首页 > 最新文献

physica status solidi (RRL) – Rapid Research Letters最新文献

英文 中文
A Review of Intercalation of Rare Gas Solids on Graphene and Hexagonal Boron Nitride 稀有气体固体在石墨烯和六方氮化硼上的插层研究进展
Pub Date : 2023-06-20 DOI: 10.1002/pssr.202300066
S. Saha, Shrivatch Sankar, Sk Shafaat Saud Nikor, S. Arafin
{"title":"A Review of Intercalation of Rare Gas Solids on Graphene and Hexagonal Boron Nitride","authors":"S. Saha, Shrivatch Sankar, Sk Shafaat Saud Nikor, S. Arafin","doi":"10.1002/pssr.202300066","DOIUrl":"https://doi.org/10.1002/pssr.202300066","url":null,"abstract":"","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90438088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High‐Efficiency Cd‐Free CZTSSe Solar Cells with Organic Semiconductor PCBM as a Buffer Layer 以有机半导体PCBM为缓冲层的高效无镉CZTSSe太阳能电池
Pub Date : 2023-06-16 DOI: 10.1002/pssr.202300186
Yawei Wang, Lingling Wang, Yanqin Wang, Xiangyang Zhao, Xingyu Zhang, Xintong Zhang, Yichun Liu
{"title":"High‐Efficiency Cd‐Free CZTSSe Solar Cells with Organic Semiconductor PCBM as a Buffer Layer","authors":"Yawei Wang, Lingling Wang, Yanqin Wang, Xiangyang Zhao, Xingyu Zhang, Xintong Zhang, Yichun Liu","doi":"10.1002/pssr.202300186","DOIUrl":"https://doi.org/10.1002/pssr.202300186","url":null,"abstract":"","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87708353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient Negative Capacitance Induced by Charged Oxygen Vacancy Drift in HfO2‐Based Films HfO2基薄膜中带电氧空位漂移诱导的瞬态负电容
Pub Date : 2023-06-15 DOI: 10.1002/pssr.202300137
Hao Dong, Xingwang Zhang, Yong Cheng, Jinliang Wu, Ling Zhang, Zhao Zhang, Z. Yin
{"title":"Transient Negative Capacitance Induced by Charged Oxygen Vacancy Drift in HfO2‐Based Films","authors":"Hao Dong, Xingwang Zhang, Yong Cheng, Jinliang Wu, Ling Zhang, Zhao Zhang, Z. Yin","doi":"10.1002/pssr.202300137","DOIUrl":"https://doi.org/10.1002/pssr.202300137","url":null,"abstract":"","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76946290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of thermoelectric performance by doping to reduce degeneracy 通过掺杂减少简并提高热电性能
Pub Date : 2023-06-02 DOI: 10.1002/pssr.202300133
Yunji Shi, Rundong Wan, Zhengfu Zhang, G. Tian
{"title":"Enhancement of thermoelectric performance by doping to reduce degeneracy","authors":"Yunji Shi, Rundong Wan, Zhengfu Zhang, G. Tian","doi":"10.1002/pssr.202300133","DOIUrl":"https://doi.org/10.1002/pssr.202300133","url":null,"abstract":"","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84787053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Heterointerfaces of Quantum Materials by Design 设计量子材料的功能异质界面
Pub Date : 2023-06-01 DOI: 10.1002/pssr.202300153
Zhen Huang, X. Renshaw Wang, Shixiong Zhang, Chuan Li
The concept of ‘Quantum Materials’, of which the physical properties are beyond a simple description of the laws of classical physics, has been gaining widespread attention across various disciplines in recent years. This area of research encompasses a broad range of materials, including but not limited to two-dimensional materials, unconventional superconductors, multiferroics, complex oxide interfaces and topological quantum materials. As a result, the research of quantum materials provides a vivid platform that brings both scientists and engineers to explore the frontiers of materials science and applications. To fully realize the potential of those quantum materials, it is essential to design them on demand. Fortunately, due to the rapid development of modern techniques, the design strategy of quantum materials has become highly sophisticated and efficient. Approaches that are associated with dimensional confinement, doping, strain, interface engineering and electrical gating are all applicable to the design of quantum materials. Based on their strongly correlated degrees of freedom, the designed heterointerfaces between quantum materials are expected to have great application potentials in various