首页 > 最新文献

Physics and Chemistry of Minerals最新文献

英文 中文
Mineralogical description and hypothesis on the formation of menilites from Galera, Granada (Spain) 关于格拉纳达(西班牙)加莱拉地区月锰矿形成的矿物学描述和假设
IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-09 DOI: 10.1007/s00269-023-01267-0
Carlos Pimentel, Carlos Gutiérrez-Ariza, Antonio G. Checa, C. Ignacio Sainz-Díaz, Julyan H. E. Cartwright

Menilites, intriguing botryoidal rocks found in Galera, Granada, Spain, have been examined through a multidisciplinary approach integrating mineralogical analysis and advanced imaging techniques. Characterized as opal and dolomite-bearing rocks, their complex morphologies and diverse internal structures prompted an investigation into their origin. Employing microfocus X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy and X-ray computed tomography, we present a detailed study of the menilites, revealing opal-A, opal-CT, dolomite and quartz as primary constituents. Notably, the internal homogeneity contrasts with the diverse external shapes. The proposed hypothesis suggests a seismic influence in menilite formation. Seismic events in porous environments above the water table may induce fluidization, resulting in the distinctive menilite structures. Osmotic pressure differences between nodules and the surrounding rock, coupled with fluidization during seismic events, could explain the observed morphologies. Validation of the proposed hypothesis requires further fieldwork and analogue experimentation. This study contributes valuable insights into the mineralogical composition, internal structures and potential formation mechanisms of menilites, laying the groundwork for future research in the field of sedimentary geology and mineralogy.

在西班牙格拉纳达的加莱拉发现的梅尼洛石是一种引人入胜的植物状岩石,我们采用多学科方法,结合矿物学分析和先进的成像技术对其进行了研究。这些岩石的特征是含有蛋白石和白云石,其复杂的形态和多样的内部结构促使人们对其起源进行研究。通过使用微焦 X 射线衍射、扫描电子显微镜与能量色散 X 射线光谱以及 X 射线计算机断层扫描技术,我们对红云岩进行了详细研究,发现其主要成分为蛋白石-A、蛋白石-CT、白云石和石英。值得注意的是,内部的均匀性与外部形状的多样性形成了鲜明对比。所提出的假设表明,月光石的形成受到了地震的影响。地下水位以上多孔环境中的地震事件可能会引起流化,从而形成独特的红云岩结构。结核与周围岩石之间的渗透压差,再加上地震事件期间的流化,可以解释观察到的形态。验证提出的假设需要进一步的实地考察和模拟实验。这项研究为了解月锰矿的矿物组成、内部结构和潜在形成机制提供了宝贵的见解,为今后在沉积地质学和矿物学领域开展研究奠定了基础。
{"title":"Mineralogical description and hypothesis on the formation of menilites from Galera, Granada (Spain)","authors":"Carlos Pimentel,&nbsp;Carlos Gutiérrez-Ariza,&nbsp;Antonio G. Checa,&nbsp;C. Ignacio Sainz-Díaz,&nbsp;Julyan H. E. Cartwright","doi":"10.1007/s00269-023-01267-0","DOIUrl":"10.1007/s00269-023-01267-0","url":null,"abstract":"<div><p>Menilites, intriguing botryoidal rocks found in Galera, Granada, Spain, have been examined through a multidisciplinary approach integrating mineralogical analysis and advanced imaging techniques. Characterized as opal and dolomite-bearing rocks, their complex morphologies and diverse internal structures prompted an investigation into their origin. Employing microfocus X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy and X-ray computed tomography, we present a detailed study of the menilites, revealing opal-A, opal-CT, dolomite and quartz as primary constituents. Notably, the internal homogeneity contrasts with the diverse external shapes. The proposed hypothesis suggests a seismic influence in menilite formation. Seismic events in porous environments above the water table may induce fluidization, resulting in the distinctive menilite structures. Osmotic pressure differences between nodules and the surrounding rock, coupled with fluidization during seismic events, could explain the observed morphologies. Validation of the proposed hypothesis requires further fieldwork and analogue experimentation. This study contributes valuable insights into the mineralogical composition, internal structures and potential formation mechanisms of menilites, laying the groundwork for future research in the field of sedimentary geology and mineralogy.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139768225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anisotropic electrical conductivity changes in FeTiO3 structure transition under high pressure 高压下 FeTiO_3 结构转变中各向异性的导电率变化
IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-05 DOI: 10.1007/s00269-023-01261-6
Takamitsu Yamanaka, Yuki Nakamoto, Masafumi Sakata, Katsuya Shimizu, Takanori Hattori

Electrical resistivity measurements on oriented FeTiO3 ilmenite using single crystals at high pressures proves that FeTiO3 ilmenite shows anisotropic electrical resistivity. The resistivity in the direction perpendicular to the c-axis decreased monotonously with increasing pressure. In contrast, the resistivity in the parallel direction to the c-axis initially decreased and slightly increased with increasing pressure above 6 GPa. It then resumed decreasing above 8 GPa. The hallow-shape of the curvature was observed. Neutron and synchrotron X-ray diffraction experiments provided an accurate picture of the pressure-induced changes of the FeTiO3 ilmenite structure. FeTiO3 transforms neither into perovskite nor LiNbO3 phase under pressures up to 28 GPa. However, different compression curves were observed for both FeO6 and TiO6 octahedra below 8 GPa. FeO6 is more compressible and flexible than TiO6. Among Fe–Fe, Ti–Ti and Fe–Ti interatomic distances, the shortest Fe–Ti distance presents the highest electrical restivity and electron mobility according to Fe2+Ti4+ and Fe3+Ti3+ by electron super-exchange mechanism, which is enhanced during compression. At high pressure, the electron configuration of Fe2+ (3d6) is more strongly changed than Ti4+ (3d0) and the former cation is the emphasized by Jahn–Teller effect in the ligand field of C3v molecular symmetry. The anisotropic electrical resistivity and non-uniform structure change of Fe–Ti interatomic distance can be explained by possible spin transition. The spin transition of Fe from high-spin to intermediate-spin state is possible in the electronic state change of FeTiO3.

