首页 > 最新文献

Physical Review X最新文献

英文 中文
How Do Particles with Complex Interactions Self-Assemble? 具有复杂相互作用的粒子如何自组装?
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-12-09 DOI: 10.1103/physrevx.14.041061
Lara Koehler, Pierre Ronceray, Martin Lenz
In living cells, proteins self-assemble into large functional structures based on specific interactions between molecularly complex patches. Because of this complexity, protein self-assembly results from a competition between a large number of distinct interaction energies, of the order of one per pair of patches. However, current self-assembly models typically ignore this aspect, and the principles by which it determines the large-scale structure of protein assemblies are largely unknown. Here, we use Monte Carlo simulations and machine learning to start to unravel these principles. We observe that despite widespread geometrical frustration, aggregates of particles with complex interactions fall within only a few categories that often display high degrees of spatial order, including crystals, fibers, and oligomers. We then successfully identify the most relevant aspect of the interaction complexity in predicting these outcomes, namely, the particles’ ability to form periodic structures. Our results provide a first extensive characterization of the rich design space associated with identical particles with complex interactions and could inspire engineered self-assembling nano-objects as well as help us to understand the emergence of robust functional protein structures. Published by the American Physical Society 2024
在活细胞中,基于分子复杂斑块之间的特定相互作用,蛋白质自组装成大型功能结构。由于这种复杂性,蛋白质自组装是由大量不同的相互作用能之间的竞争产生的,每对贴片的相互作用能大约为1。然而,目前的自组装模型通常忽略了这一方面,并且它决定蛋白质组装的大规模结构的原理在很大程度上是未知的。在这里,我们使用蒙特卡罗模拟和机器学习来开始解开这些原理。我们观察到,尽管存在广泛的几何挫折,但具有复杂相互作用的粒子聚集体只属于少数几种通常显示高度空间秩序的类别,包括晶体,纤维和低聚物。然后,我们成功地确定了预测这些结果的相互作用复杂性的最相关方面,即粒子形成周期结构的能力。我们的研究结果首次提供了与具有复杂相互作用的相同颗粒相关的丰富设计空间的广泛表征,可以启发工程自组装纳米物体,并帮助我们理解强大功能蛋白质结构的出现。2024年由美国物理学会出版
{"title":"How Do Particles with Complex Interactions Self-Assemble?","authors":"Lara Koehler, Pierre Ronceray, Martin Lenz","doi":"10.1103/physrevx.14.041061","DOIUrl":"https://doi.org/10.1103/physrevx.14.041061","url":null,"abstract":"In living cells, proteins self-assemble into large functional structures based on specific interactions between molecularly complex patches. Because of this complexity, protein self-assembly results from a competition between a large number of distinct interaction energies, of the order of one per pair of patches. However, current self-assembly models typically ignore this aspect, and the principles by which it determines the large-scale structure of protein assemblies are largely unknown. Here, we use Monte Carlo simulations and machine learning to start to unravel these principles. We observe that despite widespread geometrical frustration, aggregates of particles with complex interactions fall within only a few categories that often display high degrees of spatial order, including crystals, fibers, and oligomers. We then successfully identify the most relevant aspect of the interaction complexity in predicting these outcomes, namely, the particles’ ability to form periodic structures. Our results provide a first extensive characterization of the rich design space associated with identical particles with complex interactions and could inspire engineered self-assembling nano-objects as well as help us to understand the emergence of robust functional protein structures. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"11 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142797091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anomalous Crystalline-Electromagnetic Responses in Semimetals 半金属中的异常晶体电磁响应
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-12-09 DOI: 10.1103/physrevx.14.041060
Mark R. Hirsbrunner, Oleg Dubinkin, F. J. Burnell, Taylor L. Hughes
We present a unifying framework that allows us to study the mixed crystalline-electromagnetic responses of topological semimetals in spatial dimensions up to D=3 through dimensional augmentation and reduction procedures. We show how this framework illuminates relations between the previously known topological semimetals and use it to identify a new class of quadrupolar nodal line semimetals for which we construct a lattice tight-binding Hamiltonian. We further utilize this framework to quantify a variety of mixed crystalline-electromagnetic responses, including several that have not previously been explored in existing literature, and show that the corresponding coefficients are universally proportional to weighted momentum-energy multipole moments of the nodal points (or lines) of the semimetal. We introduce lattice gauge fields that couple to the crystal momentum and describe how tools including the gradient expansion procedure, dimensional reduction, compactification, and the Kubo formula can be used to systematically derive these responses and their coefficients. We further substantiate these findings through analytical physical arguments, microscopic calculations, and explicit numerical simulations employing tight-binding models. Published by the American Physical Society 2024
