We have conducted electrical conductivity measurements of FeCO3 siderite under high pressure up to 63 GPa in order to understand the nature and effect of iron spin transition and its influence on the geophysical properties of siderite, which is an end-member of major carbonate minerals. The results from Raman and Mössbauer spectroscopic measurements show that the high- to low-spin transition of iron occurs at around 50 GPa in agreement with previous studies. A sharp decrease of the electrical conductivity was also observed at around 50 GP, which is associated with the spin transition in iron. Although the stability of FeCO3 siderite may be limited under high-temperature conditions along with the mantle geotherm, solid solutions in the MgCO3-FeCO3 system, Mg1-xFexCO3, could be stable up to the pressure-temperature condition of the lowermost mantle. The pressure-temperature range of the spin transition in Mg1-xFexCO3 is narrower than those of the major lower mantle minerals, ferropericlase and bridgmanite, and thus the drop of the electrical conductivity induced by the spin transition could be clearer under lower mantle conditions. Therefore, the existence of Mg1-xFexCO3 may affect the observed heterogeneity of electrical conductivity in the mid-lower mantle.
{"title":"Electrical conductivity of siderite and the effect of the spin transition of iron","authors":"Izumi Mashino, Takashi Yoshino, Takaya Mitsui, Kosuke Fujiwara, Máté Garai, Shigeru Yamashita","doi":"10.1007/s00269-024-01283-8","DOIUrl":"10.1007/s00269-024-01283-8","url":null,"abstract":"<div><p>We have conducted electrical conductivity measurements of FeCO<sub>3</sub> siderite under high pressure up to 63 GPa in order to understand the nature and effect of iron spin transition and its influence on the geophysical properties of siderite, which is an end-member of major carbonate minerals. The results from Raman and Mössbauer spectroscopic measurements show that the high- to low-spin transition of iron occurs at around 50 GPa in agreement with previous studies. A sharp decrease of the electrical conductivity was also observed at around 50 GP, which is associated with the spin transition in iron. Although the stability of FeCO<sub>3</sub> siderite may be limited under high-temperature conditions along with the mantle geotherm, solid solutions in the MgCO<sub>3</sub>-FeCO<sub>3</sub> system, Mg<sub>1-x</sub>Fe<sub>x</sub>CO<sub>3</sub>, could be stable up to the pressure-temperature condition of the lowermost mantle. The pressure-temperature range of the spin transition in Mg<sub>1-x</sub>Fe<sub>x</sub>CO<sub>3</sub> is narrower than those of the major lower mantle minerals, ferropericlase and bridgmanite, and thus the drop of the electrical conductivity induced by the spin transition could be clearer under lower mantle conditions. Therefore, the existence of Mg<sub>1-x</sub>Fe<sub>x</sub>CO<sub>3</sub> may affect the observed heterogeneity of electrical conductivity in the mid-lower mantle.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01283-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141106764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1007/s00269-024-01272-x
L. C. Resio
In the present review work, it is proposed to carry out a bibliographic analysis about the thermal behaviour of the dolomitic mineral. The state of the art of dolomite currently indicates a growing use as a refractory material due to the cheaper alternative it represents compared to other materials such as magnesium oxide. The importance of dolomite apart from its application in the steel industry lies in the fact that it has expanded to other industrial fields such as the production of catalysts, catalyst supports, and industrial effluent purification materials. In these and other applications, understanding the thermal behaviour of the material is necessary to evaluate the feasibility of application. In this review, the different experimental proposals developed over time in terms of thermal behaviour are studied, emphasizing the reaction mechanisms that have been proposed in different investigations.
{"title":"Dolomite thermal behaviour: A short review","authors":"L. C. Resio","doi":"10.1007/s00269-024-01272-x","DOIUrl":"10.1007/s00269-024-01272-x","url":null,"abstract":"<div><p>In the present review work, it is proposed to carry out a bibliographic analysis about the thermal behaviour of the dolomitic mineral. The state of the art of dolomite currently indicates a growing use as a refractory material due to the cheaper alternative it represents compared to other materials such as magnesium oxide. The importance of dolomite apart from its application in the steel industry lies in the fact that it has expanded to other industrial fields such as the production of catalysts, catalyst supports, and industrial effluent purification materials. In these and other applications, understanding the thermal behaviour of the material is necessary to evaluate the feasibility of application. In this review, the different experimental proposals developed over time in terms of thermal behaviour are studied, emphasizing the reaction mechanisms that have been proposed in different investigations.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-09DOI: 10.1007/s00269-024-01273-w
Panming Xue, Duojun Wang, Ruixin Zhang, Peng Chen, Kenan Han, Yang Cao
The thermal expansion coefficient of talc has been measured using a high-temperature thermal optical expansion apparatus over a temperature range of 296 to 1473 K. The results show a gradual increase in the thermal expansion coefficient between 296 and 1086 K, and a rapid and substantial increase between 1086 and 1316 K, but exhibit a decline trend between 1316 and 1473 K. At lower temperatures, changes in crystal structure are the primary mechanism governing thermal expansion; at higher temperatures, the dehydration phase transition and the resulting formation of cracks are the primary contributors to thermal expansion. The volume of talc exhibits a linear increase with temperature, described by the equation:(V/{V}_{0}=1+2.153 left( pm 0.011right)times {10}^{-5} left(T-296right)). At high temperatures (573–1073 K), by fitting the expansion data to the Grüneisen thermal equation of state, bulk modulus K0 = 47.3 ± 0.9 GPa, pressure derivative ({K}_{0}^{{prime }}left(Tright)) = 6.2 ± 0.4, cell volume V0 = 904.5 ± 0.6 ų, and Debye temperature θ = 829.3 ± 0.6 K were obtained at 0 K. The presence of talc reduces the density of subduction zones, facilitating the exhumation of oceanic eclogites.
