Pub Date : 2024-09-25DOI: 10.1103/physrevx.14.031052
Marko D. Petrović, Manuel Weber, James K. Freericks
We describe coupled nonequilibrium electron-phonon systems semiclassically—Ehrenfest dynamics for the phonons and quantum mechanics for the electrons—using a classical Monte Carlo approach that determines the nonequilibrium response to a large pump field. The semiclassical approach is expected to be accurate, because the phonons are excited to average energies much higher than the phonon frequency, eliminating the need for a quantum description. The numerical efficiency of this method allows us to perform a self-consistent time evolution out to very long times (tens of picoseconds), enabling us to model pump-probe experiments of a charge-density-wave (CDW) material. Our system is a half-filled, one-dimensional (1D) Holstein chain that exhibits CDW ordering due to a Peierls transition. The chain is subjected to a time-dependent electromagnetic pump field that excites it out of equilibrium, and then a second probe pulse is applied after a time delay. By evolving the system to long times, we capture the complete process of lattice excitation and subsequent relaxation to a new equilibrium, due to an exchange of energy between the electrons and the lattice, leading to lattice relaxation at finite temperatures. We employ an indirect (impulsive) driving mechanism of the lattice by the pump pulse due to the direct driving of the electrons. We identify two driving regimes, where the pump can either cause small perturbations or completely invert the initial CDW order. Our work successfully describes the ringing of the amplitude mode in CDW systems that has long been seen in experiment but never successfully explained by microscopic theory. We also describe the fluence-dependent crossover that inverts the CDW order parameter and changes the phonon dynamics. Finally, we illustrate how this method can examine a number of different types of experiments including photoemission, x-ray diffraction, and two-dimensional (2D) spectroscopy.
{"title":"Theoretical Description of Pump-Probe Experiments in Charge-Density-Wave Materials out to Long Times","authors":"Marko D. Petrović, Manuel Weber, James K. Freericks","doi":"10.1103/physrevx.14.031052","DOIUrl":"https://doi.org/10.1103/physrevx.14.031052","url":null,"abstract":"We describe coupled nonequilibrium electron-phonon systems semiclassically—Ehrenfest dynamics for the phonons and quantum mechanics for the electrons—using a classical Monte Carlo approach that determines the nonequilibrium response to a large pump field. The semiclassical approach is expected to be accurate, because the phonons are excited to average energies much higher than the phonon frequency, eliminating the need for a quantum description. The numerical efficiency of this method allows us to perform a self-consistent time evolution out to very long times (tens of picoseconds), enabling us to model pump-probe experiments of a charge-density-wave (CDW) material. Our system is a half-filled, one-dimensional (1D) Holstein chain that exhibits CDW ordering due to a Peierls transition. The chain is subjected to a time-dependent electromagnetic pump field that excites it out of equilibrium, and then a second probe pulse is applied after a time delay. By evolving the system to long times, we capture the complete process of lattice excitation and subsequent relaxation to a new equilibrium, due to an exchange of energy between the electrons and the lattice, leading to lattice relaxation at finite temperatures. We employ an indirect (impulsive) driving mechanism of the lattice by the pump pulse due to the direct driving of the electrons. We identify two driving regimes, where the pump can either cause small perturbations or completely invert the initial CDW order. Our work successfully describes the ringing of the amplitude mode in CDW systems that has long been seen in experiment but never successfully explained by microscopic theory. We also describe the fluence-dependent crossover that inverts the CDW order parameter and changes the phonon dynamics. Finally, we illustrate how this method can examine a number of different types of experiments including photoemission, x-ray diffraction, and two-dimensional (2D) spectroscopy.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"2 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1103/physrevx.14.031051
S. Acharyaet al.(ALICE Collaboration)
Deuterons are atomic nuclei composed of a neutron and a proton held together by the strong interaction. Unbound ensembles composed of a deuteron and a third nucleon have been investigated in the past using scattering experiments, and they constitute a fundamental reference in nuclear physics to constrain nuclear interactions and the properties of nuclei. In this work, and femtoscopic correlations measured by the ALICE Collaboration in proton-proton () collisions at at the Large Hadron Collider (LHC) are presented. It is demonstrated that correlations in momentum space between deuterons and kaons or protons allow us to study three-hadron systems at distances comparable with the proton radius. The analysis of the correlation shows that the relative distances at which deuterons and protons or kaons are produced are around 2 fm. The analysis of the correlation shows that only a full three-body calculation that accounts for the internal structure of the deuteron can explain the data. In particular, the sensitivity of the observable to the short-range part of the interaction is demonstrated. These results indicate that correlations involving light nuclei in collisions at the LHC will also provide access to any three-body system in the strange and charm sectors.