在高压下使用单晶体对取向氧化铁钛锰矿进行的电阻率测量证明,氧化铁钛锰矿具有各向异性的电阻率。垂直于 c 轴方向的电阻率随着压力的增加而单调下降。与此相反,与 c 轴平行方向的电阻率在 6 GPa 以上随着压力的增加最初下降,然后略有上升。然后在 8 GPa 以上恢复下降。观察到了曲率的霍洛形状。中子和同步辐射 X 射线衍射实验为铁钛锰矿结构在压力作用下的变化提供了准确的图像。在高达 28 GPa 的压力下,FeTiO3 既不会转变为透辉石相,也不会转变为铌酸锂相。然而,在 8 GPa 以下,FeO6 和 TiO6 八面体的压缩曲线有所不同。与 TiO6 相比,FeO6 的可压缩性和柔韧性更高。在Fe-Fe、Ti-Ti和Fe-Ti原子间距离中,Fe-Ti距离最短的Fe2+Ti4+和Fe3+Ti3+通过电子超交换机制表现出最高的电静电性和电子迁移率,这种电静电性和电子迁移率在压缩过程中得到增强。在高压下,Fe2+(3d6)的电子构型比 Ti4+(3d0)发生了更强烈的变化,在 C3v 分子对称性的配位场中,前者阳离子受到 Jahn-Teller 效应的强调。各向异性的电阻率和 Fe-Ti 原子间距离的非均匀结构变化可以用可能的自旋转变来解释。在 FeTiO3 的电子状态变化中,FeKβ 有可能从高自旋态转变为中自旋态。
{"title":"Anisotropic electrical conductivity changes in FeTiO3 structure transition under high pressure","authors":"Takamitsu Yamanaka,&nbsp;Yuki Nakamoto,&nbsp;Masafumi Sakata,&nbsp;Katsuya Shimizu,&nbsp;Takanori Hattori","doi":"10.1007/s00269-023-01261-6","DOIUrl":"10.1007/s00269-023-01261-6","url":null,"abstract":"<div><p>Electrical resistivity measurements on oriented FeTiO<sub>3</sub> ilmenite using single crystals at high pressures proves that FeTiO<sub>3</sub> ilmenite shows anisotropic electrical resistivity. The resistivity in the direction perpendicular to the <i>c</i>-axis decreased monotonously with increasing pressure. In contrast, the resistivity in the parallel direction to the <i>c</i>-axis initially decreased and slightly increased with increasing pressure above 6 GPa. It then resumed decreasing above 8 GPa. The hallow-shape of the curvature was observed. Neutron and synchrotron X-ray diffraction experiments provided an accurate picture of the pressure-induced changes of the FeTiO<sub>3</sub> ilmenite structure. FeTiO<sub>3</sub> transforms neither into perovskite nor LiNbO<sub>3</sub> phase under pressures up to 28 GPa. However, different compression curves were observed for both FeO<sub>6</sub> and TiO<sub>6</sub> octahedra below 8 GPa. FeO<sub>6</sub> is more compressible and flexible than TiO<sub>6</sub>. Among Fe–Fe, Ti–Ti and Fe–Ti interatomic distances, the shortest Fe–Ti distance presents the highest electrical restivity and electron mobility according to Fe<sup>2+</sup>Ti<sup>4+</sup> and Fe<sup>3+</sup>Ti<sup>3+</sup> by electron super-exchange mechanism, which is enhanced during compression. At high pressure, the electron configuration of Fe<sup>2+</sup> (3<i>d</i><sup>6</sup>) is more strongly changed than Ti<sup>4+</sup> (3<i>d</i><sup>0</sup>) and the former cation is the emphasized by Jahn–Teller effect in the ligand field of <i>C</i><sub>3<i>v</i></sub> molecular symmetry. The anisotropic electrical resistivity and non-uniform structure change of Fe–Ti interatomic distance can be explained by possible spin transition. The spin transition of Fe<i>Kβ</i> from high-spin to intermediate-spin state is possible in the electronic state change of FeTiO<sub>3</sub>.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139683152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-temperature magnetic behavior of isocubanite from seafloor hydrothermal deposits in the Okinawa Trough 冲绳海槽海底热液矿床中的异闪长岩的低温磁性行为
IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-05 DOI: 10.1007/s00269-023-01264-3
Chie Kato, Masao Ohno, Tadahiro Hatakeyama, Yasuhiro Yamada, Fuminori Honda, Kazuhiko Shimada, Toshiro Nagase, Shuhei Totsuka-Shiiki, Yoshihiro Kuwahara, Jun-ichiro Ishibashi

The characteristic behavior of magnetic remanence correlated with mineralogical textures and composition was observed using low-temperature magnetometry, microscopy, and chemical analysis of three isocubanite samples collected from hydrothermal deposits in the Okinawa Trough and a sample transformed from natural cubanite via heating. Both zero-field remanence acquired at 5 K and field cooling remanence acquired at 300–5 K of all samples sharply decreased with increasing temperature at approximately 100 K. In addition, low-temperature cycling of isothermal remanence at 300 K exhibited a transition at approximately 100 K; remanence increased with decreasing temperature and vice versa. The intensity of remanence at low temperature and sharpness of the transition varied across samples with different compositions and microscopic textures, that is, the presence or absence of chalcopyrite lamellae and their widths. The sample obtained from a hydrothermal chimney, in which the magnetic transition was most clearly observed, was also subjected to X-ray diffraction, Mössbauer spectroscopy, electrical resistivity, and magnetic hysteresis measurements. The obtained results were generally consistent with those reported previously for unnamed mineral CuFe3S4 with an ordered cation arrangement. The low-temperature magnetic behavior of isocubanite possibly depends on the degree of cation ordering and can be regarded as an indicator of chemical composition and cooling history. Therefore, low-temperature magnetometry is useful for the detection of isocubanite and a potentially powerful technique for the prompt estimation of its composition and texture, contributing to our understanding of the formation process of hydrothermal deposits.

