首页 > 最新文献

Physical Review X最新文献

英文 中文
Superconductivity from On-Chip Metallization on 2D Topological Chalcogenides 二维拓扑链瑀片上金属化产生的超导电性
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-06-21 DOI: 10.1103/physrevx.14.021051
Yanyu Jia, Guo Yu, Tiancheng Song, Fang Yuan, Ayelet J. Uzan, Yue Tang, Pengjie Wang, Ratnadwip Singha, Michael Onyszczak, Zhaoyi Joy Zheng, Kenji Watanabe, Takashi Taniguchi, Leslie M. Schoop, Sanfeng Wu
Two-dimensional (2D) transition metal dichalcogenides (TMDs) is a versatile class of quantum materials of interest to various fields including, e.g., nanoelectronics, optical devices, and topological and correlated quantum matter. Tailoring the electronic properties of TMDs is essential to their applications in many directions. Here, we report that a highly controllable and uniform on-chip 2D metallization process converts a class of atomically thin TMDs into robust superconductors, a property belonging to none of the starting materials. As examples, we demonstrate the introduction of superconductivity into a class of 2D air-sensitive topological TMDs, including monolayers of TdWTe2, 1TMoTe2, and 2HMoTe2, as well as their natural and twisted bilayers, metallized with an ultrathin layer of palladium. This class of TMDs is known to exhibit intriguing topological phases ranging from topological insulator, Weyl semimetal to fractional Chern insulator. The unique, high-quality two-dimensional metallization process is based on our recent findings of the long-distance, non-Fickian in-plane mass transport and chemistry in 2D that occur at relatively low temperatures and in devices fully encapsulated with inert insulating layers. Highly compatible with existing nanofabrication techniques for van der Waals stacks, our results offer a route to designing and engineering superconductivity and topological phases in a class of correlated 2D materials.
二维(2D)过渡金属二掺杂物(TMDs)是一类用途广泛的量子材料,在纳米电子学、光学设备、拓扑和相关量子物质等多个领域都有应用。定制 TMDs 的电子特性对其在多个方向的应用至关重要。在这里,我们报告了一种高度可控和均匀的片上二维金属化工艺将一类原子级薄的 TMD 转换成了坚固的超导体,这是一种不属于任何起始材料的特性。作为示例,我们展示了如何将超导性引入一类二维空气敏感拓扑 TMD,包括 Td-WTe2、1T′-MoTe2 和 2H-MoTe2 的单层,以及它们的天然和扭曲双层,并用超薄钯层进行金属化。众所周知,这类 TMD 表现出奇妙的拓扑相,包括拓扑绝缘体、Weyl 半金属和分数切尔绝缘体。这种独特的高质量二维金属化工艺是基于我们最近对二维平面内长距离、非费克质量传输和化学性质的研究成果,这种传输和化学性质发生在相对较低的温度下和完全被惰性绝缘层封装的器件中。我们的研究成果与范德华堆栈的现有纳米制造技术高度兼容,为在一类相关二维材料中设计和制造超导和拓扑相提供了一条途径。
{"title":"Superconductivity from On-Chip Metallization on 2D Topological Chalcogenides","authors":"Yanyu Jia, Guo Yu, Tiancheng Song, Fang Yuan, Ayelet J. Uzan, Yue Tang, Pengjie Wang, Ratnadwip Singha, Michael Onyszczak, Zhaoyi Joy Zheng, Kenji Watanabe, Takashi Taniguchi, Leslie M. Schoop, Sanfeng Wu","doi":"10.1103/physrevx.14.021051","DOIUrl":"https://doi.org/10.1103/physrevx.14.021051","url":null,"abstract":"Two-dimensional (2D) transition metal dichalcogenides (TMDs) is a versatile class of quantum materials of interest to various fields including, e.g., nanoelectronics, optical devices, and topological and correlated quantum matter. Tailoring the electronic properties of TMDs is essential to their applications in many directions. Here, we report that a highly controllable and uniform on-chip 2D metallization process converts a class of atomically thin TMDs into robust superconductors, a property belonging to none of the starting materials. As examples, we demonstrate the introduction of superconductivity into a class of 2D air-sensitive topological TMDs, including monolayers of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi mathvariant=\"normal\">T</mi></mrow><mrow><mi mathvariant=\"normal\">d</mi></mrow></msub><mtext>−</mtext><msub><mrow><mi>WTe</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1</mn><msup><mrow><mi mathvariant=\"normal\">T</mi></mrow><mrow><mo>′</mo></mrow></msup><mtext>−</mtext><msub><mrow><mi>MoTe</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math>, and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn><mi mathvariant=\"normal\">H</mi><mtext>−</mtext><msub><mrow><mi>MoTe</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math>, as well as their natural and twisted bilayers, metallized with an ultrathin layer of palladium. This class of TMDs is known to exhibit intriguing topological phases ranging from topological insulator, Weyl semimetal to fractional Chern insulator. The unique, high-quality two-dimensional metallization process is based on our recent findings of the long-distance, non-Fickian in-plane mass transport and chemistry in 2D that occur at relatively low temperatures and in devices fully encapsulated with inert insulating layers. Highly compatible with existing nanofabrication techniques for van der Waals stacks, our results offer a route to designing and engineering superconductivity and topological phases in a class of correlated 2D materials.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interactions Enable Thouless Pumping in a Nonsliding Lattice 相互作用实现非滑动晶格中的无汝泵送
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-06-20 DOI: 10.1103/physrevx.14.021049
Konrad Viebahn, Anne-Sophie Walter, Eric Bertok, Zijie Zhu, Marius Gächter, Armando A. Aligia, Fabian Heidrich-Meisner, Tilman Esslinger
A topological “Thouless” pump represents the quantized motion of particles in response to a slow, cyclic modulation of external control parameters. The Thouless pump, like the quantum Hall effect, is of fundamental interest in physics, because it links physically measurable quantities, such as particle currents, to geometric properties of the experimental system, which can be robust against perturbations and, thus, technologically useful. So far, experiments probing the interplay between topology and interparticle interactions have remained relatively scarce. Here, we observe a Thouless-type charge pump in which the particle current and its directionality inherently rely on the presence of strong interactions. Experimentally, we utilize a two-component Fermi gas in a dynamical superlattice which does not exhibit a sliding motion and remains trivial in the single-particle regime. However, when tuning interparticle interactions from zero to positive values, the system undergoes a transition from being stationary to drifting in one direction, consistent with quantized pumping in the first cycle. Remarkably, the topology of the interacting pump trajectory cannot be adiabatically connected to a noninteracting limit, highlighted by the fact that only one atom is transferred per cycle. Our experiments suggest that Thouless charge pumps are promising platforms to gain insights into interaction-driven topological transitions and topological quantum matter.