氘核是由一个中子和一个质子通过强相互作用结合在一起的原子核。过去曾利用散射实验研究过由一个氘核和第三个核子组成的非束缚集合,它们构成了核物理中约束核相互作用和原子核性质的基本参考。在这项工作中,介绍了 ALICE 协作体在大型强子对撞机(LHC)s=13 TeV 的质子-质子(pp)对撞中测量到的 K+-d 和 p-d 飞秒相关性。研究表明,氘核与高子或质子之间动量空间的相关性使我们能够在与质子半径相当的距离上研究三中子系统。对 K+-d 关联性的分析表明,氘核和质子或 ka 子产生的相对距离约为 2 fm。对 p-d 相关性的分析表明,只有考虑到氘核内部结构的完整三体计算才能解释数据。特别是,观测数据对相互作用短程部分的敏感性得到了证明。这些结果表明,在大型强子对撞机的pp对撞中,涉及轻核的相关性也将为奇异和粲部门的任何三体系统提供通道。
{"title":"Exploring the Strong Interaction of Three-Body Systems at the LHC","authors":"S. Acharyaet al.(ALICE Collaboration)","doi":"10.1103/physrevx.14.031051","DOIUrl":"https://doi.org/10.1103/physrevx.14.031051","url":null,"abstract":"Deuterons are atomic nuclei composed of a neutron and a proton held together by the strong interaction. Unbound ensembles composed of a deuteron and a third nucleon have been investigated in the past using scattering experiments, and they constitute a fundamental reference in nuclear physics to constrain nuclear interactions and the properties of nuclei. In this work, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mrow><mi>K</mi></mrow><mrow><mo>+</mo></mrow></msup><mtext>−</mtext><mi>d</mi></mrow></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>p</mi><mtext>−</mtext><mi>d</mi></mrow></math> femtoscopic correlations measured by the ALICE Collaboration in proton-proton (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi><mi>p</mi></math>) collisions at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msqrt><mrow><mi>s</mi></mrow></msqrt><mo>=</mo><mn>13</mn><mtext> </mtext><mtext> </mtext><mi>TeV</mi></mrow></math> at the Large Hadron Collider (LHC) are presented. It is demonstrated that correlations in momentum space between deuterons and kaons or protons allow us to study three-hadron systems at distances comparable with the proton radius. The analysis of the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mrow><mi>K</mi></mrow><mrow><mo>+</mo></mrow></msup><mtext>−</mtext><mi>d</mi></mrow></math> correlation shows that the relative distances at which deuterons and protons or kaons are produced are around 2 fm. The analysis of the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>p</mi><mtext>−</mtext><mi>d</mi></mrow></math> correlation shows that only a full three-body calculation that accounts for the internal structure of the deuteron can explain the data. In particular, the sensitivity of the observable to the short-range part of the interaction is demonstrated. These results indicate that correlations involving light nuclei in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi><mi>p</mi></math> collisions at the LHC will also provide access to any three-body system in the strange and charm sectors.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"77 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1103/physrevx.14.031050
Richard E. Rosch, Dominic R. W. Burrows, Christopher W. Lynn, Arian Ashourvan
Brain activity is characterized by brainwide spatiotemporal patterns that emerge from synapse-mediated interactions between individual neurons. Calcium imaging provides access to in vivo recordings of whole-brain activity at single-neuron resolution and, therefore, allows the study of how large-scale brain dynamics emerge from local activity. In this study, we use a statistical mechanics approach—the pairwise maximum entropy model—to infer microscopic network features from collective patterns of activity in the larval zebrafish brain and relate these features to the emergence of observed whole-brain dynamics. Our findings indicate that the pairwise interactions between neural populations and their intrinsic activity states are sufficient to explain observed whole-brain dynamics. In fact, the pairwise relationships between neuronal populations estimated with the maximum entropy model strongly correspond to observed structural connectivity patterns. Model simulations also demonstrated how tuning pairwise neuronal interactions drives transitions between observed physiological regimes and pathologically hyperexcitable whole-brain regimes. Finally, we use virtual resection to identify the brain structures that are important for maintaining the brain in a physiological dynamic regime. Together, our results indicate that whole-brain activity emerges from a complex dynamical system that transitions between basins of attraction whose strength and topology depend on the connectivity between brain areas.