利用低温磁力测定法、显微镜和化学分析,对从冲绳海槽热液矿床采集的三个异方解石样本和一个通过加热从天然方解石转化而来的样本进行了观察,发现了磁性剩磁与矿物纹理和成分相关的特征行为。所有样品在 5 K 时获得的零磁场剩磁和在 300-5 K 时获得的磁场冷却剩磁都随着温度的升高而在大约 100 K 时急剧下降。不同成分和微观纹理(即黄铜矿薄片的存在与否及其宽度)的样品在低温下的剩磁强度和转变的尖锐程度各不相同。对从热液烟囱中获得的样品也进行了 X 射线衍射、莫斯鲍尔光谱、电阻率和磁滞测量,在该样品中磁性转变最为明显。所获得的结果与之前报道的具有有序阳离子排列的未命名矿物 CuFe3S4 的结果基本一致。异古巴尼特的低温磁性可能取决于阳离子的有序程度,可被视为化学成分和冷却历史的指标。因此,低温磁力测量法有助于检测异古巴涅石,也是迅速估算其成分和质地的潜在有力技术,有助于我们了解热液矿床的形成过程。
{"title":"Low-temperature magnetic behavior of isocubanite from seafloor hydrothermal deposits in the Okinawa Trough","authors":"Chie Kato,&nbsp;Masao Ohno,&nbsp;Tadahiro Hatakeyama,&nbsp;Yasuhiro Yamada,&nbsp;Fuminori Honda,&nbsp;Kazuhiko Shimada,&nbsp;Toshiro Nagase,&nbsp;Shuhei Totsuka-Shiiki,&nbsp;Yoshihiro Kuwahara,&nbsp;Jun-ichiro Ishibashi","doi":"10.1007/s00269-023-01264-3","DOIUrl":"10.1007/s00269-023-01264-3","url":null,"abstract":"<div><p>The characteristic behavior of magnetic remanence correlated with mineralogical textures and composition was observed using low-temperature magnetometry, microscopy, and chemical analysis of three isocubanite samples collected from hydrothermal deposits in the Okinawa Trough and a sample transformed from natural cubanite via heating. Both zero-field remanence acquired at 5 K and field cooling remanence acquired at 300–5 K of all samples sharply decreased with increasing temperature at approximately 100 K. In addition, low-temperature cycling of isothermal remanence at 300 K exhibited a transition at approximately 100 K; remanence increased with decreasing temperature and vice versa. The intensity of remanence at low temperature and sharpness of the transition varied across samples with different compositions and microscopic textures, that is, the presence or absence of chalcopyrite lamellae and their widths. The sample obtained from a hydrothermal chimney, in which the magnetic transition was most clearly observed, was also subjected to X-ray diffraction, Mössbauer spectroscopy, electrical resistivity, and magnetic hysteresis measurements. The obtained results were generally consistent with those reported previously for unnamed mineral CuFe<sub>3</sub>S<sub>4</sub> with an ordered cation arrangement. The low-temperature magnetic behavior of isocubanite possibly depends on the degree of cation ordering and can be regarded as an indicator of chemical composition and cooling history. Therefore, low-temperature magnetometry is useful for the detection of isocubanite and a potentially powerful technique for the prompt estimation of its composition and texture, contributing to our understanding of the formation process of hydrothermal deposits.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-023-01264-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139683046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure evolution of hydroxyapophyllite-(K) under high pressure 高压下羟基叶绿石(K)的结构演变
IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-28 DOI: 10.1007/s00269-023-01265-2
Yurii V. Seryotkin

The high-pressure structural evolution of a natural hydroxyapophyllite-(K) K0.96 Ca4.01[Al0.01Si7.99O20]((OH)0.95F0.05)·(H2O)8.14, Z = 2, a = 8.9699(1), c = 15.8934(3) Å, space group P4/mnc, from the Hatrurim Basin, Negev Desert, compressed in penetrating (ethanol:water 8:1 mixture) medium up to 5 GPa, was studied by single-crystal X-ray diffraction with a diamond anvil cell. The results clearly demonstrate the absence of pressure-induced hydration in the structure. Within 3 GPa, the compression mechanism is similar to that known in fluorapophyllite-(K). The compression in the plane of silicate layer proceeds via the relative rotation of the four-membered rings. The compression along the c-axis proceeds through the shortening of the inter-layer distance, whereas the thickness of silicate layer remains almost unchanged. As a result, the pressure-induced changes in the unit-cell metrics are similar to those for fluorapophyllite-(K). At about 3 GPa, hydroxyapophyllite-(K) undergoes a phase transition with the symmetry lowering to orthorhombic (space group Pnnm). The symmetry of the high-pressure phase allows deformation of the four-membered rings of the silicate layer, which is impossible within tetragonal symmetry. In this case, the structure is compressed much more along the a-axis than along the b-axis. As a result, the orthorhombic phase of hydroxyapophyllite-(K) is more compressible compared to fluorapophyllite-(K).