拓扑 "Thouless "泵表示粒子响应外部控制参数的缓慢、循环调制而产生的量子化运动。与量子霍尔效应一样,"无汝 "泵在物理学中也具有重要意义,因为它将粒子电流等可测量的物理量与实验系统的几何特性联系起来,而几何特性可以抵御扰动,因此在技术上非常有用。迄今为止,探测拓扑结构与粒子间相互作用的实验仍然相对稀少。在这里,我们观察到一种无穷型电荷泵,其中粒子电流及其方向性本质上依赖于强相互作用的存在。在实验中,我们利用了动态超晶格中的双组分费米气体,它没有表现出滑动运动,在单粒子机制中仍然微不足道。然而,当粒子间相互作用从零值调到正值时,系统会从静止过渡到单向漂移,这与第一周期的量子化抽运是一致的。值得注意的是,相互作用泵轨迹的拓扑结构无法与非相互作用极限绝热连接,这突出表现在每个周期只有一个原子被转移。我们的实验表明,无汝电荷泵是深入了解相互作用驱动的拓扑转变和拓扑量子物质的理想平台。
{"title":"Interactions Enable Thouless Pumping in a Nonsliding Lattice","authors":"Konrad Viebahn, Anne-Sophie Walter, Eric Bertok, Zijie Zhu, Marius Gächter, Armando A. Aligia, Fabian Heidrich-Meisner, Tilman Esslinger","doi":"10.1103/physrevx.14.021049","DOIUrl":"https://doi.org/10.1103/physrevx.14.021049","url":null,"abstract":"A topological “Thouless” pump represents the quantized motion of particles in response to a slow, cyclic modulation of external control parameters. The Thouless pump, like the quantum Hall effect, is of fundamental interest in physics, because it links physically measurable quantities, such as particle currents, to geometric properties of the experimental system, which can be robust against perturbations and, thus, technologically useful. So far, experiments probing the interplay between topology and interparticle interactions have remained relatively scarce. Here, we observe a Thouless-type charge pump in which the particle current and its directionality inherently rely on the presence of strong interactions. Experimentally, we utilize a two-component Fermi gas in a dynamical superlattice which does not exhibit a sliding motion and remains trivial in the single-particle regime. However, when tuning interparticle interactions from zero to positive values, the system undergoes a transition from being stationary to drifting in one direction, consistent with quantized pumping in the first cycle. Remarkably, the topology of the interacting pump trajectory cannot be adiabatically connected to a noninteracting limit, highlighted by the fact that only one atom is transferred per cycle. Our experiments suggest that Thouless charge pumps are promising platforms to gain insights into interaction-driven topological transitions and topological quantum matter.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coexistence of near-EF Flat Band and Van Hove Singularity in a Two-Phase Superconductor 双相超导体中的近 EF 平带与范霍夫奇点共存
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-06-20 DOI: 10.1103/physrevx.14.021048
Xuezhi Chen, Le Wang, Jun Ishizuka, Renjie Zhang, Kosuke Nogaki, Yiwei Cheng, Fazhi Yang, Zhenhua Chen, Fangyuan Zhu, Zhengtai Liu, Jiawei Mei, Youichi Yanase, Baiqing Lv, Yaobo Huang
Quantum many-body systems, particularly, the ones with large near-EF density states, are well known for exhibiting rich phase diagrams as a result of enhanced electron correlations. The recently discovered locally noncentrosymmetric heavy fermion superconductor CeRh2As2 has stimulated extensive attention due to its unusual HT phase diagram consisting of two-phase superconductivity, antiferromagnetic order, and possible quadrupole-density wave orders. However, the critical near-EF electronic structure remains experimentally elusive. Here, we provide this key information by combining soft-x-ray and vacuum ultraviolet (VUV) angle-resolved-photoemission-spectroscopy measurements and atom-resolved density-functional-theory (DFT)+U calculations. With bulk-sensitive soft x ray, we reveal quasi-2D hole and electron pockets near the EF. On the other hand, under VUV light, the Ce flat bands are resolved with the cf hybridization persisting up to well above the Kondo temperature. Most importantly, we observe a symmetry-protected fourfold Van Hove singularity (VHS) coexisting with the Ce4f5/21 flat bands at the X point, which, to the best of our knowledge, has never been reported before. Such a rare coexistence is expected to lead to a large density of states at the zone edge, a large upper critical field of the odd-parity phase, as well as spin and/or charge instabilities with a vector of (1/2, 1/2, 0). Uniquely, it will also result in a new
众所周知,量子多体系统,尤其是具有大的近 EF 密度态的量子多体系统,由于电子相关性的增强而表现出丰富的相图。最近发现的局部非中心对称重费米子超导体 CeRh2As2 因其不同寻常的 H-T 相图(包括两相超导性、反铁磁秩序和可能的四极密度波秩序)而引起了广泛关注。然而,临界近 EF 电子结构在实验中仍然难以捉摸。在这里,我们将软 X 射线和真空紫外线(VUV)角度分辨光电发射光谱测量与原子分辨密度函数理论(DFT)+U 计算相结合,提供了这一关键信息。通过体敏软 X 射线,我们揭示了 EF 附近的准二维空穴和电子袋。另一方面,在紫外光下,Ce 平带被解析,c-f 杂化持续到远远高于 Kondo 温度。最重要的是,我们在 X 点观察到一个对称保护的四倍范霍夫奇点(VHS)与铈 4f5/21 平面带共存,据我们所知,这是以前从未报道过的。这种罕见的共存现象预计会导致区域边缘的大状态密度、奇偶相的大上临界场以及矢量为(1/2, 1/2, 0)的自旋和/或电荷不稳定性。独特的是,它还会导致一种新型的 f-VHS 杂化,改变 VHS 和平面带的有序和精细电子结构。我们的发现不仅为了解 CeRh2As2 中多相的性质提供了重要见解,而且为探索具有 f-VHS 杂化的多体系统的新特性开辟了新的前景。