{"title":"Spontaneous Brain Activity Emerges from Pairwise Interactions in the Larval Zebrafish Brain","authors":"Richard E. Rosch, Dominic R. W. Burrows, Christopher W. Lynn, Arian Ashourvan","doi":"10.1103/physrevx.14.031050","DOIUrl":"https://doi.org/10.1103/physrevx.14.031050","url":null,"abstract":"Brain activity is characterized by brainwide spatiotemporal patterns that emerge from synapse-mediated interactions between individual neurons. Calcium imaging provides access to <i>in vivo</i> recordings of whole-brain activity at single-neuron resolution and, therefore, allows the study of how large-scale brain dynamics emerge from local activity. In this study, we use a statistical mechanics approach—the pairwise maximum entropy model—to infer microscopic network features from collective patterns of activity in the larval zebrafish brain and relate these features to the emergence of observed whole-brain dynamics. Our findings indicate that the pairwise interactions between neural populations and their intrinsic activity states are sufficient to explain observed whole-brain dynamics. In fact, the pairwise relationships between neuronal populations estimated with the maximum entropy model strongly correspond to observed structural connectivity patterns. Model simulations also demonstrated how tuning pairwise neuronal interactions drives transitions between observed physiological regimes and pathologically hyperexcitable whole-brain regimes. Finally, we use virtual resection to identify the brain structures that are important for maintaining the brain in a physiological dynamic regime. Together, our results indicate that whole-brain activity emerges from a complex dynamical system that transitions between basins of attraction whose strength and topology depend on the connectivity between brain areas.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"31 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1103/physrevx.14.031049
Martina Clairand, Ali Mozaffari, Jerôme Hardoüin, Rui Zhang, Claire Doré, Jordi Ignés-Mullol, Francesc Sagués, Juan J. de Pablo, Teresa Lopez-Leon
We investigate the steady state of an ellipsoidal active nematic shell using experiments and numerical simulations. We create the shells by coating microsized ellipsoidal droplets with a protein-based active cytoskeletal gel, thus obtaining ellipsoidal core-shell structures. This system provides the appropriate conditions of confinement and geometry to investigate the impact of nonuniform curvature on an orderly active nematic fluid that features the minimum number of defects required by topology. We identify new time-dependent states where topological defects periodically oscillate between translational and rotational regimes, resulting in the spontaneous emergence of chirality. Our simulations of active nematohydrodynamics demonstrate that, beyond topology and activity, the dynamics of the active material are profoundly influenced by the local curvature and viscous anisotropy of the underlying droplet, as well as by external hydrodynamic forces stemming from the self-sustained rotational motion of defects. These results illustrate how the incorporation of curvature gradients into active nematic shells orchestrates remarkable spatiotemporal patterns, offering new insights into biological processes and providing compelling prospects for designing bioinspired micromachines.