天然羟基叶绿石-(K) K0.96 Ca4.01[Al0.01Si7.99O20]((OH)0.95F0.05)-(H2O)8.14, Z = 2, a = 8.9699(1), c = 15.通过使用金刚石砧室进行单晶 X 射线衍射,研究了来自内盖夫沙漠 Hatrurim 盆地、在渗透介质(乙醇:水 8:1 混合物)中被压缩至 5 GPa、空间群为 P4/mnc 的 OO20]((OH)0.95F0.05-(H2O)8.14)。研究结果清楚地表明,该结构中不存在压力引起的水合作用。在 3 GPa 的范围内,压缩机制与已知的氟叶绿石-(K)类似。硅酸盐层平面内的压缩是通过四元环的相对旋转进行的。沿 c 轴的压缩是通过缩短层间距离进行的,而硅酸盐层的厚度几乎保持不变。因此,压力引起的单位晶胞度量变化与氟叶绿石(K)相似。在大约 3 GPa 的压力下,羟基叶蜡石(K)发生相变,对称性降低为正方晶(空间群 Pnnm)。高压相的对称性允许硅酸盐层的四元环发生变形,而这在四方对称性中是不可能发生的。在这种情况下,结构沿 a 轴的压缩程度远远大于沿 b 轴的压缩程度。因此,羟基叶绿石-(K)的正方相比氟叶绿石-(K)更容易压缩。
{"title":"Structure evolution of hydroxyapophyllite-(K) under high pressure","authors":"Yurii V. Seryotkin","doi":"10.1007/s00269-023-01265-2","DOIUrl":"10.1007/s00269-023-01265-2","url":null,"abstract":"<div><p>The high-pressure structural evolution of a natural hydroxyapophyllite-(K) K<sub>0.96</sub> Ca<sub>4.01</sub>[Al<sub>0.01</sub>Si<sub>7.99</sub>O<sub>20</sub>]((OH)<sub>0.95</sub>F<sub>0.05</sub>)·(H<sub>2</sub>O)<sub>8.14</sub>, <i>Z</i> = 2, <i>a</i> = 8.9699(1), <i>c</i> = 15.8934(3) Å, space group <i>P</i>4/<i>mnc</i>, from the Hatrurim Basin, Negev Desert, compressed in penetrating (ethanol:water 8:1 mixture) medium up to 5 GPa, was studied by single-crystal X-ray diffraction with a diamond anvil cell. The results clearly demonstrate the absence of pressure-induced hydration in the structure. Within 3 GPa, the compression mechanism is similar to that known in fluorapophyllite-(K). The compression in the plane of silicate layer proceeds via the relative rotation of the four-membered rings. The compression along the <i>c-</i>axis proceeds through the shortening of the inter-layer distance, whereas the thickness of silicate layer remains almost unchanged. As a result, the pressure-induced changes in the unit-cell metrics are similar to those for fluorapophyllite-(K). At about 3 GPa, hydroxyapophyllite-(K) undergoes a phase transition with the symmetry lowering to orthorhombic (space group <i>Pnnm</i>). The symmetry of the high-pressure phase allows deformation of the four-membered rings of the silicate layer, which is impossible within tetragonal symmetry. In this case, the structure is compressed much more along the <i>a</i>-axis than along the <i>b</i>-axis. As a result, the orthorhombic phase of hydroxyapophyllite-(K) is more compressible compared to fluorapophyllite-(K).</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139584400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High pressure raman spectroscopy and X-ray diffraction of K2Ca(CO3)2 bütschliite: multiple pressure-induced phase transitions in a double carbonate K2Ca(CO3)2 bütschliite 的高压拉曼光谱和 X 射线衍射:双碳酸盐中的多重压力诱导相变
IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-21 DOI: 10.1007/s00269-023-01262-5
G. Zeff, B. Kalkan, K. Armstrong, M. Kunz, Q. Williams

The crystal structure and bonding environment of K2Ca(CO3)2 bütschliite were probed under isothermal compression via Raman spectroscopy to 95 GPa and single crystal and powder X-ray diffraction to 12 and 68 GPa, respectively. A second order Birch-Murnaghan equation of state fit to the X-ray data yields a bulk modulus, ({K}_{0}=46.9) GPa with an imposed value of ({K}_{0}^{prime}= 4) for the ambient pressure phase. Compression of bütschliite is highly anisotropic, with contraction along the c-axis accounting for most of the volume change. Bütschliite undergoes a phase transition to a monoclinic C2/m structure at around 6 GPa, mirroring polymorphism within isostructural borates. A fit to the compression data of the monoclinic phase yields ({V}_{0}=322.2) Å3(,) ({K}_{0}=24.8) GPa and ({K}_{0}^{prime}=4.0) using a third order fit; the ability to access different compression mechanisms gives rise to a more compressible material than the low-pressure phase. In particular, compression of the C2/m phase involves interlayer displacement and twisting of the [CO3] units, and an increase in coordination number of the K+ ion. Three more phase transitions, at ~ 28, 34, and 37 GPa occur based on the Raman spectra and powder diffraction data: these give rise to new [CO3] bonding environments within the structure.

