Enstatite (Mg2Si2O6) is a member of the pyroxene group and an important mineral in the lower crust and upper mantle. Enstatite has three phases at ambient pressure: protoenstatite, orthoenstatite, and clinoenstatite. Previously, the polymorphic transformation of pyroxene has been characterized using bulk techniques such as X-ray diffraction of powders. Given that rocks are crystal aggregates, it is important to use aggregates to understand phase transformations. We therefore conducted grain growth and deformation experiments using aggregates of enstatite to investigate phase transformations. Grain growth experiments were conducted at temperatures (T) of 1345 and 1360 °C under a vacuum of ≈ 10 Pa using an alumina tube furnace. Deformation experiments were conducted at T = 1310 °C and room pressure, a strain rate of ≈ 10–4 s–1, and a resulting stress of ≈ 150 MPa. The samples were analyzed using a scanning electron microscope, electron backscatter diffraction (EBSD), and X-ray diffraction. The results indicate that the grain size affects the transformation from protoenstatite to clinoenstatite, whereas deformation by diffusion creep does not. The EBSD analyses show that the volume fraction of clinoenstatite increases with increasing grain size. The samples underwent diffusion creep during the deformation experiments, and there were no distinct microstructural differences between deformed and undeformed samples. The EBSD analyses show that the transformed clinoenstatite has a characteristic twin structure with a misorientation angle of 180° and a rotation axis of [100] or [001]. Grain sizes become smaller during the phase transformation, even if the mechanism can be characterized as a second-order transformation.