激的反应能力取决于其分子内和分子间的相互作用,而分子内和分子间的相互作用又受材料成分变化的支配。本文报道了这些因素对新型核-壳纳米颗粒热敏和光敏感乳胶的重要性,聚苯乙烯内核,含有掺杂聚(3,4 -乙烯二氧噻吩)(PEDOT)的聚(N -异丙基丙烯酰胺)(PNIPAM)外壳。发现壳中的氢键、C = O─π芳香、亲疏水相互作用引起PNIPAM的构象变化,类似于在PNIPAM线圈-球状转变中发生的构象变化。根据EDOT:PS@PNIPAM进料比和PNIPAM壳中PEDOT含量的不同,这些相互作用和变化会影响纳米颗粒的大小,并负责将PNIPAM壳中的较低临界溶液温度(LCST)从32.1°C转移到33.9°C。只有当EDOT添加量为≈9 wt.%时,纳米颗粒的核壳形态才能保持。在较高的EDOT含量下,PNIPAM炮弹被破坏。合成的PS@PNIPAM - PEDOT乳胶表现出温度依赖行为,并在近红外照射下产生光热效应,这使得它们的温度高于最低温度。这种双刺激(热和光)响应性表明,这些乳胶有可能用于药物或诊断药物的输送。
{"title":"Dual Stimuli‐Responsive Ternary Core‐Shell Polystyrene@Pnipam‐Pedot Latexes","authors":"Lyudmyla O. Vretik, Yuriy V. Noskov, Oksana M. Chepurna, Nikolay A. Ogurtsov, Olena A. Nikolaeva, Andrii I. Marynin, Tymish Y. Ohulchanskyy, Alexander A. Pud","doi":"10.1002/ppsc.202300096","DOIUrl":"https://doi.org/10.1002/ppsc.202300096","url":null,"abstract":"Abstract The ability of stimuli‐responsive materials to respond to external stimuli depends on their intra‐ and intermolecular interactions, which, in turn, are governed by changes in the material composition. Here, the importance of these factors for new heat and light‐sensitive latexes of core‐shell nanoparticles is reported with the polystyrene core, the poly(N‐isopropylacrylamide) (PNIPAM) shell containing doped poly(3,4‐ethylenedioxythiophene) (PEDOT). It is found that hydrogen bonding, C═O─π aromatic, hydrophilic‐hydrophobic interactions in the shell cause conformational changes in PNIPAM similar to those occurring in the PNIPAM coil‐globule transition. Depending on the EDOT:PS@PNIPAM feed ratio and the PEDOT content in PNIPAM shells, these interactions and changes affect nanoparticle sizes and are responsible for shifting the lower critical solution temperature (LCST) of PNIPAM in the shell from 32.1 to 33.9 °C. The core‐shell morphology of nanoparticles is maintained only for latexes with EDOT feed to ≈9 wt.%. At the higher EDOT content, PNIPAM shells are destroyed. Synthesized PS@PNIPAM‐PEDOT latexes demonstrate temperature‐dependent behavior and produce a photothermal effect under NIR irradiation, which allows for a rise of their temperature above LCST. This dual stimuli (heat and light) responsiveness suggests an important possibility for these latexes to be used for drug or diagnostic agent delivery.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136013289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Masthead: (Part. Part. Syst. Charact. 10/2023) 刊头:(Part.Part.Syst.Charact.10/2023)
IF 2.7 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-10-01 DOI: 10.1002/ppsc.202370020
{"title":"Masthead: (Part. Part. Syst. Charact. 10/2023)","authors":"","doi":"10.1002/ppsc.202370020","DOIUrl":"https://doi.org/10.1002/ppsc.202370020","url":null,"abstract":"","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"15 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139331412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(Part. Part. Syst. Charact. 10/2023) (Part.Part.Syst.Charact.10/2023)