{"title":"Coexistence of near-EF Flat Band and Van Hove Singularity in a Two-Phase Superconductor","authors":"Xuezhi Chen, Le Wang, Jun Ishizuka, Renjie Zhang, Kosuke Nogaki, Yiwei Cheng, Fazhi Yang, Zhenhua Chen, Fangyuan Zhu, Zhengtai Liu, Jiawei Mei, Youichi Yanase, Baiqing Lv, Yaobo Huang","doi":"10.1103/physrevx.14.021048","DOIUrl":"https://doi.org/10.1103/physrevx.14.021048","url":null,"abstract":"Quantum many-body systems, particularly, the ones with large near-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub></mrow></math> density states, are well known for exhibiting rich phase diagrams as a result of enhanced electron correlations. The recently discovered locally noncentrosymmetric heavy fermion superconductor <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>CeRh</mi><mn>2</mn></msub><msub><mi>As</mi><mn>2</mn></msub></mrow></math> has stimulated extensive attention due to its unusual <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>H</mi><mtext>−</mtext><mi>T</mi></mrow></math> phase diagram consisting of two-phase superconductivity, antiferromagnetic order, and possible quadrupole-density wave orders. However, the critical near-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub></mrow></math> electronic structure remains experimentally elusive. Here, we provide this key information by combining soft-x-ray and vacuum ultraviolet (VUV) angle-resolved-photoemission-spectroscopy measurements and atom-resolved density-functional-theory <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo stretchy=\"false\">(</mo><mi>DFT</mi><mo stretchy=\"false\">)</mo><mo>+</mo><mi>U</mi></mrow></math> calculations. With bulk-sensitive soft x ray, we reveal quasi-2D hole and electron pockets near the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub></mrow></math>. On the other hand, under VUV light, the Ce flat bands are resolved with the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>c</mi><mtext>−</mtext><mi>f</mi></mrow></math> hybridization persisting up to well above the Kondo temperature. Most importantly, we observe a symmetry-protected fourfold Van Hove singularity (VHS) coexisting with the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Ce</mi><mtext> </mtext><mtext> </mtext><mtext> </mtext><mn>4</mn><msubsup><mrow><mi>f</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></mrow></math> flat bands at the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> point, which, to the best of our knowledge, has never been reported before. Such a rare coexistence is expected to lead to a large density of states at the zone edge, a large upper critical field of the odd-parity phase, as well as spin and/or charge instabilities with a vector of (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math>, 0). Uniquely, it will also result in a new ","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrical Breakdown of Excitonic Insulators 激子绝缘体的电击穿
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-06-18 DOI: 10.1103/physrevx.14.021047
Yuelin Shao, Xi Dai
We propose a new electrical breakdown mechanism for exciton insulators in the BCS limit, which differs fundamentally from the Zener breakdown mechanism observed in traditional band insulators. Our new mechanism results from the instability of the many-body ground state for exciton condensation, caused by the strong competition between the polarization and condensation energies in the presence of an electric field. We refer to this mechanism as “many-body breakdown.” To investigate this new mechanism, we propose a BCS-type trial wave function under finite electric fields and use it to study the many-body breakdown numerically. Our results reveal two different types of electric breakdown behavior. If the system size is larger than a critical value, the Zener tunneling process is first turned on when an electrical field is applied, but the excitonic gap remains until the field strength reaches the critical value of the many-body breakdown, after which the excitonic gap disappears and the system becomes a highly conductive metallic state. However, if the system size is much smaller than the critical value, the intermediate tunneling phase disappears since the many-body breakdown happens before the onset of Zener tunneling. The sudden disappearance of the local gap leads to an “off-on” feature in the current-voltage (IV) curve, providing a straightforward way to distinguish excitonic insulators from normal insulators.