{"title":"Dynamics of Active Defects on the Anisotropic Surface of an Ellipsoidal Droplet","authors":"Martina Clairand, Ali Mozaffari, Jerôme Hardoüin, Rui Zhang, Claire Doré, Jordi Ignés-Mullol, Francesc Sagués, Juan J. de Pablo, Teresa Lopez-Leon","doi":"10.1103/physrevx.14.031049","DOIUrl":"https://doi.org/10.1103/physrevx.14.031049","url":null,"abstract":"We investigate the steady state of an ellipsoidal active nematic shell using experiments and numerical simulations. We create the shells by coating microsized ellipsoidal droplets with a protein-based active cytoskeletal gel, thus obtaining ellipsoidal core-shell structures. This system provides the appropriate conditions of confinement and geometry to investigate the impact of nonuniform curvature on an orderly active nematic fluid that features the minimum number of defects required by topology. We identify new time-dependent states where topological defects periodically oscillate between translational and rotational regimes, resulting in the spontaneous emergence of chirality. Our simulations of active nematohydrodynamics demonstrate that, beyond topology and activity, the dynamics of the active material are profoundly influenced by the local curvature and viscous anisotropy of the underlying droplet, as well as by external hydrodynamic forces stemming from the self-sustained rotational motion of defects. These results illustrate how the incorporation of curvature gradients into active nematic shells orchestrates remarkable spatiotemporal patterns, offering new insights into biological processes and providing compelling prospects for designing bioinspired micromachines.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"17 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1103/physrevx.14.031047
Abel J. Abraham, Stepan Malkov, Frane A. Ljubetic, Matthew Durey, Pedro J. Sáenz
Understanding the ability of particles to maneuver through disordered environments is a central problem in innumerable settings, from active matter and biology to electronics. Macroscopic particles ultimately exhibit diffusive motion when their energy exceeds the characteristic potential barrier of the random landscape. In stark contrast, wave-particle duality causes electrons in disordered media to come to rest even when the potential is weak—a remarkable phenomenon known as Anderson localization. Here, we present a hydrodynamic active system with wave-particle features, a millimetric droplet self-guided by its own wave field over a submerged random topography, whose dynamics exhibits localized statistics analogous to those of electronic systems. Consideration of an ensemble of particle trajectories reveals a suppression of diffusion when the guiding wave field extends over the disordered topography. We rationalize mechanistically the emergent statistics by virtue of the wave-mediated resonant coupling between the droplet and topography, which produces an attractive wave potential about the localization region. This hydrodynamic analog, which demonstrates how a classical particle may localize like a wave, suggests new directions for future research in various areas, including active matter, wave localization, many-body localization, and topological matter.
{"title":"Anderson Localization of Walking Droplets","authors":"Abel J. Abraham, Stepan Malkov, Frane A. Ljubetic, Matthew Durey, Pedro J. Sáenz","doi":"10.1103/physrevx.14.031047","DOIUrl":"https://doi.org/10.1103/physrevx.14.031047","url":null,"abstract":"Understanding the ability of particles to maneuver through disordered environments is a central problem in innumerable settings, from active matter and biology to electronics. Macroscopic particles ultimately exhibit diffusive motion when their energy exceeds the characteristic potential barrier of the random landscape. In stark contrast, wave-particle duality causes electrons in disordered media to come to rest even when the potential is weak—a remarkable phenomenon known as Anderson localization. Here, we present a hydrodynamic active system with wave-particle features, a millimetric droplet self-guided by its own wave field over a submerged random topography, whose dynamics exhibits localized statistics analogous to those of electronic systems. Consideration of an ensemble of particle trajectories reveals a suppression of diffusion when the guiding wave field extends over the disordered topography. We rationalize mechanistically the emergent statistics by virtue of the wave-mediated resonant coupling between the droplet and topography, which produces an attractive wave potential about the localization region. This hydrodynamic analog, which demonstrates how a classical particle may localize like a wave, suggests new directions for future research in various areas, including active matter, wave localization, many-body localization, and topological matter.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"53 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1103/physrevx.14.031048
F. H. L. Essler, A. J. J. M. de Klerk
We study the statistics of matrix elements of local operators in the basis of energy eigenstates in a paradigmatic, integrable, many-particle quantum theory, the Lieb-Liniger model of bosons with repulsive delta-function interactions. Using methods of quantum integrability, we determine the scaling of matrix elements with system size. As a consequence of the extensive number of conservation laws, the structure of matrix elements is fundamentally different from, and much more intricate than, the predictions of the eigenstate thermalization hypothesis for generic models. We uncover an interesting connection between this structure for local operators in interacting integrable models and the one for local operators that are not local with respect to the elementary excitations in free theories. We find that typical off-diagonal matrix elements in the same macrostate scale as , where the probability distribution function for is well described by Fréchet distributions and depends only on macrostate information. In contrast, typical off-diagonal matrix elements between two different macrostates scale as , where depends only on macrostate information. Diagonal matrix elements depend only on macrostate information up to finite-size corrections.