fields, as sketched in Figure 1. Therefore, there is an urgent need for timely reports on connecting the designs and applications of quantum material interfaces. In this special issue, a collection of articles sheds light on the design of quantum materials to offer greater flexibility in functional heterostructures. In article 2200441, Liu et al. demonstrated the correlation between spatial confinement and Rashba spin-orbit coupling at the LaAlO3/KTaO3 heterointerface, of which the large spin-splitting energy and enhanced spin-orbit coupling are essential in exploring Majorana fermions. For the heterostructure that consists of different materials and lattices, strain is another effective way to modify the crystal symmetry and lattice structure in controlling physical properties. In article 2200398, the formation mechanisms of misfit dislocations networks in the quantum-well-type heterostructures were investigated theoretically, allowing a better understanding of the defect formation and local strain relaxation in practical devices. Furthermore, article 2200491 experimentally presented the anisotropic behaviour and sign reversal of magnetoresistance, which is intrinsically coupled to the crystal symmetry in the epitaxially strained SrRuO3/SrTiO3 heterostructures. Besides the lattice structure, the electronic structure of quantum material heterostructures can be significantly modified by doping. article 2200348 showed an example of co-doping via ion implantation, where the artificially induced Co and Nd ions cause the high magnetization in two-dimensional MoS2 at both room and low temperatures. Moreover, as an example of electrical gating, article 2200378 explored an emerging modulation mean of electrochemical gating on quantum functionalities and de
“量子材料”的概念,其物理性质超越了经典物理定律的简单描述,近年来在各个学科中得到了广泛的关注。这一研究领域涵盖了广泛的材料,包括但不限于二维材料、非常规超导体、多铁质材料、复杂氧化物界面和拓扑量子材料。因此,量子材料的研究为科学家和工程师探索材料科学和应用的前沿提供了一个生动的平台。为了充分发挥这些量子材料的潜力,有必要按需设计它们。幸运的是,由于现代技术的快速发展,量子材料的设计策略已经变得非常复杂和高效。与尺寸限制、掺杂、应变、界面工程和电门控相关的方法都适用于量子材料的设计。基于其强相关自由度,所设计的量子材料间异质界面有望在各个领域具有巨大的应用潜力,如图1所示。因此,迫切需要及时报道连接量子材料接口的设计和应用。在这期特刊中,一系列文章阐明了量子材料的设计,以提供功能异质结构更大的灵活性。在文章2200441中,Liu等证明了LaAlO3/KTaO3异质界面上空间约束与Rashba自旋-轨道耦合之间的相关性,其中较大的自旋分裂能和增强的自旋-轨道耦合是探索Majorana费米子所必需的。对于由不同材料和晶格组成的异质结构,应变是改变晶体对称性和晶格结构的另一种控制物理性质的有效方法。文章2200398从理论上研究了量子井型异质结构中错配位错网络的形成机制,从而更好地理解了实际器件中缺陷的形成和局部应变松弛。此外,文章2200491通过实验证明了外延应变SrRuO3/SrTiO3异质结构的磁电阻的各向异性行为和符号反转,这与晶体对称性是内在耦合的。除了晶格结构外,掺杂还可以显著改变量子材料异质结构的电子结构。文章2200348给出了一个离子注入共掺杂的例子,人工诱导Co和Nd离子使二维二硫化钼在室温和低温下都具有较高的磁化强度。此外,作为电门控的一个例子,文章2200378探索了一种新兴的电化学门控量子功能的调制方法,并证明了铁磁性金属体系中电导率和磁性的显著变化。在同一研究中,作者进一步制作了一个功能突触晶体管,将接口的设计与其功能应用联系起来,这就是本例中的人工智能。此外,在article 2200272中,Huang等采用界面工程方法,利用不同的生长参数来控制LaAlO3/SrTiO3双分子层的输运性质,其载流子散射机制不同于传统的SrTiO3界面,载流子密度较低。在潜在的应用方面,精心设计的量子材料和异质界面有着广阔的前景。文章2200493综述了由自旋轨道转矩控制磁化强度的各类自旋电子异质结构的最新研究进展。本文还讨论了
{"title":"Functional Heterointerfaces of Quantum Materials by Design","authors":"Zhen Huang, X. Renshaw Wang, Shixiong Zhang, Chuan Li","doi":"10.1002/pssr.202300153","DOIUrl":"https://doi.org/10.1002/pssr.202300153","url":null,"abstract":"The concept of ‘Quantum Materials’, of which the physical properties are beyond a simple description of the laws of classical physics, has been gaining widespread attention across various disciplines in recent years. This area of research encompasses a broad range of materials, including but not limited to two-dimensional materials, unconventional superconductors, multiferroics, complex oxide interfaces and topological quantum materials. As a result, the research of quantum materials provides a vivid platform that brings both scientists and engineers to explore the frontiers of materials science and applications. To fully realize the potential of those quantum materials, it is essential to design them on demand. Fortunately, due to the rapid development of modern techniques, the design strategy of quantum materials has become highly sophisticated and efficient. Approaches that are associated