我们提出了一种新的激子绝缘体在 BCS 极限的电击穿机制,它与在传统带状绝缘体中观察到的齐纳击穿机制有着本质区别。我们的新机制源于激子凝聚的多体基态的不稳定性,这是由存在电场时极化能和凝聚能之间的强烈竞争引起的。我们把这种机制称为 "多体击穿"。为了研究这一新机制,我们提出了有限电场下的 BCS 型试验波函数,并利用它对多体击穿进行了数值研究。我们的结果揭示了两种不同类型的电击穿行为。如果系统尺寸大于临界值,在施加电场时,齐纳隧穿过程首先开启,但激子间隙一直保持到电场强度达到多体击穿的临界值,之后激子间隙消失,系统变成高导电金属态。然而,如果系统尺寸远小于临界值,中间隧道阶段就会消失,因为多体击穿发生在齐纳隧道开始之前。局部间隙的突然消失会导致电流-电压(I-V)曲线出现 "off-on "特征,从而为区分激子绝缘体和普通绝缘体提供了一种直接的方法。
{"title":"Electrical Breakdown of Excitonic Insulators","authors":"Yuelin Shao, Xi Dai","doi":"10.1103/physrevx.14.021047","DOIUrl":"https://doi.org/10.1103/physrevx.14.021047","url":null,"abstract":"We propose a new electrical breakdown mechanism for exciton insulators in the BCS limit, which differs fundamentally from the Zener breakdown mechanism observed in traditional band insulators. Our new mechanism results from the instability of the many-body ground state for exciton condensation, caused by the strong competition between the polarization and condensation energies in the presence of an electric field. We refer to this mechanism as “many-body breakdown.” To investigate this new mechanism, we propose a BCS-type trial wave function under finite electric fields and use it to study the many-body breakdown numerically. Our results reveal two different types of electric breakdown behavior. If the system size is larger than a critical value, the Zener tunneling process is first turned on when an electrical field is applied, but the excitonic gap remains until the field strength reaches the critical value of the many-body breakdown, after which the excitonic gap disappears and the system becomes a highly conductive metallic state. However, if the system size is much smaller than the critical value, the intermediate tunneling phase disappears since the many-body breakdown happens before the onset of Zener tunneling. The sudden disappearance of the local gap leads to an “off-on” feature in the current-voltage (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>I</mi><mtext>−</mtext><mi>V</mi></mrow></math>) curve, providing a straightforward way to distinguish excitonic insulators from normal insulators.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Evidence for a Berry Curvature Quadrupole in an Antiferromagnet 反铁磁体中贝里曲率四极的实验证据
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-06-17 DOI: 10.1103/physrevx.14.021046
Soumya Sankar, Ruizi Liu, Cheng-Ping Zhang, Qi-Fang Li, Caiyun Chen, Xue-Jian Gao, Jiangchang Zheng, Yi-Hsin Lin, Kun Qian, Ruo-Peng Yu, Xu Zhang, Zi Yang Meng, Kam Tuen Law, Qiming Shao, Berthold Jäck
Berry curvature multipoles appearing in topological quantum materials have recently attracted much attention. Their presence can manifest in novel phenomena, such as nonlinear anomalous Hall effects (NLAHE). The notion of Berry curvature multipoles extends our understanding of Berry curvature effects on the material properties. Hence, research on this subject is of fundamental importance and may also enable future applications in energy harvesting and high-frequency technology. It was shown that a Berry curvature dipole can give rise to a second-order NLAHE in materials of low crystalline symmetry. Here, we demonstrate a fundamentally new mechanism for Berry curvature multipoles in antiferromagnets that are supported by the underlying magnetic symmetries. Carrying out electric transport measurements on the kagome antiferromagnet FeSn, we observe a third-order NLAHE, which appears as a transverse voltage response at the third harmonic frequency when a longitudinal ac drive is applied. Interestingly, this NLAHE is strongest at and above room temperature. We combine these measurements with a scaling law analysis, a symmetry analysis, model calculations, first-principle calculations, and magnetic Monte Carlo simulations to show that the observed NLAHE is induced by a Berry curvature quadrupole appearing in the spin-canted state of FeSn. At a practical level, our study establishes NLAHE as a sensitive probe of antiferromagnetic phase transitions in other materials—such as moiré superlattices, two-dimensional van der Waal magnets, and quantum spin liquid candidates, which remain poorly understood to date. More broadly, Berry curvature multipole effects are predicted to exist for 90 magnetic point groups. Hence, our work opens a new research area to study a variety of topological magnetic materials through nonlinear measurement protocols.
拓扑量子材料中出现的贝里曲率多极子最近引起了广泛关注。它们的存在可表现为非线性反常霍尔效应(NLAHE)等新现象。贝里曲率多极子的概念扩展了我们对贝里曲率对材料特性影响的理解。因此,对这一课题的研究具有根本性的重要意义,并有可能在未来应用于能量收集和高频技术。研究表明,贝里曲率偶极子能在低晶体对称性材料中产生二阶非线性热效应。在这里,我们展示了反铁磁体中贝里曲率多极子的一种全新机制,它得到了底层磁对称性的支持。在对 kagome 反铁磁体 FeSn 进行电输运测量时,我们观察到了三阶 NLAHE,当施加纵向交流驱动时,它表现为三次谐波频率的横向电压响应。有趣的是,这种 NLAHE 在室温及室温以上时最强。我们将这些测量结果与缩放定律分析、对称性分析、模型计算、第一原理计算和磁蒙特卡罗模拟相结合,证明所观察到的 NLAHE 是由出现在 FeSn 自旋倾斜态中的贝里曲率四极所诱导的。在实用层面上,我们的研究将 NLAHE 确立为其他材料中反铁磁相变的灵敏探针,如摩尔超晶格、二维范德瓦尔磁体和量子自旋液体候选物,这些材料至今仍鲜为人知。更广泛地说,贝里曲率多极效应被预测为存在于 90 个磁点群中。因此,我们的工作为通过非线性测量协议研究各种拓扑磁性材料开辟了一个新的研究领域。
{"title":"Experimental Evidence for a Berry Curvature Quadrupole in an Antiferromagnet","authors":"Soumya Sankar, Ruizi Liu, Cheng-Ping Zhang, Qi-Fang Li, Caiyun Chen, Xue-Jian Gao, Jiangchang Zheng, Yi-Hsin Lin, Kun Qian, Ruo-Peng Yu, Xu Zhang, Zi Yang Meng, Kam Tuen Law, Qiming Shao, Berthold Jäck","doi":"10.1103/physrevx.14.021046","DOIUrl":"https://doi.org/10.1103/physrevx.14.021046","url":null,"abstract":"Berry curvature multipoles appearing in topological quantum materials have recently attracted much attention. Their presence can manifest in novel phenomena, such as nonlinear anomalous Hall effects (NLAHE). The notion of Berry curvature multipoles extends our understanding of Berry curvature effects on the material properties. Hence, research on this subject is of fundamental importance and may also enable future applications in energy harvesting and high-frequency technology. It was shown that a Berry curvature dipole can give rise to a second-order NLAHE in materials of low crystalline symmetry. Here, we demonstrate a fundamentally new mechanism for Berry curvature multipoles in antiferromagnets that are supported by the underlying magnetic symmetries. Carrying out electric transport measurements on the kagome antiferromagnet FeSn, we observe a third-order NLAHE, which appears as a transverse voltage response at the third harmonic frequency when a longitudinal ac drive is applied. Interestingly, this NLAHE is strongest at and above room temperature. We combine these measurements with a scaling law analysis, a symmetry analysis, model calculations, first-principle calculations, and magnetic Monte Carlo simulations to show that the observed NLAHE is induced by a Berry curvature quadrupole appearing in the spin-canted state of FeSn. At a practical level, our study establishes NLAHE as a sensitive probe of antiferromagnetic phase transitions in other materials—such as moiré superlattices, two-dimensional van der Waal magnets, and quantum spin liquid candidates, which remain poorly understood to date. More broadly, Berry curvature multipole effects are predicted to exist for 90 magnetic point groups. Hence, our work opens a new research area to study a variety of topological magnetic materials through nonlinear measurement protocols.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Observation of Spin Current Oscillation in a Ferromagnet 直接观测铁磁体中的自旋电流振荡
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-06-14 DOI: 10.1103/physrevx.14.021045
Mengyao Du, Huiqian Min, Ke Xia, Dazhi Hou, Lei Wang, Zhiyong Qiu
Spin current is a crucial element in spintronics, and its diffusion in materials is typically characterized by monotonic decay. However, when the material hosting the spin current is also a magnet, the spin current is expected to exhibit spatial oscillations, the observation of which remains elusive. Here, we demonstrate the spatial oscillation of a spin current in a nickel film by measuring the thickness-dependent inverse spin Hall effect in Ni/YIG bilayers. The inverse spin Hall current in nickel is found to oscillate with its film thickness, in contrast to nonmagnetic materials, and that the oscillation period quantitatively agrees with theoretical predictions based on differences in the Fermi wave vector between majority and minority carriers. Our findings reveal a previously hidden behavior of spin-transport dynamics and identify a new degree of freedom for manipulating spin current, with potential implications for future spintronic devices.