我们提出了一个统一的框架,允许我们研究混合晶体-电磁响应的拓扑半金属在空间维度高达D=3通过维增和降程序。我们展示了这个框架如何阐明以前已知的拓扑半金属之间的关系,并使用它来识别一类新的四极节线半金属,我们为其构建了一个晶格紧密结合的哈密顿量。我们进一步利用这一框架来量化各种混合晶体-电磁响应,包括一些在现有文献中尚未探索的响应,并表明相应的系数与半金属的节点(或线)的加权动量-能量多极矩普遍成正比。我们介绍了与晶体动量耦合的晶格规范场,并描述了如何使用包括梯度展开过程、降维、紧化和Kubo公式在内的工具来系统地推导这些响应及其系数。我们通过分析物理论证、微观计算和采用紧密结合模型的明确数值模拟进一步证实了这些发现。2024年由美国物理学会出版
{"title":"Anomalous Crystalline-Electromagnetic Responses in Semimetals","authors":"Mark R. Hirsbrunner, Oleg Dubinkin, F. J. Burnell, Taylor L. Hughes","doi":"10.1103/physrevx.14.041060","DOIUrl":"https://doi.org/10.1103/physrevx.14.041060","url":null,"abstract":"We present a unifying framework that allows us to study the mixed crystalline-electromagnetic responses of topological semimetals in spatial dimensions up to D</a:mi>=</a:mo>3</a:mn></a:math> through dimensional augmentation and reduction procedures. We show how this framework illuminates relations between the previously known topological semimetals and use it to identify a new class of quadrupolar nodal line semimetals for which we construct a lattice tight-binding Hamiltonian. We further utilize this framework to quantify a variety of mixed crystalline-electromagnetic responses, including several that have not previously been explored in existing literature, and show that the corresponding coefficients are universally proportional to weighted momentum-energy multipole moments of the nodal points (or lines) of the semimetal. We introduce lattice gauge fields that couple to the crystal momentum and describe how tools including the gradient expansion procedure, dimensional reduction, compactification, and the Kubo formula can be used to systematically derive these responses and their coefficients. We further substantiate these findings through analytical physical arguments, microscopic calculations, and explicit numerical simulations employing tight-binding models. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"17 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142797095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Frequency Combs with Path Identity for Quantum Remote Sensing 量子遥感中具有路径同一性的量子频率梳
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-12-06 DOI: 10.1103/physrevx.14.041058
D. A. R. Dalvit, T. J. Volkoff, Y.-S. Choi, A. K. Azad, H.-T. Chen, P. W. Milonni
Quantum sensing promises to revolutionize sensing applications by employing quantum states of light or matter as sensing probes. Photons are the clear choice as quantum probes for remote sensing because they can travel to and interact with a distant target. Existing schemes are mainly based on the quantum illumination framework, which requires quantum memory to store a single photon of an initially entangled pair until its twin reflects off a target and returns for final correlation measurements. Existing demonstrations are limited to tabletop experiments, and expanding the sensing range faces various roadblocks, including long-time quantum storage and photon loss and noise when transmitting quantum signals over long distances. We propose a novel quantum sensing framework that addresses these challenges using quantum frequency combs with path identity for remote sensing of signatures (“qCOMBPASS”). The combination of one key quantum phenomenon and two quantum resources—namely, quantum-induced coherence by path identity, quantum frequency combs, and two-mode squeezed light—allows for quantum remote sensing without requiring quantum memory. The proposed scheme is akin to a quantum radar based on entangled frequency-comb pairs that uses path identity to detect, range, or sense a remote target of interest by measuring pulses of one comb in the pair that never traveled to the target but that contains target information “teleported” by quantum-induced coherence by path identity from the other comb in the pair that traveled to the target but is not detected. We develop the basic qCOMBPASS theory, analyze the properties of the qCOMBPASS transceiver, and introduce the qCOMBPASS equation—a quantum analog of the well-known LIDAR equation in classical remote sensing. We also describe an experimental scheme to demonstrate the concept using two-mode squeezed quantum combs. qCOMBPASS can strongly impact various applications in remote quantum sensing, imaging, metrology, and communications. These applications include detection and ranging of low-reflectivity objects, measurement of small displacements of a remote target with precision beyond the standard quantum limit (SQL), standoff hyperspectral quantum imaging, discreet surveillance from space with low detection probability (detect without being detected), very-long-baseline interferometry, quantum Doppler sensing, quantum clock synchronization, and networks of distributed quantum sensors. Published by the American Physical Society 2024