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-10-01 DOI: 10.1002/ppsc.202370019
Particle & Particle Systems CharacterizationVolume 40, Issue 10 2370019 Cover PictureFree Access (Part. Part. Syst. Charact. 10/2023) First published: 17 October 2023 https://doi.org/10.1002/ppsc.202370019AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Cover image provided courtesy of Tymish Y. Ohulchanskyy, Junle Qu, Anderson S. L. Gome, and co-workers. Volume40, Issue10October 20232370019 RelatedInformation
粒子和粒子系统特性第40卷,第10期2370019封面图片免费访问(部分)部分。系统。字符10/2023)首次发布:2023年10月17日https://doi.org/10.1002/ppsc.202370019AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare给予accessShare全文accessShare全文accessShare请查看我们的使用条款和条件,并勾选下面的复选框共享文章的全文版本。我已经阅读并接受了Wiley在线图书馆使用共享链接的条款和条件,请使用下面的链接与您的朋友和同事分享本文的全文版本。学习更多的知识。图片摘要封面图片由Tymish Y. ohulchansky, Junle Qu, Anderson S. L. Gome及其同事提供。卷40,Issue10October 20232370019相关信息
{"title":"(Part. Part. Syst. Charact. 10/2023)","authors":"","doi":"10.1002/ppsc.202370019","DOIUrl":"https://doi.org/10.1002/ppsc.202370019","url":null,"abstract":"Particle & Particle Systems CharacterizationVolume 40, Issue 10 2370019 Cover PictureFree Access (Part. Part. Syst. Charact. 10/2023) First published: 17 October 2023 https://doi.org/10.1002/ppsc.202370019AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Cover image provided courtesy of Tymish Y. Ohulchanskyy, Junle Qu, Anderson S. L. Gome, and co-workers. Volume40, Issue10October 20232370019 RelatedInformation","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135810845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperspectral Imaging as a Facile and Non‐Destructive Method for Size Analysis of Gold Nanoparticles Deposited on Porous Materials 高光谱成像作为一种简便、无损的方法用于分析沉积在多孔材料上的金纳米颗粒的尺寸
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-09-15 DOI: 10.1002/ppsc.202200204
Agnieszka Ciemięga, Katarzyna Maresz, Michał Romaszewski, Przemysław Głomb, Paulina Krupska‐Wolas, Krystian Prusik
Abstract Herein, the feasibility of using hyperspectral imaging (HSI) for fast and non‐destructive size estimation of supported gold nanoparticles (AuNPs) is demonstrated. NPs of different sizes in the range of 2–12 nm in diameter are deposited onto silica supports with various pore structure. The NPs sizes are determined on the basis of TEM images. Data from HSI and UV–vis spectra, i.e., the location of the reflectance minimum and absorption maximum, respectively, are compared, and good agreement is obtained. Thus, it is shown that the hyperspectral camera can be an effective tool to characterize the size of gold NPs deposited on a porous supports.