自旋电流是自旋电子学中的重要元素,其在材料中的扩散通常以单调衰减为特征。然而,当承载自旋电流的材料同时也是磁体时,自旋电流就会出现空间振荡,而对空间振荡的观察却仍然难以捉摸。在这里,我们通过测量镍/YIG 双层膜中与厚度相关的反向自旋霍尔效应,证明了镍膜中自旋电流的空间振荡。与非磁性材料相比,我们发现镍薄膜中的反向自旋霍尔电流会随着薄膜厚度的变化而振荡,而且振荡周期与基于多数载流子和少数载流子之间费米波矢量差异的理论预测定量一致。我们的发现揭示了自旋传输动力学中一种以前不为人知的行为,并确定了操纵自旋电流的新自由度,这对未来的自旋电子器件具有潜在的影响。
{"title":"Direct Observation of Spin Current Oscillation in a Ferromagnet","authors":"Mengyao Du, Huiqian Min, Ke Xia, Dazhi Hou, Lei Wang, Zhiyong Qiu","doi":"10.1103/physrevx.14.021045","DOIUrl":"https://doi.org/10.1103/physrevx.14.021045","url":null,"abstract":"Spin current is a crucial element in spintronics, and its diffusion in materials is typically characterized by monotonic decay. However, when the material hosting the spin current is also a magnet, the spin current is expected to exhibit spatial oscillations, the observation of which remains elusive. Here, we demonstrate the spatial oscillation of a spin current in a nickel film by measuring the thickness-dependent inverse spin Hall effect in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Ni</mi><mo>/</mo><mi>YIG</mi></mrow></math> bilayers. The inverse spin Hall current in nickel is found to oscillate with its film thickness, in contrast to nonmagnetic materials, and that the oscillation period quantitatively agrees with theoretical predictions based on differences in the Fermi wave vector between majority and minority carriers. Our findings reveal a previously hidden behavior of spin-transport dynamics and identify a new degree of freedom for manipulating spin current, with potential implications for future spintronic devices.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141326841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SO(5) Deconfined Phase Transition under the Fuzzy-Sphere Microscope: Approximate Conformal Symmetry, Pseudo-Criticality, and Operator Spectrum 模糊球显微镜下的 SO(5) 非约束相变:近似共形对称性、伪临界和算子谱
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-06-13 DOI: 10.1103/physrevx.14.021044
Zheng Zhou (周正), Liangdong Hu, W. Zhu, Yin-Chen He
The deconfined quantum critical point (DQCP) is an example of phase transitions beyond the Landau symmetry-breaking paradigm that attracts wide interest. However, its nature has not been settled after decades of study. In this paper, we apply the recently proposed fuzzy-sphere regularization to study the SO(5) nonlinear sigma model with a topological Wess-Zumino-Witten term, which serves as a dual description of the DQCP with an exact SO(5) symmetry. We demonstrate that the fuzzy sphere functions as a powerful microscope, magnifying and revealing a wealth of crucial information about the DQCP, ultimately paving the way toward its final answer. In particular, through exact diagonalization, we provide clear evidence that the DQCP exhibits approximate conformal symmetry. The evidence includes the existence of a conserved SO(5) symmetry current, a stress tensor, and integer-spaced levels between conformal primaries and their descendants. Most remarkably, we identify 23 primaries and 76 conformal descendants. Furthermore, by examining the renormalization group flow of the lowest symmetry singlet as well as other primaries, we provide numerical evidence in favor of DQCP being pseudo-critical, with the approximate conformal symmetry plausibly emerging from nearby complex fixed points. The primary spectrum we compute also has important implications, including the conclusion that the SO(5) DQCP cannot describe a direct transition from the Néel to valence bond solid phase on the honeycomb lattice.