使用高温热光学膨胀仪测量了滑石在 296 至 1473 K 温度范围内的热膨胀系数。结果显示,热膨胀系数在 296 至 1086 K 之间逐渐增加,在 1086 至 1316 K 之间快速大幅增加,但在 1316 至 1473 K 之间呈下降趋势。在较低温度下,晶体结构的变化是热膨胀的主要机制;在较高温度下,脱水相变和由此形成的裂缝是热膨胀的主要因素。滑石的体积随温度呈线性增长,其方程为:(V/{V}_{0}=1+2.153 left( pm 0.011right)times {10}^{-5}left(T-296right)).在高温下(573-1073 K),通过将膨胀数据拟合到格鲁尼森热状态方程,体积模量 K0 = 47.3 ± 0.9 GPa,压力导数 ({K}_{0}^{prime }}left(Tright)) = 6.2 ± 0.滑石的存在降低了俯冲带的密度,促进了大洋蚀变岩的吐出。
{"title":"Thermal expansion of talc at high temperature and implications for the exhumation of eclogites in subduction zones","authors":"Panming Xue, Duojun Wang, Ruixin Zhang, Peng Chen, Kenan Han, Yang Cao","doi":"10.1007/s00269-024-01273-w","DOIUrl":"10.1007/s00269-024-01273-w","url":null,"abstract":"<div><p>The thermal expansion coefficient of talc has been measured using a high-temperature thermal optical expansion apparatus over a temperature range of 296 to 1473 K. The results show a gradual increase in the thermal expansion coefficient between 296 and 1086 K, and a rapid and substantial increase between 1086 and 1316 K, but exhibit a decline trend between 1316 and 1473 K. At lower temperatures, changes in crystal structure are the primary mechanism governing thermal expansion; at higher temperatures, the dehydration phase transition and the resulting formation of cracks are the primary contributors to thermal expansion. The volume of talc exhibits a linear increase with temperature, described by the equation:<span>(V/{V}_{0}=1+2.153 left( pm 0.011right)times {10}^{-5} left(T-296right))</span>. At high temperatures (573–1073 K), by fitting the expansion data to the Grüneisen thermal equation of state, bulk modulus <i>K</i><sub>0</sub> = 47.3 ± 0.9 GPa, pressure derivative <span>({K}_{0}^{{prime }}left(Tright))</span> = 6.2 ± 0.4, cell volume <i>V</i><sub>0</sub> = 904.5 ± 0.6 ų, and Debye temperature <i>θ</i> = 829.3 ± 0.6 K were obtained at 0 K. The presence of talc reduces the density of subduction zones, facilitating the exhumation of oceanic eclogites.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-09DOI: 10.1007/s00269-024-01282-9
A. M. Ionov, O. I. Barkalov, D. A. Shulyatev, K. A. Gavrilicheva
Phase transformations of the charoite mineral induced by thermal treatment at high temperatures were studied by simultaneous monitoring of the thermogravimetry, differential scanning calorimetry, and mass spectrometry curves up to its melting temperature range (~ 1300 °C). The chemical composition and phase state of the initial and melted samples were characterized using electron-probe micro-analysis, X-ray photoemission spectroscopy, X-ray powder diffraction, and Raman spectroscopy. It was demonstrated that continuous heating (10 °C/min) up to ~ 500 °C resulting in a mass loss of ~ 5 wt. % was due to crystallization water release and dehydroxylation, while oxygen release and carbonate inclusion decomposition were observed at a higher temperature. The endothermic peak with a heat effect of 82 J/g observed at 970 ÷ 1050 °C was attributed to the charoite-to-wollastonite transition detected by real-time X-ray powder diffraction in this temperature range. Above 1100 °C, another extended endothermic effect was fixed, which was presumably due to the formation of pseudowollastonite and pre-melting processes. The melting of the charoite sample using the floating zone technique resulted in its transformation to pseudowollastonite and caused a significant color change from lilac to rose pink.