本文证明了利用高光谱成像(HSI)快速、无损地估计负载金纳米颗粒(AuNPs)尺寸的可行性。在不同孔隙结构的二氧化硅载体上沉积了直径在2 ~ 12 nm范围内的不同尺寸的纳米粒子。NPs的大小是根据TEM图像确定的。比较了HSI和UV-vis光谱数据,即反射率最小值和吸收最大值的位置,得到了很好的一致性。因此,高光谱相机可以成为表征沉积在多孔支架上的金纳米粒子尺寸的有效工具。
{"title":"Hyperspectral Imaging as a Facile and Non‐Destructive Method for Size Analysis of Gold Nanoparticles Deposited on Porous Materials","authors":"Agnieszka Ciemięga, Katarzyna Maresz, Michał Romaszewski, Przemysław Głomb, Paulina Krupska‐Wolas, Krystian Prusik","doi":"10.1002/ppsc.202200204","DOIUrl":"https://doi.org/10.1002/ppsc.202200204","url":null,"abstract":"Abstract Herein, the feasibility of using hyperspectral imaging (HSI) for fast and non‐destructive size estimation of supported gold nanoparticles (AuNPs) is demonstrated. NPs of different sizes in the range of 2–12 nm in diameter are deposited onto silica supports with various pore structure. The NPs sizes are determined on the basis of TEM images. Data from HSI and UV–vis spectra, i.e., the location of the reflectance minimum and absorption maximum, respectively, are compared, and good agreement is obtained. Thus, it is shown that the hyperspectral camera can be an effective tool to characterize the size of gold NPs deposited on a porous supports.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135436454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hydrophobic Modification of Spherical Y2O3:Eu3+ Powder Using Nonfluorinated Alkyl Silanes 非氟化烷基硅烷对球形Y2O3:Eu3+粉体的疏水改性
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-09-13 DOI: 10.1002/ppsc.202300044
Runzi Zhou, Cheng Wen, Haijun Xu, Zenghui Qiu, Xin Zhang
Abstract Europium‐doped yttrium oxide (Y 2 O 3 :Eu 3+ ) is one of the main red‐emitting luminescent materials currently used in light‐emitting devices owing to its high luminous efficiency, high color purity, and other excellent optical characteristics. However, Y 2 O 3 :Eu 3+ is hydrophilic, which is a major obstacle to its long‐term application in high‐humidity outdoor environments. Hydrophobic modification is a viable solution to this problem, and can give Y 2 O 3 :Eu 3+ many excellent properties and functions, such as self‐cleaning ability, anti‐static performance, oil/water separation functions, and corrosion resistance. This study reports the preparation of hydrophobic Y 2 O 3 :Eu 3+ particles modified with nonfluorinated alkyl silanes. Several influencing factors, including the length of the carbon chain in the silane coupling agent, the pH value of the reaction system, the reaction temperature, and the ratio of reactants, on the hydrophobicity of the prepared samples are studied in detail, and the optimal conditions are determined. A superhydrophobic Y 2 O 3 :Eu 3+ material with a water contact angle of 151.6° is finally obtained. Moreover, FTIR, TG, SEM, XPS, XRD, and PL are used to explore the mechanism of the hydrophobic modification and the structural and fluorescence performance changes imparted by this modification.
摘要铕掺杂氧化钇(y2o3: eu3 +)具有发光效率高、色纯度高和其他优异的光学特性,是目前用于发光器件的主要红致发光材料之一。然而,y2o3: eu3 +是亲水的,这是其在高湿室外环境中长期应用的主要障碍。疏水改性是解决这一问题的可行方法,它可以赋予y2o3: eu3 +许多优异的性能和功能,如自清洁能力、抗静电性能、油水分离功能和耐腐蚀性。本文报道了用非氟化烷基硅烷修饰的疏水y2o3: eu3 +颗粒的制备。详细研究了硅烷偶联剂中碳链长度、反应体系pH值、反应温度、反应物配比等因素对制备样品疏水性的影响,并确定了最佳条件。最终得到了水接触角为151.6°的超疏水性y2o3: eu3 +材料。并利用FTIR、TG、SEM、XPS、XRD、PL等分析了疏水改性的机理以及改性后结构和荧光性能的变化。