量子传感通过利用光或物质的量子态作为传感探针,有望彻底改变传感应用。光子是用于遥感的量子探测器的明确选择,因为它们可以到达遥远的目标并与之相互作用。现有方案主要基于量子照明框架,该框架要求量子存储器存储最初纠缠对的单个光子,直到其孪生对从目标反射并返回进行最终相关测量。现有的演示仅限于桌面实验,扩大传感范围面临各种障碍,包括长时间的量子存储和长距离传输量子信号时的光子损失和噪声。我们提出了一种新的量子传感框架,该框架使用具有路径同一性的量子频率梳来解决这些挑战,用于遥感签名(“qCOMBPASS”)。一种关键量子现象和两种量子资源的结合——即通过路径同一性的量子诱导相干性、量子频率梳和双模压缩光——允许在不需要量子存储器的情况下进行量子遥感。所提出的方案类似于基于纠缠频率梳对的量子雷达,它使用路径同一性来检测、测距或感知远程目标,方法是测量从未到达目标的频率梳对中的一个梳的脉冲,但该脉冲包含通过量子诱导相干性通过路径同一性从到达目标但未被检测到的频率梳对中的另一个梳的“远程传输”的目标信息。我们发展了qCOMBPASS的基本理论,分析了qCOMBPASS收发器的特性,并介绍了qCOMBPASS方程——经典遥感中著名的激光雷达方程的量子模拟。我们还描述了一个用双模压缩量子梳来证明这一概念的实验方案。qCOMBPASS可以强烈影响远程量子传感、成像、计量和通信等领域的各种应用。这些应用包括低反射率物体的检测和测距,远端目标的小位移测量精度超过标准量子极限(SQL),防区外高光谱量子成像,从空间进行低检测概率的离散监视(检测而不被检测到),超长基线干涉测量,量子多普勒传感,量子时钟同步和分布式量子传感器网络。2024年由美国物理学会出版
{"title":"Quantum Frequency Combs with Path Identity for Quantum Remote Sensing","authors":"D. A. R. Dalvit, T. J. Volkoff, Y.-S. Choi, A. K. Azad, H.-T. Chen, P. W. Milonni","doi":"10.1103/physrevx.14.041058","DOIUrl":"https://doi.org/10.1103/physrevx.14.041058","url":null,"abstract":"Quantum sensing promises to revolutionize sensing applications by employing quantum states of light or matter as sensing probes. Photons are the clear choice as quantum probes for remote sensing because they can travel to and interact with a distant target. Existing schemes are mainly based on the quantum illumination framework, which requires quantum memory to store a single photon of an initially entangled pair until its twin reflects off a target and returns for final correlation measurements. Existing demonstrations are limited to tabletop experiments, and expanding the sensing range faces various roadblocks, including long-time quantum storage and photon loss and noise when transmitting quantum signals over long distances. We propose a novel quantum sensing framework that addresses these challenges using quantum frequency combs with path identity for remote sensing of signatures (“qCOMBPASS”). The combination of one key quantum phenomenon and two quantum resources—namely, quantum-induced coherence by path identity, quantum frequency combs, and two-mode squeezed light—allows for quantum remote sensing without requiring quantum memory. The proposed scheme is akin to a quantum radar based on entangled frequency-comb pairs that uses path identity to detect, range, or sense a remote target of interest by measuring pulses of one comb in the pair that never traveled to the target but that contains target information “teleported” by quantum-induced coherence by path identity from the other comb in the pair that traveled to the target but is not detected. We develop the basic qCOMBPASS theory, analyze the properties of the qCOMBPASS transceiver, and introduce the qCOMBPASS equation—a quantum analog of the well-known LIDAR equation in classical remote sensing. We also describe an experimental scheme to demonstrate the concept using two-mode squeezed quantum combs. qCOMBPASS can strongly impact various applications in remote quantum sensing, imaging, metrology, and communications. These applications include detection and ranging of low-reflectivity objects, measurement of small displacements of a remote target with precision beyond the standard quantum limit (SQL), standoff hyperspectral quantum imaging, discreet surveillance from space with low detection probability (detect without being detected), very-long-baseline interferometry, quantum Doppler sensing, quantum clock synchronization, and networks of distributed quantum sensors. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"20 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142788416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hilbert-Space Ergodicity in Driven Quantum Systems: Obstructions and Designs 驱动量子系统中的hilbert -空间遍历性:障碍与设计
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-12-06 DOI: 10.1103/physrevx.14.041059
Saúl Pilatowsky-Cameo, Iman Marvian, Soonwon Choi, Wen Wei Ho
Despite its long history, a canonical formulation of quantum ergodicity that applies to general classes of quantum dynamics, including driven systems, has not been fully established. Here we introduce and study a notion of quantum ergodicity for closed systems with time-dependent Hamiltonians, defined as statistical randomness exhibited in their longtime dynamics. Concretely, we consider the temporal ensemble of quantum states (time-evolution operators) generated by the evolution, and investigate the conditions necessary for them to be statistically indistinguishable from uniformly random states (operators) in the Hilbert space (space of unitaries). We find that the number of driving frequencies underlying the Hamiltonian needs to be sufficiently large for this to occur. Conversely, we show that statistical —indistinguishability up to some large but finite moment—can already be achieved by a quantum system driven with a single frequency, i.e., a Floquet system, as long as the driving period is sufficiently long. Our work relates the complexity of a time-dependent Hamiltonian and that of the resulting quantum dynamics, and offers a fresh perspective to the established topics of quantum ergodicity and chaos from the lens of quantum information. Published by the American Physical Society 2024