我们研究了一个典型的、可积分的多粒子量子理论--具有排斥性三角函数相互作用的玻色子的利布-利尼格模型--中的能量特征状态基础上的局部算子矩阵元素的统计。利用量子可积分性方法,我们确定了矩阵元素随系统规模的缩放。由于存在大量的守恒定律,矩阵元素的结构与一般模型的特征态热化假说的预测有着本质的区别,而且更为复杂。我们发现了相互作用可积分模型中局部算子的这种结构与自由理论中与基本激元无关的局部算子的这种结构之间的有趣联系。我们发现,典型的非对角矩阵元素⟨μ|O|λ⟩在同一宏观状态尺度上与exp(-cOLln(L)-LMμ,λO)相同,其中Mμ,λO的概率分布函数由弗雷谢特分布很好地描述,而cO只取决于宏观状态信息。相反,两个不同宏观状态之间的典型非对角矩阵元素的规模为 exp(-dOL2),其中 dO 仅取决于宏观状态信息。对角线矩阵元素只取决于宏观状态信息,直至有限尺寸修正。
{"title":"Statistics of Matrix Elements of Local Operators in Integrable Models","authors":"F. H. L. Essler, A. J. J. M. de Klerk","doi":"10.1103/physrevx.14.031048","DOIUrl":"https://doi.org/10.1103/physrevx.14.031048","url":null,"abstract":"We study the statistics of matrix elements of local operators in the basis of energy eigenstates in a paradigmatic, integrable, many-particle quantum theory, the Lieb-Liniger model of bosons with repulsive delta-function interactions. Using methods of quantum integrability, we determine the scaling of matrix elements with system size. As a consequence of the extensive number of conservation laws, the structure of matrix elements is fundamentally different from, and much more intricate than, the predictions of the eigenstate thermalization hypothesis for generic models. We uncover an interesting connection between this structure for local operators in interacting integrable models and the one for local operators that are not local with respect to the elementary excitations in free theories. We find that typical off-diagonal matrix elements <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">⟨</mo><mi mathvariant=\"bold-italic\">μ</mi><mo stretchy=\"false\">|</mo><mi mathvariant=\"script\">O</mi><mo stretchy=\"false\">|</mo><mi mathvariant=\"bold-italic\">λ</mi><mo stretchy=\"false\">⟩</mo></math> in the same macrostate scale as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>exp</mi><mo mathvariant=\"bold\" stretchy=\"false\">(</mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mi mathvariant=\"script\">O</mi></mrow></msup><mi>L</mi><mi>ln</mi><mo stretchy=\"false\">(</mo><mi>L</mi><mo stretchy=\"false\">)</mo><mo>−</mo><mi>L</mi><msubsup><mrow><mi>M</mi></mrow><mrow><mi mathvariant=\"bold-italic\">μ</mi><mo>,</mo><mi mathvariant=\"bold-italic\">λ</mi></mrow><mrow><mi mathvariant=\"script\">O</mi></mrow></msubsup><mo mathvariant=\"bold\" stretchy=\"false\">)</mo></mrow></math>, where the probability distribution function for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>M</mi><mrow><mi mathvariant=\"bold-italic\">μ</mi><mo>,</mo><mi mathvariant=\"bold-italic\">λ</mi></mrow><mi mathvariant=\"script\">O</mi></msubsup></math> is well described by Fréchet distributions and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>c</mi><mi mathvariant=\"script\">O</mi></msup></math> depends only on macrostate information. In contrast, typical off-diagonal matrix elements between two different macrostates scale as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>exp</mi><mo stretchy=\"false\">(</mo><mo>−</mo><msup><mi>d</mi><mi mathvariant=\"script\">O</mi></msup><msup><mi>L</mi><mn>2</mn></msup><mo stretchy=\"false\">)</mo></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>d</mi><mi mathvariant=\"script\">O</mi></msup></math> depends only on macrostate information. Diagonal matrix elements depend only on macrostate information up to finite-size corrections.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"6 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1103/physrevx.14.031046
Rodrigo Gutiérrez-Cuevas, Arthur Goetschy, Yaron Bromberg, Guy Pelc, Esben Ravn Andresen, Laurent Bigot, Yves Quiquempois, Maroun Bsaibes, Pierre Sillard, Marianne Bigot, Ori Katz, Julien de Rosny, Sébastien M. Popoff
In an ideal perfectly straight multimode fiber with a circular core, the symmetry ensures that rotating the input wave front leads to a corresponding rotation of the output wave front. This invariant property, known as the rotational memory effect (RME), remains independent of the typically unknown output profile. The RME thus offers significant potential for imaging and telecommunication applications. However, in real-life fibers, this effect is degraded by intrinsic imperfections and external perturbations, and is challenging to observe because of its acute sensitivity to misalignments and aberrations in the optical setup. Building on a previously established method for precisely estimating fiber transmission properties, we demonstrate an accurate extraction of RME properties. Additionally, we introduce a comprehensive theoretical framework for both qualitative and quantitative analysis, which specifically links the angular-dependent correlation of the RME to the core deformation’s geometrical properties and the fiber’s mode characteristics. Our theoretical predictions align well with experimental data and simulations for various amounts of fiber distorsion. Finally, we demonstrate the ability to engineer wave fronts with significantly enhanced correlation across all rotation angles. This work enables accurate characterization of distributed disorder from the fabrication process and facilitates calibration-free imaging in multimode fibers.