{"title":"Hydrophobic Modification of Spherical Y<sub>2</sub>O<sub>3</sub>:Eu<sup>3+</sup> Powder Using Nonfluorinated Alkyl Silanes","authors":"Runzi Zhou, Cheng Wen, Haijun Xu, Zenghui Qiu, Xin Zhang","doi":"10.1002/ppsc.202300044","DOIUrl":"https://doi.org/10.1002/ppsc.202300044","url":null,"abstract":"Abstract Europium‐doped yttrium oxide (Y 2 O 3 :Eu 3+ ) is one of the main red‐emitting luminescent materials currently used in light‐emitting devices owing to its high luminous efficiency, high color purity, and other excellent optical characteristics. However, Y 2 O 3 :Eu 3+ is hydrophilic, which is a major obstacle to its long‐term application in high‐humidity outdoor environments. Hydrophobic modification is a viable solution to this problem, and can give Y 2 O 3 :Eu 3+ many excellent properties and functions, such as self‐cleaning ability, anti‐static performance, oil/water separation functions, and corrosion resistance. This study reports the preparation of hydrophobic Y 2 O 3 :Eu 3+ particles modified with nonfluorinated alkyl silanes. Several influencing factors, including the length of the carbon chain in the silane coupling agent, the pH value of the reaction system, the reaction temperature, and the ratio of reactants, on the hydrophobicity of the prepared samples are studied in detail, and the optimal conditions are determined. A superhydrophobic Y 2 O 3 :Eu 3+ material with a water contact angle of 151.6° is finally obtained. Moreover, FTIR, TG, SEM, XPS, XRD, and PL are used to explore the mechanism of the hydrophobic modification and the structural and fluorescence performance changes imparted by this modification.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135742167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co‐sputtering of A Thin Film Broadband Absorber Based on Self‐Organized Plasmonic Cu Nanoparticles 基于自组织等离子体铜纳米粒子的薄膜宽带吸收体的Co -溅射
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-09-12 DOI: 10.1002/ppsc.202300102
Jonas Drewes, Nanda Perdana, Kevin Rogall, Torge Hartig, Marie Elis, Ulrich Schürmann, Felix Pohl, Moheb Abdelaziz, Thomas Strunskus, Lorenz Kienle, Mady Elbahri, Franz Faupel, Carsten Rockstuhl, Alexander Vahl
Abstract The efficient conversion of solar energy to heat is a prime challenge for solar thermal absorbers, and various material classes and device concepts are discussed. One exciting class of solar thermal absorbers are plasmonic broadband absorbers that rely on light absorption thanks to plasmonic resonances sustained in metallic nanoparticles. This work focuses on Cu/Al 2 O 3 plasmonic absorbers, which consist of a thin film stack of a metallic Cu‐mirror, a dielectric Al 2 O 3 spacer, and an Al 2 O 3 /Cu‐nanoparticle nanocomposite. This work explores two preparation routes for the Al 2 O 3 /Cu‐nanoparticle nanocomposite, which rely on the self‐organization of Cu nanoparticles from sputtered atoms, either in the gas phase (i.e., via gas aggregation source) or on the thin film surface (i.e., via simultaneous co‐sputtering). While in either case, Cu‐Al 2 O 3 ‐Al 2 O 3 /Cu absorbers with a low reflectivity over a broad wavelength regime are obtained, the simultaneous co‐sputtering approach enabled better control over the film roughness and showed excellent agreement with dedicated simulations of the optical properties of the plasmonic absorber using a multi‐scale modeling approach. Upon variation of the thickness and filling factor of the Al 2 O 3 /Cu nanocomposite layer, the optical properties of the plasmonic absorbers are tailored, reaching an integrated reflectance down to 0.17 (from 250 to 1600 nm).