去封闭量子临界点(DQCP)是超越朗道对称破缺范式的相变实例,引起了广泛关注。然而,经过几十年的研究,其本质仍未确定。在本文中,我们应用最近提出的模糊球正则化来研究具有拓扑 Wess-Zumino-Witten 项的 SO(5) 非线性西格玛模型,它是具有精确 SO(5) 对称性的 DQCP 的双重描述。我们证明,模糊球就像一个功能强大的显微镜,放大并揭示了有关 DQCP 的大量关键信息,最终为找到其最终答案铺平了道路。特别是,通过精确对角化,我们提供了 DQCP 显示近似保角对称性的明确证据。这些证据包括一个守恒的 SO(5) 对称电流、一个应力张量以及共形基元和它们的后代之间的整数间隔水平的存在。最引人注目的是,我们发现了 23 个基元和 76 个共形后裔。此外,通过研究最低对称单子和其他基元的重正化群流,我们提供了支持 DQCP 为伪临界的数值证据,近似共形对称可能来自附近的复定点。我们计算的基元谱也具有重要意义,包括 SO(5) DQCP 无法描述蜂巢晶格上从内尔固相直接过渡到价键固相的结论。
{"title":"SO(5) Deconfined Phase Transition under the Fuzzy-Sphere Microscope: Approximate Conformal Symmetry, Pseudo-Criticality, and Operator Spectrum","authors":"Zheng Zhou (周正), Liangdong Hu, W. Zhu, Yin-Chen He","doi":"10.1103/physrevx.14.021044","DOIUrl":"https://doi.org/10.1103/physrevx.14.021044","url":null,"abstract":"The deconfined quantum critical point (DQCP) is an example of phase transitions beyond the Landau symmetry-breaking paradigm that attracts wide interest. However, its nature has not been settled after decades of study. In this paper, we apply the recently proposed fuzzy-sphere regularization to study the SO(5) nonlinear sigma model with a topological Wess-Zumino-Witten term, which serves as a dual description of the DQCP with an exact SO(5) symmetry. We demonstrate that the fuzzy sphere functions as a powerful microscope, magnifying and revealing a wealth of crucial information about the DQCP, ultimately paving the way toward its final answer. In particular, through exact diagonalization, we provide clear evidence that the DQCP exhibits approximate conformal symmetry. The evidence includes the existence of a conserved SO(5) symmetry current, a stress tensor, and integer-spaced levels between conformal primaries and their descendants. Most remarkably, we identify 23 primaries and 76 conformal descendants. Furthermore, by examining the renormalization group flow of the lowest symmetry singlet as well as other primaries, we provide numerical evidence in favor of DQCP being pseudo-critical, with the approximate conformal symmetry plausibly emerging from nearby complex fixed points. The primary spectrum we compute also has important implications, including the conclusion that the SO(5) DQCP cannot describe a direct transition from the Néel to valence bond solid phase on the honeycomb lattice.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orbital Ingredients and Persistent Dirac Surface State for the Topological Band Structure in FeTe0.55Se0.45 FeTe0.55Se0.45 中拓扑带状结构的轨道成分和持久狄拉克表面态
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-06-11 DOI: 10.1103/physrevx.14.021043
Y.-F. Li, S.-D. Chen, M. García-Díez, M. I. Iraola, H. Pfau, Y.-L. Zhu, Z.-Q. Mao, T. Chen, M. Yi, P.-C. Dai, J. A. Sobota, M. Hashimoto, M. G. Vergniory, D.-H. Lu, Z.-X. Shen
FeTe0.55Se0.45 (FTS) occupies a special spot in modern condensed matter physics at the intersections of electron correlation, topology, and unconventional superconductivity. The bulk electronic structure of FTS is predicted to be topologically nontrivial due to the band inversion between the dxz and pz bands along ΓZ. However, there remain debates in both the authenticity of the Dirac surface states (DSSs) and the experimental deviations of band structure from the theoretical band inversion picture. Here we resolve these debates through a comprehensive angle-resolved photoemission spectroscopy investigation. We first observe a persistent DSS independent of kz. Then, by comparing FTS with FeSe, which has no band inversion along ΓZ, we identify the spectral weight fingerprint of both the presence of the pz band and the inversion between the dxz and pz bands. Furthermore, we propose a renormalization scheme for the band structure under the framework of a tight-binding model preserving crystal symmetry. Our results highlight the significant influence of correlation on modifying the band structure and make a strong case for the existence of topological band structure in this unconventional superconductor.
FeTe0.55Se0.45(FTS)在现代凝聚态物理学中占据了一个特殊的位置,它是电子相关性、拓扑学和非常规超导性的交叉点。由于沿Γ-Z方向的dxz带和pz带之间的带反转,FTS的体电子结构被预测为拓扑非三维的。然而,在狄拉克表面态(DSS)的真实性以及带状结构与理论带反转图的实验偏差方面仍然存在争论。在这里,我们通过全面的角度分辨光发射光谱研究来解决这些争论。我们首先观察到了与 kz 无关的持久性 DSS。然后,通过将 FTS 与沿 Γ-Z 没有波段反转的 FeSe 进行比较,我们确定了 pz 波段的存在以及 dxz 波段和 pz 波段之间反转的光谱重量指纹。此外,我们还在保持晶体对称性的紧密结合模型框架下,提出了带状结构的重正化方案。我们的研究结果强调了相关性对改变带状结构的重要影响,并有力地证明了这种非常规超导体中拓扑带状结构的存在。
{"title":"Orbital Ingredients and Persistent Dirac Surface State for the Topological Band Structure in FeTe0.55Se0.45","authors":"Y.-F. Li, S.-D. Chen, M. García-Díez, M. I. Iraola, H. Pfau, Y.-L. Zhu, Z.-Q. Mao, T. Chen, M. Yi, P.-C. Dai, J. A. Sobota, M. Hashimoto, M. G. Vergniory, D.-H. Lu, Z.-X. Shen","doi":"10.1103/physrevx.14.021043","DOIUrl":"https://doi.org/10.1103/physrevx.14.021043","url":null,"abstract":"<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>FeTe</mi><mn>0.55</mn></msub><mrow><msub><mrow><mi>Se</mi></mrow><mrow><mn>0.45</mn></mrow></msub></mrow></math> (FTS) occupies a special spot in modern condensed matter physics at the intersections of electron correlation, topology, and unconventional superconductivity. The bulk electronic structure of FTS is predicted to be topologically nontrivial due to the band inversion between the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>d</mi><mrow><mi>x</mi><mi>z</mi></mrow></msub></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>p</mi><mi>z</mi></msub></math> bands along <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">Γ</mi><mtext>−</mtext><mi>Z</mi></mrow></math>. However, there remain debates in both the authenticity of the Dirac surface states (DSSs) and the experimental deviations of band structure from the theoretical band inversion picture. Here we resolve these debates through a comprehensive angle-resolved photoemission spectroscopy investigation. We first observe a persistent DSS independent of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>k</mi><mi>z</mi></msub></math>. Then, by comparing FTS with FeSe, which has no band inversion along <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">Γ</mi><mtext>−</mtext><mi>Z</mi></mrow></math>, we identify the spectral weight fingerprint of both the presence of the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>p</mi><mi>z</mi></msub></math> band and the inversion between the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>d</mi><mrow><mi>x</mi><mi>z</mi></mrow></msub></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>p</mi><mi>z</mi></msub></math> bands. Furthermore, we propose a renormalization scheme for the band structure under the framework of a tight-binding model preserving crystal symmetry. Our results highlight the significant influence of correlation on modifying the band structure and make a strong case for the existence of topological band structure in this unconventional superconductor.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theory of Correlated Chern Insulators in Twisted Bilayer Graphene 扭曲双层石墨烯中的相关切尔绝缘体理论