通过同时监测热重仪、差示扫描量热仪和质谱曲线,研究了高温热处理诱导的焦绿泥石矿物的相变,直至其熔化温度范围(约 1300 °C)。利用电子探针显微分析、X 射线光发射光谱、X 射线粉末衍射和拉曼光谱对初始样品和熔化样品的化学成分和相态进行了表征。结果表明,持续加热(10 °C/min )至约 500 °C,导致质量损失约 5 wt. %,这是由于结晶水释放和脱羟基造成的,而在更高温度下则观察到氧释放和碳酸盐包合物分解。在 970 ÷ 1050 °C 温度范围内观察到的热效应为 82 J/g 的内热峰归因于实时 X 射线粉末衍射在此温度范围内检测到的焦土到硅灰石的转变。在 1100 °C 以上,另一个扩展的内热效应被固定下来,这可能是由于假硅灰石的形成和预熔化过程造成的。使用浮区技术熔化夏洛石样品后,夏洛石转变为假硅灰石,并导致颜色从淡紫色明显转变为玫瑰粉红色。
{"title":"Experimental studies of charoite mineral transformations under thermal treatment","authors":"A. M. Ionov, O. I. Barkalov, D. A. Shulyatev, K. A. Gavrilicheva","doi":"10.1007/s00269-024-01282-9","DOIUrl":"10.1007/s00269-024-01282-9","url":null,"abstract":"<div><p>Phase transformations of the charoite mineral induced by thermal treatment at high temperatures were studied by simultaneous monitoring of the thermogravimetry, differential scanning calorimetry, and mass spectrometry curves up to its melting temperature range (~ 1300 °C). The chemical composition and phase state of the initial and melted samples were characterized using electron-probe micro-analysis, X-ray photoemission spectroscopy, X-ray powder diffraction, and Raman spectroscopy. It was demonstrated that continuous heating (10 °C/min) up to ~ 500 °C resulting in a mass loss of ~ 5 wt. % was due to crystallization water release and dehydroxylation, while oxygen release and carbonate inclusion decomposition were observed at a higher temperature. The endothermic peak with a heat effect of 82 J/g observed at 970 ÷ 1050 °C was attributed to the charoite-to-wollastonite transition detected by real-time X-ray powder diffraction in this temperature range. Above 1100 °C, another extended endothermic effect was fixed, which was presumably due to the formation of pseudowollastonite and pre-melting processes. The melting of the charoite sample using the floating zone technique resulted in its transformation to pseudowollastonite and caused a significant color change from lilac to rose pink.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01282-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Synthetic Sc-bearing clinozoisite on the Ca2Al3Si3O12(OH)-Ca2Al2Sc3+Si3O12(OH) join was studied by single-crystal X-ray diffraction to understand better the distribution of Sc3+ among the octahedral sites, M1-M3, and its effect on the structure of epidote-group minerals. Oxide starting materials of Ca2Al2(Al1-p)ScpSi3O12.5 composition with p = 0.5 and 1.0 were employed, and clinozoisite was successfully synthesized at PH2O = 1.2–1.5 GPa and T = 700–800 °C. The Sc content in clinozoisite varies and attains 0.61 atoms per formula unit (apfu) from p = 1.0 starting material. Two Sc-bearing clinozoisite crystals from the product of p = 0.5 starting material (Run 20) were used for X-ray crystal structural analysis. The unit-cell parameters are a = 8.8815(4), b = 5.6095(2), c = 10.1466(5) Å, β = 115.318(6)º, and V = 457.0(1) Å3 for 20B, and a = 8.885(1), b = 5.6119(4), c = 10.153(1) Å, β = 115.27(2)º, and V = 457.9(4) Å3 for 20D. The resulting Sc3+ occupancies among the octahedral sites are M1Al1.0M2Al1.0M3(Al0.684(7)Sc3+0.316) for the former and M1Al1.0M2Al1.0M3(Al0.629(6)Sc3+0.371) for the latter, i.e., Sc3+ exclusively occupies M3. The mean ionic distance of < M3–O > increases with increasing Sc content at M3, but it tends to be slightly shorter than the expected value using the regression line based on the structural data of synthetic Ca2(Al, Me3+)3Si3O12(OH) clinozoisite. It is due to the reduced distortion of M3O6 octahedra caused by the short M3–O1 and M3–O8 distances. Although the angular variance ends up at a similar value to the Al-Fe3+ epidote, the variation of ∠Oi–M3-Oi angles is different. The Sc-bearing clinozoisite has greater ∠O1–M3–O1’, but smaller ∠O2–M3–O2’ and ∠O2–M3–O4 relative to Al-Fe3+ series ones. Due to different local chemical surroundings, multiple peaks are present in the OH stretching region of Raman spectra. Three OH-stretching peaks, centered at 3342, 3382, and 3468 cm−1 are assigned to the local configuration O10–H···O4–(M1AlM1AlM3Sc3+) and O10–H···O4–(M1AlM1AlM3Al), and O10–H···O2, respectively.