摘要:如何有效地将太阳能转化为热能是太阳能热吸收器面临的主要挑战,本文讨论了各种材料类别和设备概念。一类令人兴奋的太阳能热吸收器是等离子体宽带吸收器,它依靠金属纳米颗粒中持续的等离子体共振来吸收光。这项工作的重点是Cu/ al2o3等离子体吸收剂,它由金属Cu -镜面的薄膜堆叠、电介质al2o3间隔层和al2o3 /Cu -纳米颗粒纳米复合材料组成。这项工作探索了两种制备Al 2o3 /Cu纳米颗粒纳米复合材料的途径,它们依赖于溅射原子的Cu纳米颗粒的自组织,要么在气相(即通过气体聚集源),要么在薄膜表面(即通过同时共溅射)。虽然在这两种情况下,Cu - al2o3 - al2o3 /Cu吸收剂在宽波长范围内具有低反射率,但同时共溅射方法能够更好地控制薄膜粗糙度,并与使用多尺度建模方法对等离子体吸收剂光学特性的专门模拟显示出极好的一致性。随着Al 2o3 /Cu纳米复合层厚度和填充系数的变化,等离子体吸光体的光学性能得到调整,其综合反射率可达0.17 (250 ~ 1600 nm)。
{"title":"Co‐sputtering of A Thin Film Broadband Absorber Based on Self‐Organized Plasmonic Cu Nanoparticles","authors":"Jonas Drewes, Nanda Perdana, Kevin Rogall, Torge Hartig, Marie Elis, Ulrich Schürmann, Felix Pohl, Moheb Abdelaziz, Thomas Strunskus, Lorenz Kienle, Mady Elbahri, Franz Faupel, Carsten Rockstuhl, Alexander Vahl","doi":"10.1002/ppsc.202300102","DOIUrl":"https://doi.org/10.1002/ppsc.202300102","url":null,"abstract":"Abstract The efficient conversion of solar energy to heat is a prime challenge for solar thermal absorbers, and various material classes and device concepts are discussed. One exciting class of solar thermal absorbers are plasmonic broadband absorbers that rely on light absorption thanks to plasmonic resonances sustained in metallic nanoparticles. This work focuses on Cu/Al 2 O 3 plasmonic absorbers, which consist of a thin film stack of a metallic Cu‐mirror, a dielectric Al 2 O 3 spacer, and an Al 2 O 3 /Cu‐nanoparticle nanocomposite. This work explores two preparation routes for the Al 2 O 3 /Cu‐nanoparticle nanocomposite, which rely on the self‐organization of Cu nanoparticles from sputtered atoms, either in the gas phase (i.e., via gas aggregation source) or on the thin film surface (i.e., via simultaneous co‐sputtering). While in either case, Cu‐Al 2 O 3 ‐Al 2 O 3 /Cu absorbers with a low reflectivity over a broad wavelength regime are obtained, the simultaneous co‐sputtering approach enabled better control over the film roughness and showed excellent agreement with dedicated simulations of the optical properties of the plasmonic absorber using a multi‐scale modeling approach. Upon variation of the thickness and filling factor of the Al 2 O 3 /Cu nanocomposite layer, the optical properties of the plasmonic absorbers are tailored, reaching an integrated reflectance down to 0.17 (from 250 to 1600 nm).","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135878062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Synthesis of Submicrometer‐Sized Active Pharmaceuticals by Laser Fragmentation in a Liquid‐Jet Passage Reactor with Minimum Degradation 在液体射流通道反应器中激光破碎合成亚微米级活性药物的研究
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-09-11 DOI: 10.1002/ppsc.202300034
Tina Friedenauer, Kim Buck, Maike Eberwein, Anna‐Lena Bünte, Christoph Rehbock, Stephan Barcikowski
Abstract One challenge in the development of new drug formulations is overcoming their low solubility in relevant aqueous media. Reducing the particle size of drug powders to a few hundred nanometers is a well‐known method that leads to an increase in solubility due to an elevated total surface area. However, state‐of‐the‐art comminution techniques like cryo‐milling suffer from degradation and contamination of the drugs, particularly when sub‐micrometer diameters are aspired that require long processing times. In this work, picosecond‐pulsed laser fragmentation in liquids (LFL) of dispersed drug particles in a liquid‐jet passage reactor is used as a wear‐free comminution technique using the hydrophobic oral model drugs naproxen, prednisolone, ketoconazole, and megestrol acetate. Particle size and morphology of the drug particles are characterized using scanning electron microscopy (SEM) and changes in particle size distributions upon irradiation are quantified using an analytical centrifuge. The findings highlight the superior fragmentation efficiency of the liquid‐jet passage reactor setup, with a 100 times higher fraction of submicrometer particles (SMP) of the drugs compared to the batch control, which enhances solubility and goes along with minimal chemical degradation (<1%), determined by attenuated total reflection‐Fourier transform infrared spectroscopy (ATR‐FTIR), high‐performance liquid chromatography (HPLC), and X‐ray diffraction (XRD). Moreover, the underlying predominantly photo‐mechanically induced laser fragmentation mechanisms of organic microparticles (MP) are discussed.