with dimensional confinement, doping, strain, interface engineering and electrical gating are all applicable to the design of quantum materials. Based on their strongly correlated degrees of freedom, the designed heterointerfaces between quantum materials are expected to have great application potentials in various fields, as sketched in Figure 1. Therefore, there is an urgent need for timely reports on connecting the designs and applications of quantum material interfaces. In this special issue, a collection of articles sheds light on the design of quantum materials to offer greater flexibility in functional heterostructures. In article 2200441, Liu et al. demonstrated the correlation between spatial confinement and Rashba spin-orbit coupling at the LaAlO3/KTaO3 heterointerface, of which the large spin-splitting energy and enhanced spin-orbit coupling are essential in exploring Majorana fermions. For the heterostructure that consists of different materials and lattices, strain is another effective way to modify the crystal symmetry and lattice structure in controlling physical properties. In article 2200398, the formation mechanisms of misfit dislocations networks in the quantum-well-type heterostructures were investigated theoretically, allowing a better understanding of the defect formation and local strain relaxation in practical devices. Furthermore, article 2200491 experimentally presented the anisotropic behaviour and sign reversal of magnetoresistance, which is intrinsically coupled to the crystal symmetry in the epitaxially strained SrRuO3/SrTiO3 heterostructures. Besides the lattice structure, the electronic structure of quantum material heterostructures can be significantly modified by doping. article 2200348 showed an example of co-doping via ion implantation, where the artificially induced Co and Nd ions cause the high magnetization in two-dimensional MoS2 at both room and low temperatures. Moreover, as an example of electrical gating, article 2200378 explored an emerging modulation mean of electrochemical gating on quantum functionalities and de","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90484610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carrier‐modulated anomalous electron transports in electrolyte‐gated SrTiO3 电解质门控SrTiO3中载流子调制的异常电子输运
Pub Date : 2023-05-31 DOI: 10.1002/pssr.202300111
P. Chen, J. H. Zhang, G. Zhou, W. Zhai, L. Lin, Z. B. Yan, C. Chen, X. Jiang, C. Lu, J. Liu
{"title":"Carrier‐modulated anomalous electron transports in electrolyte‐gated SrTiO3","authors":"P. Chen, J. H. Zhang, G. Zhou, W. Zhai, L. Lin, Z. B. Yan, C. Chen, X. Jiang, C. Lu, J. Liu","doi":"10.1002/pssr.202300111","DOIUrl":"https://doi.org/10.1002/pssr.202300111","url":null,"abstract":"","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81973362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microjoule‐range diamond NV‐laser with optical pumping 带光泵浦的微焦耳范围金刚石NV激光器
Pub Date : 2023-05-31 DOI: 10.1002/pssr.202300062
D. Genin, E. Lipatov, M. Shulepov, V. Vins, A. Yelisseyev, I. Izmailov, A. Savvin, A. Dormidonov
{"title":"Microjoule‐range diamond NV‐laser with optical pumping","authors":"D. Genin, E. Lipatov, M. Shulepov, V. Vins, A. Yelisseyev, I. Izmailov, A. Savvin, A. Dormidonov","doi":"10.1002/pssr.202300062","DOIUrl":"https://doi.org/10.1002/pssr.202300062","url":null,"abstract":"","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80397527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving n‐type conductivity in epitaxial ultrawide‐bandgap β‐Ga2O3 films via a Hf doping strategy 通过Hf掺杂策略在外延超宽带隙β - Ga2O3薄膜中实现n型导电性
Pub Date : 2023-05-31 DOI: 10.1002/pssr.202300110
Simiao Wu, Ningtao Liu, Hui Li, Jinfu Zhang, Shengcheng Shen, Wei Wang, Ning Xia, Yanwei Cao, Zhicheng Zhong, Wenrui Zhang, J. Ye