{"title":"Characterization and Exploitation of the Rotational Memory Effect in Multimode Fibers","authors":"Rodrigo Gutiérrez-Cuevas, Arthur Goetschy, Yaron Bromberg, Guy Pelc, Esben Ravn Andresen, Laurent Bigot, Yves Quiquempois, Maroun Bsaibes, Pierre Sillard, Marianne Bigot, Ori Katz, Julien de Rosny, Sébastien M. Popoff","doi":"10.1103/physrevx.14.031046","DOIUrl":"https://doi.org/10.1103/physrevx.14.031046","url":null,"abstract":"In an ideal perfectly straight multimode fiber with a circular core, the symmetry ensures that rotating the input wave front leads to a corresponding rotation of the output wave front. This invariant property, known as the rotational memory effect (RME), remains independent of the typically unknown output profile. The RME thus offers significant potential for imaging and telecommunication applications. However, in real-life fibers, this effect is degraded by intrinsic imperfections and external perturbations, and is challenging to observe because of its acute sensitivity to misalignments and aberrations in the optical setup. Building on a previously established method for precisely estimating fiber transmission properties, we demonstrate an accurate extraction of RME properties. Additionally, we introduce a comprehensive theoretical framework for both qualitative and quantitative analysis, which specifically links the angular-dependent correlation of the RME to the core deformation’s geometrical properties and the fiber’s mode characteristics. Our theoretical predictions align well with experimental data and simulations for various amounts of fiber distorsion. Finally, we demonstrate the ability to engineer wave fronts with significantly enhanced correlation across all rotation angles. This work enables accurate characterization of distributed disorder from the fabrication process and facilitates calibration-free imaging in multimode fibers.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"44 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1103/physrevx.14.031045
Gautam Rai, Lorenzo Crippa, Dumitru Călugăru, Haoyu Hu, Francesca Paoletti, Luca de’ Medici, Antoine Georges, B. Andrei Bernevig, Roser Valentí, Giorgio Sangiovanni, Tim Wehling
The interplay of dynamical correlations and electronic ordering is pivotal in shaping phase diagrams of correlated quantum materials. In magic-angle twisted bilayer graphene, transport, thermodynamic, and spectroscopic experiments pinpoint a competition between distinct low-energy states with and without electronic order, as well as between localized and delocalized charge carriers. In this study, we utilize dynamical mean-field theory on the topological heavy fermion model of twisted bilayer graphene to investigate the emergence of electronic correlations and long-range order in the absence of strain. We contrast moment formation, Kondo screening, and ordering on a temperature basis and explain the nature of emergent correlated states based on three central phenomena: (i) the formation of local spin and valley isospin moments around 100 K, (ii) the ordering of the local isospin moments around 10 K preempting Kondo screening, and (iii) a cascadic redistribution of charge between localized and delocalized electronic states upon doping. At integer fillings, we find that low-energy spectral weight is depleted in the symmetric phase, while we find insulating states with gaps enhanced by exchange coupling in the zero-strain ordered phases. Doping away from integer filling results in distinct metallic states: a “bad metal” above the ordering temperature, where scattering off the disordered local moments suppresses electronic coherence, and a “good metal” in the ordered states with coherence of quasiparticles facilitated by isospin order. This finding reveals coherence from order as the microscopic mechanism behind the Pomeranchuk effect observed experimentally by Rozen et al. [Nature (London)592, 214 (2021)] and by Saito et al. [Nature (London)592, 220 (2021)]. Upon doping, there is a periodic charge reshuffling between localized and delocalized electronic orbitals leading to cascades of doping-induced Lifshitz transitions, local spectral weight redistributions, and periodic variations of the electronic compressibility ranging from nearly incompressible to negative. Our findings highlight the essential role of charge transfer, hybridization, and ordering in shaping the electronic excitations and thermodynamic properties in twisted bilayer graphene and provide a unified understanding of the most puzzling aspects of scanning tunneling spectroscopy, transport, and compressibility experiments.