尽管历史悠久,但适用于一般量子动力学(包括驱动系统)的量子遍历性的规范公式尚未完全建立。在这里,我们引入并研究了具有时变哈密顿量的封闭系统的量子遍历性的概念,定义为在其长期动力学中表现出的统计随机性。具体来说,我们考虑由演化产生的量子态(时间演化算符)的时间系综,并研究它们在Hilbert空间(酉空间)中与均匀随机态(算符)在统计上不可区分的必要条件。我们发现,驱动频率的数量要足够大才会发生这种情况。相反,我们表明,只要驱动周期足够长,单频率驱动的量子系统(即Floquet系统)已经可以实现统计上的不可分辨性,直到一些大但有限的时刻。我们的工作将时间相关哈密顿量的复杂性与由此产生的量子动力学的复杂性联系起来,并从量子信息的角度为量子遍历性和混沌的既定主题提供了一个新的视角。2024年由美国物理学会出版
{"title":"Hilbert-Space Ergodicity in Driven Quantum Systems: Obstructions and Designs","authors":"Saúl Pilatowsky-Cameo, Iman Marvian, Soonwon Choi, Wen Wei Ho","doi":"10.1103/physrevx.14.041059","DOIUrl":"https://doi.org/10.1103/physrevx.14.041059","url":null,"abstract":"Despite its long history, a canonical formulation of quantum ergodicity that applies to general classes of quantum dynamics, including driven systems, has not been fully established. Here we introduce and study a notion of quantum ergodicity for closed systems with time-dependent Hamiltonians, defined as statistical randomness exhibited in their longtime dynamics. Concretely, we consider the temporal ensemble of quantum states (time-evolution operators) generated by the evolution, and investigate the conditions necessary for them to be statistically indistinguishable from uniformly random states (operators) in the Hilbert space (space of unitaries). We find that the number of driving frequencies underlying the Hamiltonian needs to be sufficiently large for this to occur. Conversely, we show that statistical —indistinguishability up to some large but finite moment—can already be achieved by a quantum system driven with a single frequency, i.e., a Floquet system, as long as the driving period is sufficiently long. Our work relates the complexity of a time-dependent Hamiltonian and that of the resulting quantum dynamics, and offers a fresh perspective to the established topics of quantum ergodicity and chaos from the lens of quantum information. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"13 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142788414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semi-Dirac Fermions in a Topological Metal 拓扑金属中的半狄拉克费米子
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-12-05 DOI: 10.1103/physrevx.14.041057
Yinming Shao, Seongphill Moon, A. N. Rudenko, Jie Wang, Jonah Herzog-Arbeitman, Mykhaylo Ozerov, David Graf, Zhiyuan Sun, Raquel Queiroz, Seng Huat Lee, Yanglin Zhu, Zhiqiang Mao, M. I. Katsnelson, B. Andrei Bernevig, Dmitry Smirnov, Andrew J. Millis, D. N. Basov
Topological semimetals with massless Dirac and Weyl fermions represent the forefront of quantum materials research. In two dimensions, a peculiar class of fermions that are massless in one direction and massive in the perpendicular direction was predicted 16 years ago. These highly exotic quasiparticles—the semi-Dirac fermions—ignited intense theoretical and experimental interest but remain undetected. Using magneto-optical spectroscopy, we demonstrate the defining feature of semi-Dirac fermions—B2/3 scaling of Landau levels—in a prototypical nodal-line metal ZrSiS. In topological metals, including ZrSiS, nodal lines extend the band degeneracies from isolated points to lines, loops, or even chains in the momentum space. With calculations and theoretical modeling, we pinpoint the observed semi-Dirac spectrum to the crossing points of nodal lines in ZrSiS. Crossing nodal lines exhibit a continuum absorption spectrum but with singularities that scale as B2/3 at the crossing. Our work sheds light on the hidden quasiparticles emerging from the intricate topology of crossing nodal lines and highlights the potential to explore quantum geometry with linear optical responses. Published by the American Physical Society 2024
具有无质量狄拉克费米子和Weyl费米子的拓扑半金属代表了量子材料研究的前沿。在二维空间中,一种特殊的费米子在一个方向上没有质量,而在垂直方向上有质量,这种费米子在16年前就被预测到了。这些高度奇异的准粒子——半狄拉克费米子——引发了强烈的理论和实验兴趣,但仍未被探测到。利用磁光谱学,我们在一个典型的节线金属zrsi中证明了半狄拉克费米子的定义特征-朗道能级的b2 /3标度。在包括zrsi在内的拓扑金属中,节点线将带简并从孤立的点扩展到动量空间中的线、环甚至链。通过计算和理论建模,我们将观测到的半狄拉克谱精确定位到zrsi中节点线的交叉点。交叉节点线表现出连续的吸收光谱,但在交叉处有B2/3的奇异点。我们的工作揭示了从交叉节点线的复杂拓扑中出现的隐藏准粒子,并突出了探索具有线性光学响应的量子几何的潜力。2024年由美国物理学会出版