在等温压缩至 95 GPa 的条件下,通过拉曼光谱以及单晶和粉末 X 射线衍射分别探测了 K2Ca(CO3)2 bütschliite 的晶体结构和成键环境。通过对 X 射线数据进行二阶 Birch-Murnaghan 状态方程拟合,得出了环境压力相的体积模量为 ({K}_{0}=46.9) GPa,强加值为 ({K}_{0}^{prime}=4)。黑云母的压缩具有高度各向异性,沿 c 轴的收缩占体积变化的大部分。在 6 GPa 左右时,Bütschliite 经历了向单斜 C2/m 结构的相变,这反映了等结构硼酸盐的多态性。对单斜相的压缩数据进行三阶拟合,得到了 ({V}_{0}=322.2) Å3(,) ({K}_{0}=24.8) GPa 和 ({K}_{0}^{prime}=4.0) ;不同压缩机制的能力产生了比低压相更具可压缩性的材料。特别是,C2/m 相的压缩涉及[CO3] 单元的层间位移和扭曲,以及 K+ 离子配位数的增加。根据拉曼光谱和粉末衍射数据,在 ~ 28、34 和 37 GPa 时又发生了三次相变:这些相变在结构内部产生了新的 [CO3] 成键环境。
{"title":"High pressure raman spectroscopy and X-ray diffraction of K2Ca(CO3)2 bütschliite: multiple pressure-induced phase transitions in a double carbonate","authors":"G. Zeff,&nbsp;B. Kalkan,&nbsp;K. Armstrong,&nbsp;M. Kunz,&nbsp;Q. Williams","doi":"10.1007/s00269-023-01262-5","DOIUrl":"10.1007/s00269-023-01262-5","url":null,"abstract":"<div><p>The crystal structure and bonding environment of K<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub> bütschliite were probed under isothermal compression via Raman spectroscopy to 95 GPa and single crystal and powder X-ray diffraction to 12 and 68 GPa, respectively. A second order Birch-Murnaghan equation of state fit to the X-ray data yields a bulk modulus, <span>({K}_{0}=46.9)</span> GPa with an imposed value of <span>({K}_{0}^{prime}= 4)</span> for the ambient pressure phase. Compression of bütschliite is highly anisotropic, with contraction along the <i>c</i>-axis accounting for most of the volume change. Bütschliite undergoes a phase transition to a monoclinic <i>C</i>2/<i>m</i> structure at around 6 GPa, mirroring polymorphism within isostructural borates. A fit to the compression data of the monoclinic phase yields <span>({V}_{0}=322.2)</span> Å<sup>3</sup><span>(,)</span> <span>({K}_{0}=24.8)</span> GPa and <span>({K}_{0}^{prime}=4.0)</span> using a third order fit; the ability to access different compression mechanisms gives rise to a more compressible material than the low-pressure phase. In particular, compression of the <i>C</i>2/<i>m</i> phase involves interlayer displacement and twisting of the [CO<sub>3</sub>] units, and an increase in coordination number of the K<sup>+</sup> ion. Three more phase transitions, at ~ 28, 34, and 37 GPa occur based on the Raman spectra and powder diffraction data: these give rise to new [CO<sub>3</sub>] bonding environments within the structure.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-023-01262-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139515712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activity report of the Commission on Physics of Minerals (CPM) (2018–2022) 矿物物理委员会(CPM)活动报告(2018-2022 年)
IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-17 DOI: 10.1007/s00269-024-01268-7
Paola Comodi, Jun Tsuchiya, Sujoy Ghosh
{"title":"Activity report of the Commission on Physics of Minerals (CPM) (2018–2022)","authors":"Paola Comodi,&nbsp;Jun Tsuchiya,&nbsp;Sujoy Ghosh","doi":"10.1007/s00269-024-01268-7","DOIUrl":"10.1007/s00269-024-01268-7","url":null,"abstract":"","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139527678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The solid solution in the system NaMgAl(SO4)3–KMgAl(SO4)3 体系中的固溶体为NaMgAl(SO4)3 - kmgal (SO4)3
IF 1.4 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-11-27 DOI: 10.1007/s00269-023-01259-0
Peter Grouleff Jensen, Tonci Balic-Zunic, Ulla Gro Nielsen, Philip Miguel Kofoed

We synthesized six samples in the compositional field NaMgAl(SO4)3–KMgAl(SO4)3 in 20 mol% increments from pure Na to pure K compounds. We investigated them by Powder X-Ray diffraction, 23Na, and 27Al Nuclear Magnetic Resonance spectroscopy. The results confirm NaMgAl(SO4)3 as a unique phase identical to a presumed new mineral found in the fumaroles of Eldfell and Hekla volcanoes in Iceland. It tolerates less than 10 mol% K substitution for Na. There exists a compositional gap to approximately Na0.65K0.35MgAl(SO4)3 from where a solid solution extends to KMgAl(SO4)3. The mineral koryakite [NaKMg2Al2(SO4)6] is a member of the latter solid solution series. The crystal structures of all (Na,K)MgAl(SO4)3 phases are akin to NASICON (NA Super Ionic CONductor). NaMgAl(SO4)3 has (Roverline{3}c) symmetry and a disordered distribution of Mg and Al among the octahedral sites with only one unique site for the alkali atom. The members of the solid solution have (Roverline{3}) symmetry with ordered Mg–Al distribution and two unique alkali sites with different preferences for Na and K. In the crystal structure, the coordination of Na and/or K is trigonal antiprismatic, and these share bases with two octahedral Mg (Na) or Al (K) coordinations. These polyhedra are arranged in columns parallel to [001] and interconnected by SO4 tetrahedral groups. The alkali atoms from a column lie in the same (001) layers as the octahedrally coordinated atoms from the three neighboring rows. On the same level, parallel to (001), there are gaps in the other three neighboring columns forming channels containing Na+ or K+ ions.