{"title":"Distribution of Sc3+ at the octahedral sites and its effect on the crystal structure of synthetic Sc-bearing clinozoisite on the Ca2Al3Si3O12(OH)-Ca2Al2ScSi3O12(OH) join","authors":"Mariko Nagashima, Yoji Morifuku, Boriana Mihailova","doi":"10.1007/s00269-024-01280-x","DOIUrl":"10.1007/s00269-024-01280-x","url":null,"abstract":"<div><p>Synthetic Sc-bearing clinozoisite on the Ca<sub>2</sub>Al<sub>3</sub>Si<sub>3</sub>O<sub>12</sub>(OH)-Ca<sub>2</sub>Al<sub>2</sub>Sc<sup>3+</sup>Si<sub>3</sub>O<sub>12</sub>(OH) join was studied by single-crystal X-ray diffraction to understand better the distribution of Sc<sup>3+</sup> among the octahedral sites, M1-M3, and its effect on the structure of epidote-group minerals. Oxide starting materials of Ca<sub>2</sub>Al<sub>2</sub>(Al<sub>1-<i>p</i></sub>)Sc<sub><i>p</i></sub>Si<sub>3</sub>O<sub>12.5</sub> composition with <i>p</i> = 0.5 and 1.0 were employed, and clinozoisite was successfully synthesized at <i>P</i><sub>H2O</sub> = 1.2–1.5 GPa and <i>T</i> = 700–800 °C. The Sc content in clinozoisite varies and attains 0.61 atoms per formula unit (apfu) from <i>p</i> = 1.0 starting material. Two Sc-bearing clinozoisite crystals from the product of <i>p</i> = 0.5 starting material (Run 20) were used for X-ray crystal structural analysis. The unit-cell parameters are <i>a</i> = 8.8815(4), <i>b</i> = 5.6095(2), <i>c</i> = 10.1466(5) Å, β = 115.318(6)º, and <i>V</i> = 457.0(1) Å<sup>3</sup> for 20B, and <i>a</i> = 8.885(1), <i>b</i> = 5.6119(4), <i>c</i> = 10.153(1) Å, β = 115.27(2)º, and <i>V</i> = 457.9(4) Å<sup>3</sup> for 20D. The resulting Sc<sup>3+</sup> occupancies among the octahedral sites are <sup>M1</sup>Al<sub>1.0</sub><sup>M2</sup>Al<sub>1.0</sub><sup>M3</sup>(Al<sub>0.684(7)</sub>Sc<sup>3+</sup><sub>0.316</sub>) for the former and <sup>M1</sup>Al<sub>1.0</sub><sup>M2</sup>Al<sub>1.0</sub><sup>M3</sup>(Al<sub>0.629(6)</sub>Sc<sup>3+</sup><sub>0.371</sub>) for the latter, i.e., Sc<sup>3+</sup> exclusively occupies M3. The mean ionic distance of < M3–O > increases with increasing Sc content at M3, but it tends to be slightly shorter than the expected value using the regression line based on the structural data of synthetic Ca<sub>2</sub>(Al, <i>Me</i><sup>3+</sup>)<sub>3</sub>Si<sub>3</sub>O<sub>12</sub>(OH) clinozoisite. It is due to the reduced distortion of M3O<sub>6</sub> octahedra caused by the short M3–O1 and M3–O8 distances. Although the angular variance ends up at a similar value to the Al-Fe<sup>3+</sup> epidote, the variation of ∠O<i>i</i>–M3-O<i>i</i> angles is different. The Sc-bearing clinozoisite has greater ∠O1–M3–O1’, but smaller ∠O2–M3–O2’ and ∠O2–M3–O4 relative to Al-Fe<sup>3+</sup> series ones. Due to different local chemical surroundings, multiple peaks are present in the OH stretching region of Raman spectra. Three OH-stretching peaks, centered at 3342, 3382, and 3468 cm<sup>−1</sup> are assigned to the local configuration O10–H···O4–(<sup>M1</sup>Al<sup>M1</sup>Al<sup>M3</sup>Sc<sup>3+</sup>) and O10–H···O4–(<sup>M1</sup>Al<sup>M1</sup>Al<sup>M3</sup>Al), and O10–H···O2, respectively.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01280-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1007/s00269-024-01284-7
A. H. Dijkstra, W. H. Bakker, F. Deon, C. Marcatelli, M. P. Plokker, H. T. Hintzen
To support the role of proximal and remote sensing in geological rare earth element (REE) resource exploration, we studied the reflectance spectroscopy of synthetic single- and mixed-REE phosphate phases. Synthesis yielded monazite for the elements La to Gd, and xenotime for Dy to Lu and Y. Visible-to-shortwave infrared (350–2500 nm) reflectance spectra of synthetic single-REE monazites and xenotimes can be used to identify the ions responsible for the absorption features in natural monazites and xenotimes. Nd3+, Pr3+ and Sm3+ produce the main absorption features in monazites. In natural xenotime, Dy3+, Er3+, Ho3+ and Tb3+ ions cause the prevalent absorptions. The majority of the REE-related absorption features are due to photons exciting electrons within the 4f subshell of the trivalent lanthanide ions to elevated energy levels resulting from spin-orbit coupling. There are small (< 20 nm) shifts in the wavelengths of these absorptions depending on the nature of the ligands. The energy levels are further split by crystal field effects, manifested in the reflectance spectra as closely spaced (∼ 5–20 nm) multiplets within the larger absorption features. Superimposed on the electronic absorptions are vibrational absorptions in the H2O molecule or within [OH]−, [CO3]2− and [PO4]3− functional groups, but so far only the carbonate-related spectral features seem usable as a diagnostic tool in REE-bearing minerals. Altogether, our study creates a strengthened knowledge base for detection of REE using reflectance spectroscopy and provides a starting point for the identification of REE and their host minerals in mineral resources by means of hyperspectral methods.