{"title":"Semi-Dirac Fermions in a Topological Metal","authors":"Yinming Shao, Seongphill Moon, A. N. Rudenko, Jie Wang, Jonah Herzog-Arbeitman, Mykhaylo Ozerov, David Graf, Zhiyuan Sun, Raquel Queiroz, Seng Huat Lee, Yanglin Zhu, Zhiqiang Mao, M. I. Katsnelson, B. Andrei Bernevig, Dmitry Smirnov, Andrew J. Millis, D. N. Basov","doi":"10.1103/physrevx.14.041057","DOIUrl":"https://doi.org/10.1103/physrevx.14.041057","url":null,"abstract":"Topological semimetals with massless Dirac and Weyl fermions represent the forefront of quantum materials research. In two dimensions, a peculiar class of fermions that are massless in one direction and massive in the perpendicular direction was predicted 16 years ago. These highly exotic quasiparticles—the semi-Dirac fermions—ignited intense theoretical and experimental interest but remain undetected. Using magneto-optical spectroscopy, we demonstrate the defining feature of semi-Dirac fermions—B</a:mi>2</a:mn>/</a:mo>3</a:mn></a:mrow></a:msup></a:math> scaling of Landau levels—in a prototypical nodal-line metal ZrSiS. In topological metals, including ZrSiS, nodal lines extend the band degeneracies from isolated points to lines, loops, or even chains in the momentum space. With calculations and theoretical modeling, we pinpoint the observed semi-Dirac spectrum to the crossing points of nodal lines in ZrSiS. Crossing nodal lines exhibit a continuum absorption spectrum but with singularities that scale as <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msup><c:mi>B</c:mi><c:mrow><c:mn>2</c:mn><c:mo>/</c:mo><c:mn>3</c:mn></c:mrow></c:msup></c:math> at the crossing. Our work sheds light on the hidden quasiparticles emerging from the intricate topology of crossing nodal lines and highlights the potential to explore quantum geometry with linear optical responses. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"79 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recovering Quantum Coherence of a Cavity Qubit Coupled to a Noisy Ancilla through Real-Time Feedback 通过实时反馈恢复与噪声辅助耦合的腔量子比特的量子相干性
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-12-05 DOI: 10.1103/physrevx.14.041056
Uri Goldblatt, Nitzan Kahn, Sergey Hazanov, Ofir Milul, Barkay Guttel, Lalit M. Joshi, Daniel Chausovsky, Fabien Lafont, Serge Rosenblum
Decoherence in qubits, caused by their interaction with a noisy environment, poses a significant challenge to the development of reliable quantum processors. A prominent source of errors arises from noise in coupled ancillas, which can quickly spread to qubits. By actively monitoring these noisy ancillas, it is possible to not only identify qubit decoherence events but also to correct these errors in real time. This approach is particularly beneficial for bosonic qubits, where the interaction with ancillas is a dominant source of decoherence. In this work, we uncover the intricate dynamics of decoherence in a superconducting cavity qubit due to its interaction with a noisy transmon ancilla. By tracking the noisy ancilla trajectory and using real-time feedback, we successfully recover the lost coherence of the cavity qubit, achieving a fivefold increase in its pure dephasing time. Additionally, by detecting ancilla errors and converting them into erasures, we improve the pure dephasing time by more than an order of magnitude. These advances are essential for realizing long-lived cavity qubits with high-fidelity gates, and they pave the way for more efficient bosonic quantum error-correction codes. Published by the American Physical Society 2024
量子比特中的退相干是由它们与噪声环境的相互作用引起的,对开发可靠的量子处理器提出了重大挑战。误差的一个主要来源是耦合副线中的噪声,它可以迅速传播到量子位。通过主动监测这些有噪声的辅助,不仅可以识别量子比特退相干事件,还可以实时纠正这些错误。这种方法对玻色子量子比特特别有利,在玻色子量子比特中,与安切拉的相互作用是退相干的主要来源。在这项工作中,我们揭示了超导腔量子比特中由于与噪声传输辅助体相互作用而产生的退相干的复杂动力学。通过跟踪噪声辅助轨迹并使用实时反馈,我们成功地恢复了腔量子比特丢失的相干性,使其纯减相时间增加了五倍。此外,通过检测辅助误差并将其转换为擦除,我们将纯消相时间提高了一个数量级以上。这些进展对于实现具有高保真门的长寿命腔量子比特至关重要,它们为更有效的玻色子量子纠错码铺平了道路。2024年由美国物理学会出版
{"title":"Recovering Quantum Coherence of a Cavity Qubit Coupled to a Noisy Ancilla through Real-Time Feedback","authors":"Uri Goldblatt, Nitzan Kahn, Sergey Hazanov, Ofir Milul, Barkay Guttel, Lalit M. Joshi, Daniel Chausovsky, Fabien Lafont, Serge Rosenblum","doi":"10.1103/physrevx.14.041056","DOIUrl":"https://doi.org/10.1103/physrevx.14.041056","url":null,"abstract":"Decoherence in qubits, caused by their interaction with a noisy environment, poses a significant challenge to the development of reliable quantum processors. A prominent source of errors arises from noise in coupled ancillas, which can quickly spread to qubits. By actively monitoring these noisy ancillas, it is possible to not only identify qubit decoherence events but also to correct these errors in real time. This approach is particularly beneficial for bosonic qubits, where the interaction with ancillas is a dominant source of decoherence. In this work, we uncover the intricate dynamics of decoherence in a superconducting cavity qubit due to its interaction with a noisy transmon ancilla. By tracking the noisy ancilla trajectory and using real-time feedback, we successfully recover the lost coherence of the cavity qubit, achieving a fivefold increase in its pure dephasing time. Additionally, by detecting ancilla errors and converting them into erasures, we improve the pure dephasing time by more than an order of magnitude. These advances are essential for realizing long-lived cavity qubits with high-fidelity gates, and they pave the way for more efficient bosonic quantum error-correction codes. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"20 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cavity-Mediated Collective Emission from Few Emitters in a Diamond Membrane 金刚石膜中少数发射体的腔介导集体发射