在20 mol / l的合成范围内合成了NaMgAl(SO4)3 - kmgal (SO4)3% increments from pure Na to pure K compounds. We investigated them by Powder X-Ray diffraction, 23Na, and 27Al Nuclear Magnetic Resonance spectroscopy. The results confirm NaMgAl(SO4)3 as a unique phase identical to a presumed new mineral found in the fumaroles of Eldfell and Hekla volcanoes in Iceland. It tolerates less than 10 mol% K substitution for Na. There exists a compositional gap to approximately Na0.65K0.35MgAl(SO4)3 from where a solid solution extends to KMgAl(SO4)3. The mineral koryakite [NaKMg2Al2(SO4)6] is a member of the latter solid solution series. The crystal structures of all (Na,K)MgAl(SO4)3 phases are akin to NASICON (NA Super Ionic CONductor). NaMgAl(SO4)3 has (Roverline{3}c) symmetry and a disordered distribution of Mg and Al among the octahedral sites with only one unique site for the alkali atom. The members of the solid solution have (Roverline{3}) symmetry with ordered Mg–Al distribution and two unique alkali sites with different preferences for Na and K. In the crystal structure, the coordination of Na and/or K is trigonal antiprismatic, and these share bases with two octahedral Mg (Na) or Al (K) coordinations. These polyhedra are arranged in columns parallel to [001] and interconnected by SO4 tetrahedral groups. The alkali atoms from a column lie in the same (001) layers as the octahedrally coordinated atoms from the three neighboring rows. On the same level, parallel to (001), there are gaps in the other three neighboring columns forming channels containing Na+ or K+ ions.
{"title":"The solid solution in the system NaMgAl(SO4)3–KMgAl(SO4)3","authors":"Peter Grouleff Jensen,&nbsp;Tonci Balic-Zunic,&nbsp;Ulla Gro Nielsen,&nbsp;Philip Miguel Kofoed","doi":"10.1007/s00269-023-01259-0","DOIUrl":"10.1007/s00269-023-01259-0","url":null,"abstract":"<div><p>We synthesized six samples in the compositional field NaMgAl(SO<sub>4</sub>)<sub>3</sub>–KMgAl(SO<sub>4</sub>)<sub>3</sub> in 20 mol% increments from pure Na to pure K compounds. We investigated them by Powder X-Ray diffraction, <sup>23</sup>Na, and <sup>27</sup>Al Nuclear Magnetic Resonance spectroscopy. The results confirm NaMgAl(SO<sub>4</sub>)<sub>3</sub> as a unique phase identical to a presumed new mineral found in the fumaroles of Eldfell and Hekla volcanoes in Iceland. It tolerates less than 10 mol% K substitution for Na. There exists a compositional gap to approximately Na<sub>0.65</sub>K<sub>0.35</sub>MgAl(SO<sub>4</sub>)<sub>3</sub> from where a solid solution extends to KMgAl(SO<sub>4</sub>)<sub>3</sub>. The mineral koryakite [NaKMg<sub>2</sub>Al<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>] is a member of the latter solid solution series. The crystal structures of all (Na,K)MgAl(SO<sub>4</sub>)<sub>3</sub> phases are akin to NASICON (NA Super Ionic CONductor). NaMgAl(SO<sub>4</sub>)<sub>3</sub> has <span>(Roverline{3}c)</span> symmetry and a disordered distribution of Mg and Al among the octahedral sites with only one unique site for the alkali atom. The members of the solid solution have <span>(Roverline{3})</span> symmetry with ordered Mg–Al distribution and two unique alkali sites with different preferences for Na and K. In the crystal structure, the coordination of Na and/or K is trigonal antiprismatic, and these share bases with two octahedral Mg (Na) or Al (K) coordinations. These polyhedra are arranged in columns parallel to [001] and interconnected by SO<sub>4</sub> tetrahedral groups. The alkali atoms from a column lie in the same (001) layers as the octahedrally coordinated atoms from the three neighboring rows. On the same level, parallel to (001), there are gaps in the other three neighboring columns forming channels containing Na<sup>+</sup> or K<sup>+</sup> ions.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"50 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-023-01259-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138454538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vibrational entropy of disordering in omphacite 复合土中无序的振动熵
IF 1.4 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-11-27 DOI: 10.1007/s00269-023-01260-7
Artur Benisek, Edgar Dachs, Michael A. Carpenter, Bastian Joachim-Mrosko, Noreen M. Vielreicher, Manfred Wildner

The cations of an ordered omphacite from the Tauern window were gradually disordered in piston cylinder experiments at temperatures between 850 and 1150 °C. The samples were examined by X-ray powder diffraction and then investigated using low-temperature calorimetry and IR spectroscopy. The low-temperature heat capacity data were used to obtain the vibrational entropies, and the line broadening of the IR spectra served as a tool to investigate the disordering enthalpy. These data were then used to calculate the configurational entropy as a function of temperature. The vibrational entropy does not change during the cation ordering phase transition from space group C2/c to P2/n at 865 °C but increases with a further temperature increase due to the reduction of short-range order.

在850 ~ 1150℃的温度下,从陶恩窗口得到的有序复相石的阳离子逐渐无序。采用x射线粉末衍射法对样品进行了检测,然后采用低温量热法和红外光谱法对样品进行了研究。用低温热容数据获得了振动熵,并用红外光谱的谱线展宽作为研究无序焓的工具。这些数据随后被用来计算作为温度函数的构型熵。865℃时,从空间群C2/c到空间群P2/n的阳离子有序相变过程中,振动熵没有变化,但随着温度的进一步升高,由于短程序的降低,振动熵增加。
{"title":"Vibrational entropy of disordering in omphacite","authors":"Artur Benisek,&nbsp;Edgar Dachs,&nbsp;Michael A. Carpenter,&nbsp;Bastian Joachim-Mrosko,&nbsp;Noreen M. Vielreicher,&nbsp;Manfred Wildner","doi":"10.1007/s00269-023-01260-7","DOIUrl":"10.1007/s00269-023-01260-7","url":null,"abstract":"<div><p>The cations of an ordered omphacite from the Tauern window were gradually disordered in piston cylinder experiments at temperatures between 850 and 1150 °C. The samples were examined by X-ray powder diffraction and then investigated using low-temperature calorimetry and IR spectroscopy. The low-temperature heat capacity data were used to obtain the vibrational entropies, and the line broadening of the IR spectra served as a tool to investigate the disordering enthalpy. These data were then used to calculate the configurational entropy as a function of temperature. The vibrational entropy does not change during the cation ordering phase transition from space group <i>C2/c</i> to <i>P2/n</i> at 865 °C but increases with a further temperature increase due to the reduction of short-range order.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"50 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-023-01260-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138454537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Greenalite-Chamosite composition, geothermometry and oxygen fugacity variations in pisolitic ironstone and carbonates of the Chilpi Group: implication on Paleoproterozoic seawater chemistry 七皮群泥质铁石和碳酸盐绿绿岩-绿辉岩组成、地球温度和氧逸度变化:对古元古代海水化学的启示
IF 1.4 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-11-16 DOI: 10.1007/s00269-023-01258-1
Sarada P. Mohanty, Prasanta K. Mishra

