A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Focal epilepsy is one of the most frequent specific type of epilepsies, with 30% treatment-resistant patients. There are several directions researchers can follow to improve existing treatment of focal epilepsy: synthesis of new compounds with anticonvulsant activity, repurposing drugs approved for other indications, finding drugs targeted to specific genetic and biochemical defects that underlie focal epilepsy syndromes, development of viral vectors for specific gene therapy, creation of devices and methods for suppression of seizures by electrostimulation and development of methods to increase safety of epilepsy surgery. Improvement of efficacy and safety of current therapies is necessary, as well as developing targeted treatment of genetic epilepsy syndromes that will not only suppress seizures, but stop further epileptogenesis.
The G-protein-coupled cannabinoid receptor type 2 (CB2R) is a key element of the endocannabinoid (EC) system. EC/CB2R signaling has significant therapeutic potential in major pathologies affecting humans such as allergies, neurodegenerative disorders, inflammation or ocular diseases. CB2R agonism exerts anti-inflammatory and tissue protective effects in preclinical animal models of cardiovascular, gastrointestinal, liver, kidney, lung and neurodegenerative disorders. Existing ligands can be subdivided into endocannabinoids, cannabinoid-like and synthetic CB2R ligands that possess various degrees of potency on and selectivity against the cannabinoid receptor type 1. This review is an account of granted CB2R ligand patents from 2010 up to the present, which were surveyed using Derwent Innovation®.
Osteoporosis and cancer are becoming a major public health problem. Some studies have shown that osteoporosis drugs may have anti-cancer effects. To better understand the relationship between drugs for osteoporosis and antineoplastic agents, and to better demonstrate recent developments for patents concerning drugs for osteoporosis, we conducted an analysis of US patents. The results indicated that there was a good correlation between agents for osteoporosis and antineoplastic agents, which indicated that numerous anti-osteoporosis agents displayed antineoplastic activities. Our study was the first one to provide new evidence, through comprehensive analysis, for a correlation between anti-osteoporosis agents and anticancer agents. The present study may open new avenues for developing anticancer drugs and expanding the application role of anti-osteoporosis agents.
OX40 and 5T4 are molecules that play a role in T-cell expansion and cytoskeleton's disruption in cancer, respectively. US2019161555 patent describes a bispecific antibody that targets OX40/5T4 with the potential application of cancer treatment. The method of analysis of the US201916155 patent consisted of claim's analysis, as well as the chemical/biological information's analysis of the bispecific antibody. The patent includes independent claims related to bispecific antibodies that bind to OX40/5T4, DNA encoding the antibodies, a vector that harbors the DNA, a host cell that contains the vector, a pharmaceutical composition containing a pharmaceutically effective amount of the antibodies, medical use of the antibodies, use of the antibodies in the treatment or prevention of neoplastic disorders and a method of treating neoplastic disorders. Bispecific antibodies that target OX40/5T4 can activate IL-2 secretion in CD4+ T cells.
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
PD-L1 and ICOS are immune control points in cancer and their presence in cancer tends to have a poor prognosis. WO2019122882 patent describes a bispecific antibody that targets PDL-1/ICOS with the potential application of cancer treatment. WO2019122882 patent describes a bispecific antibody with antitumor efficacy in CT26 model through of the depletion of TReg cells and improved ratio of CD8+ T cells: TReg in tumor microenvironment. The anti-PDL-1/ICOS antibody is new; however, only preclinical assays are shown using colon carcinoma model. So far, there are no reports of clinical trials to evaluate the safety, toxicity and efficacy, but it will be of great interest to analyze in the future if this antibody surpasses the action of the combinatorial therapy in cancer.
Antibiotic resistance has become a global health problem requiring urgent intervention. The pace of development and frequency of transmission of antimicrobial resistance have tremendously surpassed the number of antibiotics developed in the past few decades. Emergence and transmission of multidrug-resistant genes, for example, mcr-1 and mcr-5.3, against the last resort of antibiotics has challenged the treatment options. Vaccination is a promising approach with no instance of antimicrobial resistance generation or transmission reported so far. The time required for developing a vaccine, extensive pre- and post-licensure studies and the financial constraints for the R&D has hampered vaccine development over the past few decades. Vaccine can prove to be an effective future strategy for combating antimicrobial resistance.
The use of nanoparticulate systems to diagnose and treat tumors has gained momentum with the rapid development of nanomedicine. Many nanotheranostics fail due to insufficient bioavailability and low accumulation at the tumor site, resulting in undesirable side effects. We describe the use of an engineered hepatitis E viral nanoparticle (HEVNP) with enhanced bioavailability, tissue retention and mucosal penetration capacities. HEVNP is a modular nanocapsule that can encapsulate heterologous nucleotides, proteins and inorganic metals, such as ferrite oxide nanoparticles. Additionally, the exterior protruding arms of HEVNP is composed of loops that are used for chemical coupling of targeting and therapeutic peptides. We propose the use of HEVNP to target colorectal cancer (i.e., polyps) with imaging-guided delivery using colonoscopy.
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.