{"title":"Identification of rare earth elements in synthetic and natural monazite and xenotime by visible-to-shortwave infrared reflectance spectroscopy","authors":"A. H. Dijkstra, W. H. Bakker, F. Deon, C. Marcatelli, M. P. Plokker, H. T. Hintzen","doi":"10.1007/s00269-024-01284-7","DOIUrl":"10.1007/s00269-024-01284-7","url":null,"abstract":"<div><p>To support the role of proximal and remote sensing in geological rare earth element (REE) resource exploration, we studied the reflectance spectroscopy of synthetic single- and mixed-REE phosphate phases. Synthesis yielded monazite for the elements La to Gd, and xenotime for Dy to Lu and Y. Visible-to-shortwave infrared (350–2500 nm) reflectance spectra of synthetic single-REE monazites and xenotimes can be used to identify the ions responsible for the absorption features in natural monazites and xenotimes. Nd<sup>3+</sup>, Pr<sup>3+</sup> and Sm<sup>3+</sup> produce the main absorption features in monazites. In natural xenotime, Dy<sup>3+</sup>, Er<sup>3+</sup>, Ho<sup>3+</sup> and Tb<sup>3+</sup> ions cause the prevalent absorptions. The majority of the REE-related absorption features are due to photons exciting electrons within the 4f subshell of the trivalent lanthanide ions to elevated energy levels resulting from spin-orbit coupling. There are small (< 20 nm) shifts in the wavelengths of these absorptions depending on the nature of the ligands. The energy levels are further split by crystal field effects, manifested in the reflectance spectra as closely spaced (∼ 5–20 nm) multiplets within the larger absorption features. Superimposed on the electronic absorptions are vibrational absorptions in the H<sub>2</sub>O molecule or within [OH]<sup>−</sup>, [CO<sub>3</sub>]<sup>2−</sup> and [PO<sub>4</sub>]<sup>3−</sup> functional groups, but so far only the carbonate-related spectral features seem usable as a diagnostic tool in REE-bearing minerals. Altogether, our study creates a strengthened knowledge base for detection of REE using reflectance spectroscopy and provides a starting point for the identification of REE and their host minerals in mineral resources by means of hyperspectral methods.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01284-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-28DOI: 10.1007/s00269-024-01278-5
Martin Kunz, Katherine Armstrong, Harold Barnard, Hans A. Bechtel, Samantha C. Couper, Bora Kalkan, Harry Lisabeth, Alastair A. MacDowell, Lowell Miyagi, Dilworth Y. Parkinson, Nobumichi Tamura, Quentin Williams
Access to synchrotron X-ray facilities has become an important aspect for many disciplines in experimental Earth science. This is especially important for studies that rely on probing samples in situ under natural conditions different from the ones found at the surface of the Earth. The non-ambient condition Earth science program at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, offers a variety of tools utilizing the infra-red and hard X-ray spectrum that allow Earth scientists to probe Earth and environmental materials at variable conditions of pressure, stress, temperature, atmospheric composition, and humidity. These facilities are important tools for the user community in that they offer not only considerable capacity (non-ambient condition diffraction) but also complementary (IR spectroscopy, microtomography), and in some cases unique (Laue microdiffraction) instruments. The availability of the ALS’ in situ probes to the Earth science community grows especially critical during the ongoing dark time of the Advanced Photon Source in Chicago, which massively reduces available in situ synchrotron user time in North America.