Iron-rich rocks of Orosirian Period in the Chilpi Group on the northern margin of the Bastar Craton, Central India, contain an association of hematite-magnetite-greenalite-chamosite-quartz in oxide-silicate facies. Additionally chert (quartz) and siderite occur in chert and carbonate facies. Presence of these mineral assemblages was investigated to infer the redox state of the depositional basin. The results have indicated formation temperature variation of 116–255 °C (average 198 °C) and log P(O2) between  – 37 and  – 60 (average –44). A ferruginous state of the shallow water depositional environment, having oxygen content of 10–2 to 10–5 times the present atmospheric level, is inferred. The variations in composition of greenalite-chamosite association indicate development of the mineral phases from the reaction involving kaolinite-illite and magnetite-siderite as end-members. Thermodynamic requirements for the formation of the rare association of magnetite-greenalite-cronstedtite indicate the precipitation of the mineral phases from seawater with enhanced activities of Fe2+, Al, Si, Mg and C compared to the level in the present day seawater. The results indicate a steep fall in the atmospheric oxygen content immediately after the Great Oxidation Event of 2400–2000 Ma.

印度中部Bastar克拉通北缘Chilpi群奥罗世富铁岩石中含有赤铁矿-磁铁矿-绿绿岩-绿辉石-石英组合,呈氧化硅酸盐相。另外,燧石(石英)和菱铁矿产于燧石相和碳酸盐相。研究了这些矿物组合的存在,以推断沉积盆地的氧化还原状态。结果表明,地层温度变化范围为116 ~ 255°C(平均198°C),测井P(O2)在- 37 ~ - 60(平均- 44)之间。推断浅水沉积环境为含铁状态,含氧量为当前大气水平的10-2至10-5倍。绿绿石-绿辉石组合组成的变化表明,以高岭石-伊利石和磁铁矿-菱铁矿为端元的反应形成了矿物相。形成磁铁矿-绿绿石-长角辉石矿组合的热力学要求表明,海水中沉淀的矿物相与现在海水中的Fe2+、Al、Si、Mg和C的活性相比有所增强。结果表明,在2400-2000 Ma的大氧化事件发生后,大气中氧含量急剧下降。
{"title":"Greenalite-Chamosite composition, geothermometry and oxygen fugacity variations in pisolitic ironstone and carbonates of the Chilpi Group: implication on Paleoproterozoic seawater chemistry","authors":"Sarada P. Mohanty,&nbsp;Prasanta K. Mishra","doi":"10.1007/s00269-023-01258-1","DOIUrl":"10.1007/s00269-023-01258-1","url":null,"abstract":"<div><p>Iron-rich rocks of Orosirian Period in the Chilpi Group on the northern margin of the Bastar Craton, Central India, contain an association of hematite-magnetite-greenalite-chamosite-quartz in oxide-silicate facies. Additionally chert (quartz) and siderite occur in chert and carbonate facies. Presence of these mineral assemblages was investigated to infer the redox state of the depositional basin. The results have indicated formation temperature variation of 116–255 °C (average 198 °C) and log <i>P</i><sub>(O2)</sub> between  – 37 and  – 60 (average –44). A ferruginous state of the shallow water depositional environment, having oxygen content of 10<sup>–2</sup> to 10<sup>–5</sup> times the present atmospheric level, is inferred. The variations in composition of greenalite-chamosite association indicate development of the mineral phases from the reaction involving kaolinite-illite and magnetite-siderite as end-members. Thermodynamic requirements for the formation of the rare association of magnetite-greenalite-cronstedtite indicate the precipitation of the mineral phases from seawater with enhanced activities of Fe<sup>2+</sup>, Al, Si, Mg and C compared to the level in the present day seawater. The results indicate a steep fall in the atmospheric oxygen content immediately after the Great Oxidation Event of 2400–2000 Ma.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"50 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134796702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal chemistry and thermal behavior of B-, S- and Na-bearing spurrite 含B-、S-和na晶突的晶体化学和热行为
IF 1.4 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-28 DOI: 10.1007/s00269-023-01257-2
M. G. Krzhizhanovskaya, N. V. Chukanov, A. S. Mazur, L. A. Pautov, D. A. Varlamov, V. N. Bocharov