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-06-10 DOI: 10.1103/physrevx.14.021042
Xiaoyu Wang, Oskar Vafek
Magic-angle twisted bilayer graphene is the best-studied physical platform featuring moiré potential-induced narrow bands with nontrivial topology and strong electronic correlations. Despite their significance, the Chern insulating states observed at a finite magnetic field—and extrapolating to a band filling s at zero field—remain poorly understood. Unraveling their nature is among the most important open problems in the province of moiré materials. Here, we present the first comprehensive study of interacting electrons in finite magnetic field while varying the electron density, twist angle, and heterostrain. Within a panoply of correlated Chern phases emerging at a range of twist angles, we uncover a unified description for the ubiquitous sequence of states with the Chern number t for (s,t)=±(0,4), ±(1,3), ±(2,2), and ±(3,1). We also find correlated Chern insulators at unconventional sequences with s+t±4, as well as with fractional s, and elucidate their nature.
魔角扭曲双层石墨烯是研究得最透彻的物理平台,其特点是摩尔势诱导的窄带具有非难拓扑和强电子相关性。尽管其重要性不言而喻,但在有限磁场下观察到的切尔诺绝缘态--推断为零磁场下的带填充态--仍然鲜为人知。揭示其本质是摩尔材料领域最重要的未决问题之一。在此,我们首次对有限磁场中的相互作用电子进行了全面研究,同时改变了电子密度、扭转角和异应变。在扭转角范围内出现的一系列相关切尔恩相中,我们发现了一个统一的描述,即在(s,t)=±(0,4)、±(1,3)、±(2,2)和±(3,1)时,切尔恩数为 t 的无处不在的状态序列。我们还在 s+t≠±4 以及分数 s 的非常规序列中发现了相关的切尔诺绝缘体,并阐明了它们的性质。
{"title":"Theory of Correlated Chern Insulators in Twisted Bilayer Graphene","authors":"Xiaoyu Wang, Oskar Vafek","doi":"10.1103/physrevx.14.021042","DOIUrl":"https://doi.org/10.1103/physrevx.14.021042","url":null,"abstract":"Magic-angle twisted bilayer graphene is the best-studied physical platform featuring moiré potential-induced narrow bands with nontrivial topology and strong electronic correlations. Despite their significance, the Chern insulating states observed at a finite magnetic field—and extrapolating to a band filling <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>s</mi></math> at zero field—remain poorly understood. Unraveling their nature is among the most important open problems in the province of moiré materials. Here, we present the first comprehensive study of interacting electrons in finite magnetic field while varying the electron density, twist angle, and heterostrain. Within a panoply of correlated Chern phases emerging at a range of twist angles, we uncover a unified description for the ubiquitous sequence of states with the Chern number <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>t</mi></math> for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo>±</mo><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mn>4</mn><mo stretchy=\"false\">)</mo></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>±</mo><mo stretchy=\"false\">(</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>±</mo><mo stretchy=\"false\">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math>, and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>±</mo><mo stretchy=\"false\">(</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math>. We also find correlated Chern insulators at unconventional sequences with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>s</mi><mo>+</mo><mi>t</mi><mo>≠</mo><mo>±</mo><mn>4</mn></math>, as well as with fractional <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>s</mi></math>, and elucidate their nature.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Situ Magnetometry of Iron in Human Dopaminergic Neurons Using Superresolution MRI and Ion-Beam Microscopy 利用超分辨率核磁共振成像和离子束显微镜对人类多巴胺能神经元中的铁进行原位磁测量
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-06-10 DOI: 10.1103/physrevx.14.021041
Malte Brammerloh, Renat Sibgatulin, Karl-Heinz Herrmann, Markus Morawski, Tilo Reinert, Carsten Jäger, Roland Müller, Gerald Falkenberg, Dennis Brückner, Kerrin J. Pine, Andreas Deistung, Valerij G. Kiselev, Jürgen R. Reichenbach, Nikolaus Weiskopf, Evgeniya Kirilina
Paramagnetic transition metals play a crucial role as cofactors in various cellular catalytic processes. However, their high concentrations in reactive oxidation states can induce oxidative stress, resulting in cell dysfunction or death. Hence, it is vital to have methods to monitor metal concentrations and paramagnetic properties in cells for medicine and cell biology. Here we present a novel multimodal method for in-cell magnetometry enabling direct measurement of metal magnetic properties within individual cells in tissue, without prior isolation and at room temperature. Individual cell magnetic moments are measured using superresolution magnetic resonance imaging (MRI) microscopy at 9.4 T by detecting microscopic magnetic-field perturbations around the cells. The cellular metal content is quantified using ion-beam microscopy or synchrotron micro-x-ray fluorescence for the same cells. The metal magnetic susceptibility at 9.4 T is then obtained from the slope of the cell magnetic moments’ dependence on cell metal content. To estimate the susceptibility at lower fields, multifield MR relaxometry and biophysical modeling are employed, extrapolating the 9.4-T susceptibility values to fields as low as 3 T. We apply the new method to determine the susceptibility of iron accumulated in human dopaminergic neurons inside neuromelanin, the by-product of dopamine synthesis. The susceptibility of iron in neuromelanin is measured to be χρ=(2.98±0.19)×106m3/kg providing unique insights into the biochemistry of iron inside dopaminergic neurons. The obtained value reveals a predominant monoatomic low-affinity iron-binding site within neuromelanin, indicating a higher neurotoxicity of iron than previously suggested. Furthermore, the measured susceptibility value establishes a quantitative relationship between cellular iron concentration and iron-sensitive MRI parameters, which can be noninvasively measured in vivo. This breakthrough paves the way for the in vivo detection of dopaminergic neuron density and iron load, requiring a standard clinical MRI scanner only. It promises to facilitate early diagnosis of Parkinson’s disease. In conclusion, our presented novel method enables the direct measurements of magnetic properties of paramagnetic metals within single cells with high sensitivity and across large cell groups within a macroscopic volume, providing invaluable information about the cellular biology of metals.