{"title":"Dynamical Correlations and Order in Magic-Angle Twisted Bilayer Graphene","authors":"Gautam Rai, Lorenzo Crippa, Dumitru Călugăru, Haoyu Hu, Francesca Paoletti, Luca de’ Medici, Antoine Georges, B. Andrei Bernevig, Roser Valentí, Giorgio Sangiovanni, Tim Wehling","doi":"10.1103/physrevx.14.031045","DOIUrl":"https://doi.org/10.1103/physrevx.14.031045","url":null,"abstract":"The interplay of dynamical correlations and electronic ordering is pivotal in shaping phase diagrams of correlated quantum materials. In magic-angle twisted bilayer graphene, transport, thermodynamic, and spectroscopic experiments pinpoint a competition between distinct low-energy states with and without electronic order, as well as between localized and delocalized charge carriers. In this study, we utilize dynamical mean-field theory on the topological heavy fermion model of twisted bilayer graphene to investigate the emergence of electronic correlations and long-range order in the absence of strain. We contrast moment formation, Kondo screening, and ordering on a temperature basis and explain the nature of emergent correlated states based on three central phenomena: (i) the formation of local spin and valley isospin moments around 100 K, (ii) the ordering of the local isospin moments around 10 K preempting Kondo screening, and (iii) a cascadic redistribution of charge between localized and delocalized electronic states upon doping. At integer fillings, we find that low-energy spectral weight is depleted in the symmetric phase, while we find insulating states with gaps enhanced by exchange coupling in the zero-strain ordered phases. Doping away from integer filling results in distinct metallic states: a “bad metal” above the ordering temperature, where scattering off the disordered local moments suppresses electronic coherence, and a “good metal” in the ordered states with coherence of quasiparticles facilitated by isospin order. This finding reveals coherence from order as the microscopic mechanism behind the Pomeranchuk effect observed experimentally by Rozen <i>et al.</i> [<span>Nature (London)</span> <b>592</b>, 214 (2021)] and by Saito <i>et al.</i> [<span>Nature (London)</span> <b>592</b>, 220 (2021)]. Upon doping, there is a periodic charge reshuffling between localized and delocalized electronic orbitals leading to cascades of doping-induced Lifshitz transitions, local spectral weight redistributions, and periodic variations of the electronic compressibility ranging from nearly incompressible to negative. Our findings highlight the essential role of charge transfer, hybridization, and ordering in shaping the electronic excitations and thermodynamic properties in twisted bilayer graphene and provide a unified understanding of the most puzzling aspects of scanning tunneling spectroscopy, transport, and compressibility experiments.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"17 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1103/physrevx.14.031044
Shengqi Sang, Yijian Zou, Timothy H. Hsieh
Open system quantum dynamics can generate a variety of long-range entangled mixed states, yet it has been unclear in what sense they constitute phases of matter. To establish that two mixed states are in the same phase, as defined by their two-way connectivity via local quantum channels, we use the renormalization group (RG) and decoders of quantum error correcting codes. We introduce a real-space RG scheme for mixed states based on local channels which ideally preserve correlations with the complementary system, and we prove this is equivalent to the reversibility of the channel’s action. As an application, we demonstrate an exact RG flow of finite temperature toric code in two dimensions to infinite temperature, thus proving it is in the trivial phase. In contrast, for toric code subject to local dephasing, we establish a mixed-state toric code phase using local channels obtained by truncating an RG-type decoder and the minimum weight perfect matching decoder. We also discover a precise relation between mixed-state phase and decodability, by proving that local noise acting on toric code cannot destroy logical information without bringing the state out of the toric code phase.