使用同步辐射 X 射线设施已成为地球科学实验中许多学科的一个重要方面。这对于那些依赖于在不同于地球表面的自然条件下就地探测样本的研究尤为重要。劳伦斯伯克利国家实验室先进光源(ALS)的非环境条件地球科学计划提供了各种利用红外和硬 X 射线光谱的工具,使地球科学家能够在压力、应力、温度、大气成分和湿度等不同条件下探测地球和环境材料。这些设施对用户群体来说是重要的工具,因为它们不仅提供了相当大的能力(非环境条件衍射),而且还提供了互补性(红外光谱学、微层析成像),在某些情况下还提供了独特的(Laue 微衍射)仪器。在芝加哥高级光子源的黑暗期,北美同步加速器用户的现场使用时间大为减少,因此向地球科学界提供 ALS 的现场探测器就变得尤为重要。
{"title":"In situ X-ray and IR probes relevant to Earth science at the Advanced Light Source at Lawrence Berkeley Laboratory","authors":"Martin Kunz, Katherine Armstrong, Harold Barnard, Hans A. Bechtel, Samantha C. Couper, Bora Kalkan, Harry Lisabeth, Alastair A. MacDowell, Lowell Miyagi, Dilworth Y. Parkinson, Nobumichi Tamura, Quentin Williams","doi":"10.1007/s00269-024-01278-5","DOIUrl":"10.1007/s00269-024-01278-5","url":null,"abstract":"<div><p>Access to synchrotron X-ray facilities has become an important aspect for many disciplines in experimental Earth science. This is especially important for studies that rely on probing samples in situ under natural conditions different from the ones found at the surface of the Earth. The non-ambient condition Earth science program at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, offers a variety of tools utilizing the infra-red and hard X-ray spectrum that allow Earth scientists to probe Earth and environmental materials at variable conditions of pressure, stress, temperature, atmospheric composition, and humidity. These facilities are important tools for the user community in that they offer not only considerable capacity (non-ambient condition diffraction) but also complementary (IR spectroscopy, microtomography), and in some cases unique (Laue microdiffraction) instruments. The availability of the ALS’ in situ probes to the Earth science community grows especially critical during the ongoing dark time of the Advanced Photon Source in Chicago, which massively reduces available in situ synchrotron user time in North America.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01278-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140809566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22DOI: 10.1007/s00269-024-01276-7
Margarita S. Avdontceva, Andrey P. Shablinskii, Maria G. Krzhizhanovskaya, Sergey V. Krivovichev, Andrey A. Zolotarev, Vladimir N. Bocharov, Natalia S. Vlasenko, Evgenia Yu. Avdontseva, Victor N. Yakovenchuk
Nefedovite, Na5Ca4(PO4)4F, has been investigated by in situ high-temperature powder (30–690 °C) and single crystal (27–827 °C) X-ray diffraction and Raman spectroscopy. Nefedovite is tetragonal, space group I-4, a = 11.6560(2), c = 5.4062(2) Å, V = 734.50(2) Å3 (R1 = 0.0149). Nefedovite is a 1D antiperovskite, since its crystal structure contains chains of corner-sharing anion-centered [FCa4Na2]9+ octahedra. The chains are parallel to the c direction. Nefedovite is stable up to 727 °C and undergoes a displacive phase transition in the temperature range 277–327 °C. With increasing temperature, the PO4 tetrahedra in the crystal structure of nefedovite gradually rotate around the imaginary fourfold inversion axes aligning the O2…O3 edge parallel to [110], which ultimately leads to the appearance of the mirror plane perpendicular to the c direction and the change of space group from I-4 (82) to I4/m (87). The crystal structure of nefedovite expands strongly anisotropically with the direction of the maximum thermal expansion oriented perpendicular to the chains of anion-centered octahedra. The information-based structural complexity analysis demonstrates that both low- and high-temperature modifications of nefedovite are structurally simple with the IG,total value less than 100 bits per unit cell. The structural complexity decreases along the phase transition, which is typical for displacive phase transitions.