开发新药制剂的一个挑战是克服其在相关水介质中的低溶解度。将药物粉末的粒度减小到几百纳米是一种众所周知的方法,由于提高了总表面积,导致溶解度增加。然而,最先进的粉碎技术,如低温碾磨,受到药物降解和污染的影响,特别是当直径为亚微米时,需要较长的处理时间。在这项工作中,皮秒脉冲激光在液体喷射通道反应器中粉碎分散的药物颗粒,作为一种无磨损的粉碎技术,使用疏水口服模型药物萘普生、强的松龙、酮康唑和醋酸甲地孕酮。使用扫描电子显微镜(SEM)表征药物颗粒的粒径和形态,并使用分析离心机量化辐照后粒径分布的变化。通过衰减全反射-傅里叶变换红外光谱(ATR - FTIR)、高效液相色谱(HPLC)和X射线衍射(XRD),研究结果突出了液体喷射通道反应器设置的优越破碎效率,与批处理相比,药物的亚微米颗粒(SMP)的比例高100倍,这提高了溶解度,并且化学降解最小(<1%)。此外,本文还讨论了主要由光机械诱导的有机微粒(MP)激光破碎机制。
{"title":"Efficient Synthesis of Submicrometer‐Sized Active Pharmaceuticals by Laser Fragmentation in a Liquid‐Jet Passage Reactor with Minimum Degradation","authors":"Tina Friedenauer, Kim Buck, Maike Eberwein, Anna‐Lena Bünte, Christoph Rehbock, Stephan Barcikowski","doi":"10.1002/ppsc.202300034","DOIUrl":"https://doi.org/10.1002/ppsc.202300034","url":null,"abstract":"Abstract One challenge in the development of new drug formulations is overcoming their low solubility in relevant aqueous media. Reducing the particle size of drug powders to a few hundred nanometers is a well‐known method that leads to an increase in solubility due to an elevated total surface area. However, state‐of‐the‐art comminution techniques like cryo‐milling suffer from degradation and contamination of the drugs, particularly when sub‐micrometer diameters are aspired that require long processing times. In this work, picosecond‐pulsed laser fragmentation in liquids (LFL) of dispersed drug particles in a liquid‐jet passage reactor is used as a wear‐free comminution technique using the hydrophobic oral model drugs naproxen, prednisolone, ketoconazole, and megestrol acetate. Particle size and morphology of the drug particles are characterized using scanning electron microscopy (SEM) and changes in particle size distributions upon irradiation are quantified using an analytical centrifuge. The findings highlight the superior fragmentation efficiency of the liquid‐jet passage reactor setup, with a 100 times higher fraction of submicrometer particles (SMP) of the drugs compared to the batch control, which enhances solubility and goes along with minimal chemical degradation (<1%), determined by attenuated total reflection‐Fourier transform infrared spectroscopy (ATR‐FTIR), high‐performance liquid chromatography (HPLC), and X‐ray diffraction (XRD). Moreover, the underlying predominantly photo‐mechanically induced laser fragmentation mechanisms of organic microparticles (MP) are discussed.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136024148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZnSSe Decorated Reduced Graphene Oxide for Enhanced Photoelectric Properties ZnSSe修饰还原氧化石墨烯增强光电性能
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-09-10 DOI: 10.1002/ppsc.202300101
Yifan Deng, Yun Lei, Zehui Tang, Jiong Chen, Linhui Luo, Yongqin Wang, Can Li, Beibei Du, Shiquan Wang, Zhengguang Sun
Abstract ZSSG (ZnSSe/rGO) composites are prepared by a hydrothermal method. The structure, morphology and material properties are investigated by various tests. Compared to ZnSe, the diffraction peaks of ZnSSe are moved to a larger angle and located between cubic phase ZnSe and cubic phase ZnS. The photocurrent density of ZSSG20 with 20 wt.% graphene is 2.17×10 −5 A cm −2 , which is 8.9 times higher than that of pure ZnSSe. ZSSG20 has the minimum charge transfer resistance and highest carrier density. The decreased fluorescence intensity in PL spectra indicates that graphene can effectively prevent the recombination of electron‐hole pairs.