{"title":"Achieving n‐type conductivity in epitaxial ultrawide‐bandgap β‐Ga2O3 films via a Hf doping strategy","authors":"Simiao Wu, Ningtao Liu, Hui Li, Jinfu Zhang, Shengcheng Shen, Wei Wang, Ning Xia, Yanwei Cao, Zhicheng Zhong, Wenrui Zhang, J. Ye","doi":"10.1002/pssr.202300110","DOIUrl":"https://doi.org/10.1002/pssr.202300110","url":null,"abstract":"","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87489931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Structural, Electronic, Optical, and Mechanical Properties of Cu(I)Au(III)‐Based Double Perovskites: A First‐Principles Study Cu(I)Au(III)基双钙钛矿的结构、电子、光学和机械性能:第一性原理研究
Pub Date : 2023-05-25 DOI: 10.1002/pssr.202300128
Chunbao Feng, Xinchun Luo, Qing Zhao, Changhe Wu, Tao Hu, Shichang Li, Shengnan Duan, Gang Tang, Gang Zhang, Dengfeng Li
{"title":"Structural, Electronic, Optical, and Mechanical Properties of Cu(I)Au(III)‐Based Double Perovskites: A First‐Principles Study","authors":"Chunbao Feng, Xinchun Luo, Qing Zhao, Changhe Wu, Tao Hu, Shichang Li, Shengnan Duan, Gang Tang, Gang Zhang, Dengfeng Li","doi":"10.1002/pssr.202300128","DOIUrl":"https://doi.org/10.1002/pssr.202300128","url":null,"abstract":"","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80164551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One‐particle and excitonic band structure in cubic Boron Arsenide 立方砷化硼的单粒子和激子带结构
Pub Date : 2023-05-25 DOI: 10.1002/pssr.202300156
S. Acharya, D. Pashov, M. Katsnelson, M. Schilfgaarde
Cubic BAs has received recent attention for its large electron and hole mobilities and large thermal conductivity. This is a rare and much desired combination in semiconductor industry: commercial semiconductors typically have high electron mobilities, or hole mobilities, or large thermal conductivities, but not all of them together. Here we report predictions from an advanced self-consistent many body perturbative theory and show that with respect to one-particle properties, BAs is strikingly similar to Si. There are some important differences, notably there is an unusually small variation in the valence band masses . With respect to two-particle properties, significant differences with Si appear. We report the excitonic spectrum for both q=0 and finite q, and show that while the direct gap in cubic BAs is about 4 eV, dark excitons can be observed down to about $sim$1.5 eV, which may play a crucial role in application of BAs in optoelectronics.
立方ba因其大的电子和空穴迁移率和大的导热性而受到关注。这在半导体工业中是一种罕见且非常理想的组合:商用半导体通常具有高电子迁移率,或空穴迁移率,或大热导率,但不是所有这些都在一起。在这里,我们报告了一个先进的自洽多体微扰理论的预测,并表明在单粒子性质方面,BAs与Si惊人地相似。有一些重要的区别,值得注意的是,在价带质量上有一个异常小的变化。在双粒子性质方面,与硅有显著差异。我们报告了q=0和有限q时的激子谱,并表明当立方BAs的直接间隙约为4 eV时,可以观察到暗激子约为1.5 eV,这可能对BAs在光电子学中的应用起着至关重要的作用。
{"title":"One‐particle and excitonic band structure in cubic Boron Arsenide","authors":"S. Acharya, D. Pashov, M. Katsnelson, M. Schilfgaarde","doi":"10.1002/pssr.202300156","DOIUrl":"https://doi.org/10.1002/pssr.202300156","url":null,"abstract":"Cubic BAs has received recent attention for its large electron and hole mobilities and large thermal conductivity. This is a rare and much desired combination in semiconductor industry: commercial semiconductors typically have high electron mobilities, or hole mobilities, or large thermal conductivities, but not all of them together. Here we report predictions from an advanced self-consistent many body perturbative theory and show that with respect to one-particle properties, BAs is strikingly similar to Si. There are some important differences, notably there is an unusually small variation in the valence band masses . With respect to two-particle properties, significant differences with Si appear. We report the excitonic spectrum for both q=0 and finite q, and show that while the direct gap in cubic BAs is about 4 eV, dark excitons can be observed down to about $sim$1.5 eV, which may play a crucial role in application of BAs in optoelectronics.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81089195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
physica status solidi (RRL) – Rapid Research Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1