{"title":"Nefedovite, Na5Ca4(PO4)4F: thermal evolution, phase transition and crystal structure refinement","authors":"Margarita S. Avdontceva, Andrey P. Shablinskii, Maria G. Krzhizhanovskaya, Sergey V. Krivovichev, Andrey A. Zolotarev, Vladimir N. Bocharov, Natalia S. Vlasenko, Evgenia Yu. Avdontseva, Victor N. Yakovenchuk","doi":"10.1007/s00269-024-01276-7","DOIUrl":"10.1007/s00269-024-01276-7","url":null,"abstract":"<div><p>Nefedovite, Na<sub>5</sub>Ca<sub>4</sub>(PO<sub>4</sub>)<sub>4</sub>F, has been investigated by in situ high-temperature powder (30–690 °C) and single crystal (27–827 °C) X-ray diffraction and Raman spectroscopy. Nefedovite is tetragonal, space group <i>I</i>-4, <i>a</i> = 11.6560(2), <i>c</i> = 5.4062(2) Å, <i>V</i> = 734.50(2) Å<sup>3</sup> (<i>R</i><sub><i>1</i></sub> = 0.0149). Nefedovite is a 1<i>D</i> antiperovskite, since its crystal structure contains chains of corner-sharing anion-centered [FCa<sub>4</sub>Na<sub>2</sub>]<sup>9+</sup> octahedra. The chains are parallel to the <i>c</i> direction. Nefedovite is stable up to 727 °C and undergoes a displacive phase transition in the temperature range 277–327 <i>°</i>C. With increasing temperature, the PO<sub>4</sub> tetrahedra in the crystal structure of nefedovite gradually rotate around the imaginary fourfold inversion axes aligning the O2<sup>…</sup>O3 edge parallel to [110], which ultimately leads to the appearance of the mirror plane perpendicular to the <i>c</i> direction and the change of space group from <i>I</i>-4 (82) to <i>I</i>4/<i>m</i> (87). The crystal structure of nefedovite expands strongly anisotropically with the direction of the maximum thermal expansion oriented perpendicular to the chains of anion-centered octahedra. The information-based structural complexity analysis demonstrates that both low- and high-temperature modifications of nefedovite are structurally simple with the <i>I</i><sub>G,total</sub> value less than 100 bits per unit cell. The structural complexity decreases along the phase transition, which is typical for displacive phase transitions.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140675296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22DOI: 10.1007/s00269-024-01274-9
Ruiqi Chen, Oleg I. Siidra, Valery L. Ugolkov, Vera A. Firsova, Natalia S. Vlasenko, Angel M. Arevalo-Lopez, Marie Colmont, Vladimir N. Bocharov
Aside from its economic value, davidite and its synthetic analogs may have potential applications in materials science. The unique properties of the crichtonite group minerals, including davidite-(La), make them attractive candidates for high-level waste (HLW) immobilization. We studied the thermal evolution of the metamict davidite-(La) from the Radium Hill, Australia. The investigation of the temperature-induced crystallization process was conducted, and the thermal expansion coefficients (TEC) for the recrystallized davidite (RD) were determined for the first time. Our results demonstrate that RD has relatively low TEC indicating its thermophysical stability. The following TECs of davidite- (La) for the temperature range 25–1200 °C were obtained: (overline{mathrm{alpha }})a = (overline{mathrm{alpha }})b = 9.96 (3) × 10–6 ºC−1; (overline{mathrm{alpha }})c = 10.79 (4) × 10–6 ºC−1. The character of the thermal expansion is in agreement with the structure characterized by layers stacked along the c axis. The volume TEC αV = 24.81 (47)—36.80 (48) × 10–6 ºC−1. Davidite-(La) exhibits an almost isotropic thermal expansion and shows one of the most superior thermal performances in comparison to the other mineral-like phases utilized for the immobilization of HLW.
除了经济价值之外,大维石及其合成类似物在材料科学领域也有潜在的应用价值。包括大菱锰矿(La)在内的菱锰矿类矿物的独特性质使其成为具有吸引力的高放射性废物(HLW)固定化候选矿物。我们研究了澳大利亚镭山的变质大理石(La)的热演化过程。我们对温度诱导的结晶过程进行了研究,并首次测定了重结晶大理石(RD)的热膨胀系数(TEC)。我们的结果表明,RD 的热膨胀系数相对较低,这表明它具有热物理稳定性。在25-1200 °C的温度范围内,我们得到了大维石(La)的下列TEC:(overline{mathrm{alpha }}) a = (overline{mathrm{alpha }}) b = 9.96 (3) × 10-6 ºC-1; (overline{mathrm{alpha }}) c = 10.79 (4) × 10-6 ºC-1。热膨胀的特征与沿 c 轴层层堆叠的结构特征一致。体积 TEC αV = 24.81 (47)-36.80 (48) × 10-6 ºC-1。与其他用于固定 HLW 的类矿物相相比,戴维石(La)表现出几乎各向同性的热膨胀,并显示出最优越的热性能。