摘要采用水热法制备了ZSSG (ZnSSe/rGO)复合材料。通过各种试验研究了其结构、形貌和材料性能。与ZnSe相比,ZnSSe的衍射峰移动了更大的角度,位于立方相ZnSe和立方相ZnS之间。含20% wt.%石墨烯的ZSSG20光电流密度为2.17×10−5 A cm−2,是纯ZnSSe光电流密度的8.9倍。ZSSG20具有最小的电荷转移电阻和最高的载流子密度。PL光谱中荧光强度的降低表明石墨烯可以有效地阻止电子空穴对的复合。
{"title":"ZnSSe Decorated Reduced Graphene Oxide for Enhanced Photoelectric Properties","authors":"Yifan Deng, Yun Lei, Zehui Tang, Jiong Chen, Linhui Luo, Yongqin Wang, Can Li, Beibei Du, Shiquan Wang, Zhengguang Sun","doi":"10.1002/ppsc.202300101","DOIUrl":"https://doi.org/10.1002/ppsc.202300101","url":null,"abstract":"Abstract ZSSG (ZnSSe/rGO) composites are prepared by a hydrothermal method. The structure, morphology and material properties are investigated by various tests. Compared to ZnSe, the diffraction peaks of ZnSSe are moved to a larger angle and located between cubic phase ZnSe and cubic phase ZnS. The photocurrent density of ZSSG20 with 20 wt.% graphene is 2.17×10 −5 A cm −2 , which is 8.9 times higher than that of pure ZnSSe. ZSSG20 has the minimum charge transfer resistance and highest carrier density. The decreased fluorescence intensity in PL spectra indicates that graphene can effectively prevent the recombination of electron‐hole pairs.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136072058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(Part. Part. Syst. Charact. 9/2023) (Part.Part.Syst.Charact.9/2023)
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-09-01 DOI: 10.1002/ppsc.202370017
Particle & Particle Systems CharacterizationVolume 40, Issue 9 2370017 Cover PictureFree Access (Part. Part. Syst. Charact. 9/2023) First published: 21 September 2023 https://doi.org/10.1002/ppsc.202370017AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Cover image provided courtesy of Tymish Y. Ohulchanskyy, Junle Qu, Anderson S. L. Gome, and co-workers. Volume40, Issue9September 20232370017 RelatedInformation
粒子和粒子系统特性第40卷,第9期2370017封面图片免费访问(部分)部分。系统。字符。9/2023)首次发布:2023年9月21日https://doi.org/10.1002/ppsc.202370017AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare给予accessShare全文accessShare全文accessShare请查看我们的使用条款和条件,并勾选下面的框共享文章的全文版本。我已经阅读并接受了Wiley在线图书馆使用共享链接的条款和条件,请使用下面的链接与您的朋友和同事分享本文的全文版本。学习更多的知识。图片摘要封面图片由Tymish Y. ohulchansky, Junle Qu, Anderson S. L. Gome及其同事提供。第40卷,第9期20232370017相关信息
{"title":"(Part. Part. Syst. Charact. 9/2023)","authors":"","doi":"10.1002/ppsc.202370017","DOIUrl":"https://doi.org/10.1002/ppsc.202370017","url":null,"abstract":"Particle & Particle Systems CharacterizationVolume 40, Issue 9 2370017 Cover PictureFree Access (Part. Part. Syst. Charact. 9/2023) First published: 21 September 2023 https://doi.org/10.1002/ppsc.202370017AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Cover image provided courtesy of Tymish Y. Ohulchanskyy, Junle Qu, Anderson S. L. Gome, and co-workers. Volume40, Issue9September 20232370017 RelatedInformation","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135433486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Particle & Particle Systems Characterization
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1