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-12-04 DOI: 10.1103/physrevx.14.041055
Maximilian Pallmann, Kerim Köster, Yuan Zhang, Julia Heupel, Timon Eichhorn, Cyril Popov, Klaus Mølmer, David Hunger
When an ensemble of quantum emitters couples to a common radiation field, their polarizations can synchronize and a collective emission termed superfluorescence can occur. Entering this regime in a free-space setting requires a large number of emitters with a high spatial density as well as coherent optical transitions with small inhomogeneity. Here, we show that, by coupling nitrogen-vacancy centers in a diamond membrane to a high-finesse microcavity, also few, incoherent, inhomogeneous, and spatially separated emitters—as are typical for solid state systems—can enter the regime of collective emission. We observe a superlinear power dependence of the emission rate as a hallmark of collective emission. Furthermore, we find simultaneous photon bunching and antibunching on different timescales in the second-order autocorrelation function, revealing cavity-induced interference in the quantized emission from about 15 emitters. We develop theoretical models for mesoscopic emitter numbers to analyze the behavior in the Dicke state basis and find that the population of collective states together with cavity enhancement and filtering can explain the observations. Such a system has prospects for the generation of multiphoton quantum states, the preparation of entanglement in few-emitter systems, and enhancement of signals in quantum sensing. Published by the American Physical Society 2024
当量子发射体的集合耦合到一个共同的辐射场时,它们的极化可以同步,并且可以发生称为超荧光的集体发射。在自由空间环境中进入这一状态需要大量具有高空间密度的发射器以及具有小非均匀性的相干光学跃迁。在这里,我们表明,通过将金刚石膜中的氮空位中心耦合到高精细微腔中,也有少数,非相干的,不均匀的,空间分离的发射体-如典型的固态系统-可以进入集体发射状态。我们观察到发射速率的超线性功率依赖性是集体发射的标志。此外,我们在二阶自相关函数中发现了不同时间尺度上同时发生的光子聚束和反聚束,揭示了大约15个发射源的量子化发射中的腔诱导干涉。我们建立了介观发射体数的理论模型来分析Dicke态基础上的行为,并发现集体态的居群以及腔增强和滤波可以解释观测结果。该系统在多光子量子态的生成、少发射体系统的纠缠制备、量子传感信号增强等方面具有广阔的应用前景。2024年由美国物理学会出版
{"title":"Cavity-Mediated Collective Emission from Few Emitters in a Diamond Membrane","authors":"Maximilian Pallmann, Kerim Köster, Yuan Zhang, Julia Heupel, Timon Eichhorn, Cyril Popov, Klaus Mølmer, David Hunger","doi":"10.1103/physrevx.14.041055","DOIUrl":"https://doi.org/10.1103/physrevx.14.041055","url":null,"abstract":"When an ensemble of quantum emitters couples to a common radiation field, their polarizations can synchronize and a collective emission termed superfluorescence can occur. Entering this regime in a free-space setting requires a large number of emitters with a high spatial density as well as coherent optical transitions with small inhomogeneity. Here, we show that, by coupling nitrogen-vacancy centers in a diamond membrane to a high-finesse microcavity, also few, incoherent, inhomogeneous, and spatially separated emitters—as are typical for solid state systems—can enter the regime of collective emission. We observe a superlinear power dependence of the emission rate as a hallmark of collective emission. Furthermore, we find simultaneous photon bunching and antibunching on different timescales in the second-order autocorrelation function, revealing cavity-induced interference in the quantized emission from about 15 emitters. We develop theoretical models for mesoscopic emitter numbers to analyze the behavior in the Dicke state basis and find that the population of collective states together with cavity enhancement and filtering can explain the observations. Such a system has prospects for the generation of multiphoton quantum states, the preparation of entanglement in few-emitter systems, and enhancement of signals in quantum sensing. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"223 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-Dependent Nuclear Energy-Density Functional Theory Toolkit for Neutron Star Crust: Dynamics of a Nucleus in a Neutron Superfluid 中子星外壳的时变核能密度泛函理论工具箱:中子超流体中原子核的动力学
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-12-03 DOI: 10.1103/physrevx.14.041054
Daniel Pęcak, Agata Zdanowicz, Nicolas Chamel, Piotr Magierski, Gabriel Wlazłowski
We present a new numerical tool designed to probe the dense layers of neutron star crusts. It is based on the time-dependent Hartree-Fock-Bogoliubov theory with generalized Skyrme nuclear energy-density functionals of the Brussels-Montreal family. We use it to study the time evolution of a nucleus accelerating through superfluid neutron medium in the inner crust of a neutron star. We extract an effective mass in the low velocity limit. We observe a threshold velocity and specify mechanisms of dissipation: phonon emission, Cooper pairs breaking, and vortex rings creation. These microscopic effects are of key importance for understanding various neutron star phenomena. Moreover, the mechanisms we describe are general and apply also to other fermionic superfluids interacting with obstacles like liquid helium or ultracold gases. Published by the American Physical Society 2024