Spurrite from Negra Mine, Queretaro, Mexico is characterized by a complex chemical composition. Its empirical formula derived based on electron microprobe, wet chemical analyses and gas chromatography of annealing products is H0.18Ca5.01Na0.05[(SiO4)1.91(SO4)0.08)][(CO3)0.71(BO3)0.28]O11. The mineral was studied by single-crystal X-ray diffraction (SCXRD) as well as infrared (IR), Raman and nuclear magnetic resonance (NMR) spectroscopy. According to spectroscopic data, boron has three-fold coordination and sulfur occurs in the mineral in the sulfate form. A significant portion of carbonate groups is substituted by BO33– anions. Charge compensation is achieved due to the substitution of a part of SiO44– anions by SO42– groups, as well as to the admixture of sodium. SCXRD shows that sodium occurs in its own site with a low occupancy. The studied sample is isotypic with the synthetic NaCa5(SiO4)2(BO3) compound. The IR spectrum shows possible partial protonation of the SiO4 tetrahedra whereas bands of H2O molecules and isolated OH anions are not observed. Thermal behavior of B,S,Na-bearing spurrite from Negra Mine has been studied using powder high-temperature X-ray diffraction (HTXRD) together with boron poor and S-free spurrite from Fuka Area (Japan). The studied samples are stable up to ~ 1200 °C and ~ 1100 °C, respectively, whereas synthetic B,S-free spurrite decomposes at about 900 °C. The thermal expansion is significantly anisotropic and is observed mainly in the direction perpendicular to the ac plane which is coplanar with the layers of calcium polyhedra and anionic pseudo-layers formed by (C,B)O3 triangles and (Si,S)O4 tetrahedra. Isomorphism and a similarity of the thermal, baric and compositional (C-B substitution) deformations of spurrite-like structures are discussed.

来自墨西哥克雷塔罗的Negra矿的刺辉石具有复杂的化学成分。通过电子探针、湿化学分析、气相色谱等方法推导出的经验公式为:H0.18Ca5.01Na0.05[(SiO4)1.91(SO4)0.08)][(CO3)0.71(BO3)0.28]O11。采用单晶x射线衍射(SCXRD)、红外(IR)、拉曼(Raman)和核磁共振(NMR)光谱对该矿物进行了研究。根据光谱数据,硼具有三重配位,硫以硫酸盐形式存在于矿物中。相当一部分的碳酸盐基团被BO33 -阴离子取代。电荷补偿是由于部分SiO44 -阴离子被SO42 -基团取代,以及钠的混合物。SCXRD表明,钠离子在其自身的位置发生,占用率低。所研究的样品与合成的NaCa5(SiO4)2(BO3)化合物是同型的。红外光谱显示了SiO4四面体可能的部分质子化,而没有观察到H2O分子和孤立的OH -阴离子带。采用粉末高温x射线衍射(HTXRD)技术,对日本福卡地区贫硼无S直晶和Negra矿含B、S、na直晶的热行为进行了研究。所研究的样品分别在~ 1200℃和~ 1100℃下稳定,而合成的无B, s刺激石在900℃左右分解。热膨胀具有明显的各向异性,主要发生在与钙多面体层和由(C,B)O3三角形和(Si,S)O4四面体组成的阴离子伪层共面垂直的ac面方向。讨论了类刺晶结构的热变形、压变形和组分(C-B取代)变形的同构性和相似性。
{"title":"Crystal chemistry and thermal behavior of B-, S- and Na-bearing spurrite","authors":"M. G. Krzhizhanovskaya,&nbsp;N. V. Chukanov,&nbsp;A. S. Mazur,&nbsp;L. A. Pautov,&nbsp;D. A. Varlamov,&nbsp;V. N. Bocharov","doi":"10.1007/s00269-023-01257-2","DOIUrl":"10.1007/s00269-023-01257-2","url":null,"abstract":"<div><p>Spurrite from Negra Mine, Queretaro, Mexico is characterized by a complex chemical composition. Its empirical formula derived based on electron microprobe, wet chemical analyses and gas chromatography of annealing products is H<sub>0.18</sub>Ca<sub>5.01</sub>Na<sub>0.05</sub>[(SiO<sub>4</sub>)<sub>1.91</sub>(SO<sub>4</sub>)<sub>0.08</sub>)][(CO<sub>3</sub>)<sub>0.71</sub>(BO<sub>3</sub>)<sub>0.28</sub>]O<sub>11</sub>. The mineral was studied by single-crystal X-ray diffraction (SCXRD) as well as infrared (IR), Raman and nuclear magnetic resonance (NMR) spectroscopy. According to spectroscopic data, boron has three-fold coordination and sulfur occurs in the mineral in the sulfate form. A significant portion of carbonate groups is substituted by BO<sub>3</sub><sup>3–</sup> anions. Charge compensation is achieved due to the substitution of a part of SiO<sub>4</sub><sup>4–</sup> anions by SO<sub>4</sub><sup>2–</sup> groups, as well as to the admixture of sodium. SCXRD shows that sodium occurs in its own site with a low occupancy. The studied sample is isotypic with the synthetic NaCa<sub>5</sub>(SiO<sub>4</sub>)<sub>2</sub>(BO<sub>3</sub>) compound. The IR spectrum shows possible partial protonation of the SiO<sub>4</sub> tetrahedra whereas bands of H<sub>2</sub>O molecules and isolated OH<sup>–</sup> anions are not observed. Thermal behavior of B,S,Na-bearing spurrite from Negra Mine has been studied using powder high-temperature X-ray diffraction (HTXRD) together with boron poor and S-free spurrite from Fuka Area (Japan). The studied samples are stable up to ~ 1200 °C and ~ 1100 °C, respectively, whereas synthetic B,S-free spurrite decomposes at about 900 °C. The thermal expansion is significantly anisotropic and is observed mainly in the direction perpendicular to the <i>ac</i> plane which is coplanar with the layers of calcium polyhedra and anionic pseudo-layers formed by (C,B)O<sub>3</sub> triangles and (Si,S)O<sub>4</sub> tetrahedra. Isomorphism and a similarity of the thermal, baric and compositional (C-B substitution) deformations of spurrite-like structures are discussed.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"50 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134797562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physics and Chemistry of Minerals
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1