{"title":"Thermal evolution of metamict davidite-(La) from the Radium Hill, Australia: recrystallization and thermal expansion","authors":"Ruiqi Chen, Oleg I. Siidra, Valery L. Ugolkov, Vera A. Firsova, Natalia S. Vlasenko, Angel M. Arevalo-Lopez, Marie Colmont, Vladimir N. Bocharov","doi":"10.1007/s00269-024-01274-9","DOIUrl":"10.1007/s00269-024-01274-9","url":null,"abstract":"<div><p>Aside from its economic value, davidite and its synthetic analogs may have potential applications in materials science. The unique properties of the crichtonite group minerals, including davidite-(La), make them attractive candidates for high-level waste (HLW) immobilization. We studied the thermal evolution of the metamict davidite-(La) from the Radium Hill, Australia. The investigation of the temperature-induced crystallization process was conducted, and the thermal expansion coefficients (TEC) for the recrystallized davidite (RD) were determined for the first time. Our results demonstrate that RD has relatively low TEC indicating its thermophysical stability. The following TECs of davidite- (La) for the temperature range 25–1200 °C were obtained: <span>(overline{mathrm{alpha }})</span> <sub><i>a</i></sub> = <span>(overline{mathrm{alpha }})</span> <sub><i>b</i></sub> = 9.96 (3) × 10<sup>–6</sup> ºC<sup>−1</sup>; <span>(overline{mathrm{alpha }})</span> <sub><i>c</i></sub> = 10.79 (4) × 10<sup>–6</sup> ºC<sup>−1</sup>. The character of the thermal expansion is in agreement with the structure characterized by layers stacked along the <i>c</i> axis. The volume TEC α<sub><i>V</i></sub> = 24.81 (47)—36.80 (48) × 10<sup>–6</sup> ºC<sup>−1</sup>. Davidite-(La) exhibits an almost isotropic thermal expansion and shows one of the most superior thermal performances in comparison to the other mineral-like phases utilized for the immobilization of HLW.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140676115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.1007/s00269-024-01271-y
Yao Yao, Xi Liu, Xueyan Du, Lili Zhang, Hongsheng Yuan
Iron hydroxide FeO2Hx (x ≤ 1) and ferrous iron chloride FeCl2 can adopt the HP-PdF2-type (space group: (P{a_{overline 3 }}), Z = 4) structure in the lowermost mantle, potentially contributing to the geochemical cycles of hydrogen and chlorine within Earth’s deep interior, respectively. Here we investigate the high-pressure behavior of HP-PdF2-type FeCl2 by X-ray diffraction (XRD) and Raman measurements in laser-heated diamond anvil cells. Our results show that HP-PdF2-type FeCl2 can be formed at 60‒67 GPa and 1650‒1850 K. Upon cold decompression, the diffraction peaks at pressures above 10 GPa can be indexed to the HP-PdF2-type structure. Intriguingly, the calculated cell volumes reveal a remarkable decrease of ΔV / V = ∼ 14% between 36 and 40 GPa, which is possibly caused by a pressure-induced spin transition of Fe2+ (HS: high-spin → LS: low-spin). We also observe distinct changes in Raman spectra at 33‒35 GPa, practically coinciding with the onset pressures of isostructural phase transition in XRD results. Our observations combined with previous studies conducted at megabar pressures suggest that HP-PdF2-type FeCl2, with a wide pressure stability range, if present in subducting slabs, could facilitate the transport of chlorine from the middle lower mantle to the outer core.
{"title":"Pressure-induced large volume collapse and possible spin transition in HP-PdF2-type FeCl2","authors":"Yao Yao, Xi Liu, Xueyan Du, Lili Zhang, Hongsheng Yuan","doi":"10.1007/s00269-024-01271-y","DOIUrl":"10.1007/s00269-024-01271-y","url":null,"abstract":"<div><p>Iron hydroxide FeO<sub>2</sub>H<sub><i>x</i></sub> (<i>x</i> ≤ 1) and ferrous iron chloride FeCl<sub>2</sub> can adopt the HP-PdF<sub>2</sub>-type (space group: <span>(P{a_{overline 3 }})</span>, <i>Z</i> = 4) structure in the lowermost mantle, potentially contributing to the geochemical cycles of hydrogen and chlorine within Earth’s deep interior, respectively. Here we investigate the high-pressure behavior of HP-PdF<sub>2</sub>-type FeCl<sub>2</sub> by X-ray diffraction (XRD) and Raman measurements in laser-heated diamond anvil cells. Our results show that HP-PdF<sub>2</sub>-type FeCl<sub>2</sub> can be formed at 60‒67 GPa and 1650‒1850 K. Upon cold decompression, the diffraction peaks at pressures above 10 GPa can be indexed to the HP-PdF<sub>2</sub>-type structure. Intriguingly, the calculated cell volumes reveal a remarkable decrease of Δ<i>V</i> / <i>V</i> = ∼ 14% between 36 and 40 GPa, which is possibly caused by a pressure-induced spin transition of Fe<sup>2+</sup> (HS: high-spin → LS: low-spin). We also observe distinct changes in Raman spectra at 33‒35 GPa, practically coinciding with the onset pressures of isostructural phase transition in XRD results. Our observations combined with previous studies conducted at megabar pressures suggest that HP-PdF<sub>2</sub>-type FeCl<sub>2</sub>, with a wide pressure stability range, if present in subducting slabs, could facilitate the transport of chlorine from the middle lower mantle to the outer core.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140566128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}