我们提出了一种新的数值工具,用于探测中子星地壳的致密层。它基于具有布鲁塞尔-蒙特利尔族的广义Skyrme核能量密度泛函的时变Hartree-Fock-Bogoliubov理论。我们用它来研究原子核在中子星内壳中通过超流体中子介质加速的时间演化。我们提取低速极限下的有效质量。我们观察到一个阈值速度,并指定了耗散机制:声子发射、库珀对断裂和涡旋环的产生。这些微观效应对于理解各种中子星现象至关重要。此外,我们描述的机制是通用的,也适用于其他费米子超流体与液氦或超冷气体等障碍物的相互作用。2024年由美国物理学会出版
{"title":"Time-Dependent Nuclear Energy-Density Functional Theory Toolkit for Neutron Star Crust: Dynamics of a Nucleus in a Neutron Superfluid","authors":"Daniel Pęcak, Agata Zdanowicz, Nicolas Chamel, Piotr Magierski, Gabriel Wlazłowski","doi":"10.1103/physrevx.14.041054","DOIUrl":"https://doi.org/10.1103/physrevx.14.041054","url":null,"abstract":"We present a new numerical tool designed to probe the dense layers of neutron star crusts. It is based on the time-dependent Hartree-Fock-Bogoliubov theory with generalized Skyrme nuclear energy-density functionals of the Brussels-Montreal family. We use it to study the time evolution of a nucleus accelerating through superfluid neutron medium in the inner crust of a neutron star. We extract an effective mass in the low velocity limit. We observe a threshold velocity and specify mechanisms of dissipation: phonon emission, Cooper pairs breaking, and vortex rings creation. These microscopic effects are of key importance for understanding various neutron star phenomena. Moreover, the mechanisms we describe are general and apply also to other fermionic superfluids interacting with obstacles like liquid helium or ultracold gases. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"26 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First-Principles Prediction of Structural Distortions in the Cuprates and Their Impact on the Electronic Structure 铜酸盐结构畸变的第一性原理预测及其对电子结构的影响
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-12-02 DOI: 10.1103/physrevx.14.041053
Zheting Jin, Sohrab Ismail-Beigi
Materials-realistic microscopic theoretical descriptions of copper-based superconductors are challenging due to their complex crystal structures combined with strong electron interactions. Here, we demonstrate how density functional theory can accurately describe key structural, electronic, and magnetic properties of the normal state of the prototypical cuprate Bi2Sr2CaCu2O8+x (Bi-2212). We emphasize the importance of accounting for energy-lowering structural distortions, which then allows us to (a) accurately describe the insulating antiferromagnetic (AFM) ground state of the undoped parent compound (in contrast to the metallic state predicted by previous studies); (b) identify numerous low-energy competing spin and charge stripe orders in the hole-overdoped material nearly degenerate in energy with the AFM ordered state, indicating strong spin fluctuations; (c) predict the lowest-energy hole-doped crystal structure including its long-range structural distortions and oxygen dopant positions that match high-resolution scanning transmission electron microscopy measurements; and (d) describe electronic bands near the Fermi energy with flat antinodal dispersions and Fermi surfaces that are in agreement with angle-resolved photoemission spectroscopy (ARPES) measurements and provide a clear explanation for the structural origins of the so-called “shadow bands.” We also show how one must go beyond band theory and include fully dynamic spin fluctuations via a many-body approach when aiming to make quantitative predictions to measure the ARPES spectra in the overdoped material. Finally, regarding spatial inhomogeneity, we show that the local structure at the CuO2 layer, rather than dopant electrostatic effects, modulates the local charge-transfer gaps, local correlation strengths, and by extension the local superconducting gaps. Published by the American Physical Society 2024
由于铜基超导体复杂的晶体结构与强电子相互作用相结合,对其进行现实的微观理论描述具有挑战性。在这里,我们证明了密度功能理论如何准确地描述原型铜酸铋Bi2Sr2CaCu2O8+x (Bi-2212)正常状态的关键结构、电子和磁性能。我们强调考虑降低能量的结构扭曲的重要性,这使我们能够(a)准确地描述未掺杂母化合物的绝缘反铁磁(AFM)基态(与先前研究预测的金属态相反);(b)在空穴过掺杂材料中发现了许多低能自旋和电荷条纹序,它们的能量与原子力显微镜有序态几乎简并,表明自旋涨落强烈;(c)预测最低能量空穴掺杂晶体结构,包括其远程结构畸变和与高分辨率扫描透射电子显微镜测量相匹配的氧掺杂位置;(d)描述了费米能量附近的电子带,具有平坦的反节色散和费米表面,与角分辨光发射光谱(ARPES)测量结果一致,并为所谓的“阴影带”的结构起源提供了清晰的解释。我们还展示了在进行定量预测以测量过掺杂材料中的ARPES光谱时,如何必须超越能带理论,并通过多体方法包括完全动态的自旋涨落。最后,在空间非均匀性方面,我们发现CuO2层的局部结构,而不是掺杂的静电效应,调节了局部电荷转移间隙、局部相关强度,进而调节了局部超导间隙。2024年由美国物理学会出版