{"title":"Mixed-State Quantum Phases: Renormalization and Quantum Error Correction","authors":"Shengqi Sang, Yijian Zou, Timothy H. Hsieh","doi":"10.1103/physrevx.14.031044","DOIUrl":"https://doi.org/10.1103/physrevx.14.031044","url":null,"abstract":"Open system quantum dynamics can generate a variety of long-range entangled mixed states, yet it has been unclear in what sense they constitute phases of matter. To establish that two mixed states are in the same phase, as defined by their two-way connectivity via local quantum channels, we use the renormalization group (RG) and decoders of quantum error correcting codes. We introduce a real-space RG scheme for mixed states based on local channels which ideally preserve correlations with the complementary system, and we prove this is equivalent to the reversibility of the channel’s action. As an application, we demonstrate an exact RG flow of finite temperature toric code in two dimensions to infinite temperature, thus proving it is in the trivial phase. In contrast, for toric code subject to local dephasing, we establish a mixed-state toric code phase using local channels obtained by truncating an RG-type decoder and the minimum weight perfect matching decoder. We also discover a precise relation between mixed-state phase and decodability, by proving that local noise acting on toric code cannot destroy logical information without bringing the state out of the toric code phase.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"103 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1103/physrevx.14.031043
Kseniia Vodenkova, Hannes Pichler
In this paper, we develop a novel method to solve problems involving quantum optical systems coupled to coherent quantum feedback loops featuring time delays. Our method is based on exact mappings of such non-Markovian problems to equivalent Markovian driven dissipative quantum many-body problems. In this work, we show that the resulting Markovian quantum many-body problems can be solved (numerically) exactly and efficiently using tensor network methods for a series of paradigmatic examples, consisting of driven quantum systems coupled to waveguides at several distant points. In particular, we show that our method allows solving problems in so far inaccessible regimes, including problems with arbitrary long time delays and arbitrary numbers of excitations in the delay lines. We obtain solutions for the full real-time dynamics as well as the steady state in all these regimes. Finally, motivated by our results, we develop a novel mean-field approach, which allows us to find the solution semianalytically, and we identify parameter regimes where this approximation is in excellent agreement with our tensor network results.
{"title":"Continuous Coherent Quantum Feedback with Time Delays: Tensor Network Solution","authors":"Kseniia Vodenkova, Hannes Pichler","doi":"10.1103/physrevx.14.031043","DOIUrl":"https://doi.org/10.1103/physrevx.14.031043","url":null,"abstract":"In this paper, we develop a novel method to solve problems involving quantum optical systems coupled to coherent quantum feedback loops featuring time delays. Our method is based on exact mappings of such non-Markovian problems to equivalent Markovian driven dissipative quantum many-body problems. In this work, we show that the resulting Markovian quantum many-body problems can be solved (numerically) exactly and efficiently using tensor network methods for a series of paradigmatic examples, consisting of driven quantum systems coupled to waveguides at several distant points. In particular, we show that our method allows solving problems in so far inaccessible regimes, including problems with arbitrary long time delays and arbitrary numbers of excitations in the delay lines. We obtain solutions for the full real-time dynamics as well as the steady state in all these regimes. Finally, motivated by our results, we develop a novel mean-field approach, which allows us to find the solution semianalytically, and we identify parameter regimes where this approximation is in excellent agreement with our tensor network results.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"33 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}