顺磁性过渡金属在各种细胞催化过程中作为辅助因子发挥着至关重要的作用。然而,它们在反应性氧化状态下的高浓度会诱发氧化应激,导致细胞功能障碍或死亡。因此,拥有监测细胞中金属浓度和顺磁性能的方法对于医学和细胞生物学来说至关重要。在这里,我们提出了一种新颖的多模式细胞内磁力测量方法,无需事先分离,可在室温下直接测量组织中单个细胞内的金属磁性。通过检测细胞周围的微观磁场扰动,在 9.4 T 下使用超分辨率磁共振成像(MRI)显微镜测量单个细胞的磁矩。使用离子束显微镜或同步加速器微 X 射线荧光对相同细胞的细胞金属含量进行量化。然后根据细胞磁矩与细胞金属含量的斜率关系得出 9.4 T 时的金属磁感应强度。为了估算较低磁场下的磁感应强度,我们采用了多场磁共振弛豫测量法和生物物理模型,将 9.4 T 的磁感应强度值外推至低至 3 T 的磁场。测得神经络氨酸中铁的易感性为χρ=(2.98±0.19)×10-6 m3/kg,为了解多巴胺能神经元内铁的生物化学提供了独特的见解。所获得的值揭示了神经髓鞘内一个主要的单原子低亲和性铁结合位点,表明铁的神经毒性比以前认为的要高。此外,所测得的易感度值还确定了细胞铁浓度与铁敏感磁共振成像参数之间的定量关系,这种关系可以在体内进行无创测量。这一突破为在体内检测多巴胺能神经元密度和铁负荷铺平了道路,只需要一台标准的临床磁共振成像扫描仪。它有望促进帕金森病的早期诊断。总之,我们提出的新方法能够以高灵敏度直接测量单细胞内顺磁性金属的磁特性,并在宏观体积内测量大细胞群的磁特性,从而提供有关金属的细胞生物学的宝贵信息。
{"title":"In Situ Magnetometry of Iron in Human Dopaminergic Neurons Using Superresolution MRI and Ion-Beam Microscopy","authors":"Malte Brammerloh, Renat Sibgatulin, Karl-Heinz Herrmann, Markus Morawski, Tilo Reinert, Carsten Jäger, Roland Müller, Gerald Falkenberg, Dennis Brückner, Kerrin J. Pine, Andreas Deistung, Valerij G. Kiselev, Jürgen R. Reichenbach, Nikolaus Weiskopf, Evgeniya Kirilina","doi":"10.1103/physrevx.14.021041","DOIUrl":"https://doi.org/10.1103/physrevx.14.021041","url":null,"abstract":"Paramagnetic transition metals play a crucial role as cofactors in various cellular catalytic processes. However, their high concentrations in reactive oxidation states can induce oxidative stress, resulting in cell dysfunction or death. Hence, it is vital to have methods to monitor metal concentrations and paramagnetic properties in cells for medicine and cell biology. Here we present a novel multimodal method for in-cell magnetometry enabling direct measurement of metal magnetic properties within individual cells in tissue, without prior isolation and at room temperature. Individual cell magnetic moments are measured using superresolution magnetic resonance imaging (MRI) microscopy at 9.4 T by detecting microscopic magnetic-field perturbations around the cells. The cellular metal content is quantified using ion-beam microscopy or synchrotron micro-x-ray fluorescence for the same cells. The metal magnetic susceptibility at 9.4 T is then obtained from the slope of the cell magnetic moments’ dependence on cell metal content. To estimate the susceptibility at lower fields, multifield MR relaxometry and biophysical modeling are employed, extrapolating the 9.4-T susceptibility values to fields as low as 3 T. We apply the new method to determine the susceptibility of iron accumulated in human dopaminergic neurons inside neuromelanin, the by-product of dopamine synthesis. The susceptibility of iron in neuromelanin is measured to be <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>=</mo><mo stretchy=\"false\">(</mo><mn>2.98</mn><mo>±</mo><mn>0.19</mn><mo stretchy=\"false\">)</mo><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup><mtext> </mtext><mtext> </mtext><msup><mi mathvariant=\"normal\">m</mi><mn>3</mn></msup><mo>/</mo><mi>kg</mi></mrow></math> providing unique insights into the biochemistry of iron inside dopaminergic neurons. The obtained value reveals a predominant monoatomic low-affinity iron-binding site within neuromelanin, indicating a higher neurotoxicity of iron than previously suggested. Furthermore, the measured susceptibility value establishes a quantitative relationship between cellular iron concentration and iron-sensitive MRI parameters, which can be noninvasively measured <i>in vivo</i>. This breakthrough paves the way for the <i>in vivo</i> detection of dopaminergic neuron density and iron load, requiring a standard clinical MRI scanner only. It promises to facilitate early diagnosis of Parkinson’s disease. In conclusion, our presented novel method enables the direct measurements of magnetic properties of paramagnetic metals within single cells with high sensitivity and across large cell groups within a macroscopic volume, providing invaluable information about the cellular biology of metals.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1