{"title":"First-Principles Prediction of Structural Distortions in the Cuprates and Their Impact on the Electronic Structure","authors":"Zheting Jin, Sohrab Ismail-Beigi","doi":"10.1103/physrevx.14.041053","DOIUrl":"https://doi.org/10.1103/physrevx.14.041053","url":null,"abstract":"Materials-realistic microscopic theoretical descriptions of copper-based superconductors are challenging due to their complex crystal structures combined with strong electron interactions. Here, we demonstrate how density functional theory can accurately describe key structural, electronic, and magnetic properties of the normal state of the prototypical cuprate Bi</a:mi></a:mrow>2</a:mn></a:mrow></a:msub></a:mrow>Sr</a:mi></a:mrow>2</a:mn></a:mrow></a:msub></a:mrow>CaCu</a:mi></a:mrow>2</a:mn></a:mrow></a:msub></a:mrow>O</a:mi></a:mrow>8</a:mn>+</a:mo>x</a:mi></a:mrow></a:msub></a:mrow></a:math> (Bi-2212). We emphasize the importance of accounting for energy-lowering structural distortions, which then allows us to (a) accurately describe the insulating antiferromagnetic (AFM) ground state of the undoped parent compound (in contrast to the metallic state predicted by previous studies); (b) identify numerous low-energy competing spin and charge stripe orders in the hole-overdoped material nearly degenerate in energy with the AFM ordered state, indicating strong spin fluctuations; (c) predict the lowest-energy hole-doped crystal structure including its long-range structural distortions and oxygen dopant positions that match high-resolution scanning transmission electron microscopy measurements; and (d) describe electronic bands near the Fermi energy with flat antinodal dispersions and Fermi surfaces that are in agreement with angle-resolved photoemission spectroscopy (ARPES) measurements and provide a clear explanation for the structural origins of the so-called “shadow bands.” We also show how one must go beyond band theory and include fully dynamic spin fluctuations via a many-body approach when aiming to make quantitative predictions to measure the ARPES spectra in the overdoped material. Finally, regarding spatial inhomogeneity, we show that the local structure at the <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mrow><d:msub><d:mrow><d:mi>CuO</d:mi></d:mrow><d:mrow><d:mn>2</d:mn></d:mrow></d:msub></d:mrow></d:math> layer, rather than dopant electrostatic effects, modulates the local charge-transfer gaps, local correlation strengths, and by extension the local superconducting gaps. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"46 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the Ubiquity of Bloch Domain Walls in Ferroelectric Lead Titanate Superlattices 评价铁电钛酸铅超晶格中Bloch畴壁的普遍性
IF 12.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-11-26 DOI: 10.1103/physrevx.14.041052
Edoardo Zatterin, Petr Ondrejkovic, Louis Bastogne, Céline Lichtensteiger, Ludovica Tovaglieri, Daniel A. Chaney, Alireza Sasani, Tobias Schülli, Alexei Bosak, Steven Leake, Pavlo Zubko, Philippe Ghosez, Jirka Hlinka, Jean-Marc Triscone, Marios Hadjimichael
The observation of unexpected polarization textures such as vortices, skyrmions, and merons in various oxide heterostructures has challenged the widely accepted picture of ferroelectric domain walls as being Ising-like. Bloch components in the 180° domain walls of PbTiO</a:mi></a:mrow>3</a:mn></a:msub></a:mrow></a:math> have recently been reported in <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:mrow><c:msub><c:mrow><c:mi>PbTiO</c:mi></c:mrow><c:mn>3</c:mn></c:msub><c:mo stretchy="false">/</c:mo><c:msub><c:mrow><c:mi>SrTiO</c:mi></c:mrow><c:mn>3</c:mn></c:msub></c:mrow></c:math> superlattices and linked to domain wall chirality. While this opens exciting perspectives, the ubiquity of this Bloch component remains to be further explored. In this work, we present a comprehensive investigation of domain walls in <f:math xmlns:f="http://www.w3.org/1998/Math/MathML" display="inline"><f:mrow><f:msub><f:mrow><f:mi>PbTiO</f:mi></f:mrow><f:mn>3</f:mn></f:msub><f:mo stretchy="false">/</f:mo><f:msub><f:mrow><f:mi>SrTiO</f:mi></f:mrow><f:mn>3</f:mn></f:msub></f:mrow></f:math> superlattices, involving a combination of first- and second-principles calculations, phase-field simulations, diffuse scattering calculations, and synchrotron-based diffuse x-ray scattering. Our theoretical calculations highlight that the previously predicted Bloch polarization in the 180° domain walls in <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" display="inline"><i:mrow><i:msub><i:mrow><i:mi>PbTiO</i:mi></i:mrow><i:mn>3</i:mn></i:msub><i:mo stretchy="false">/</i:mo><i:msub><i:mrow><i:mi>SrTiO</i:mi></i:mrow><i:mn>3</i:mn></i:msub></i:mrow></i:math> superlattices might be more sensitive to the boundary conditions than initially thought and is not always expected to appear. Employing diffuse scattering calculations for larger systems, we develop a method to probe the complex structure of domain walls in these superlattices via diffuse x-ray scattering measurements. Through this approach, we investigate depolarization-driven ferroelectric polarization rotation at the domain walls. Our experimental findings, consistent with our theoretical predictions for realistic domain periods, do not reveal any signatures of a Bloch component in the centers of the 180° domain walls of <l:math xmlns:l="http://www.w3.org/1998/Math/MathML" display="inline"><l:mrow><l:msub><l:mrow><l:mi>PbTiO</l:mi></l:mrow><l:mn>3</l:mn></l:msub><l:mo stretchy="false">/</l:mo><l:msub><l:mrow><l:mi>SrTiO</l:mi></l:mrow><l:mn>3</l:mn></l:msub></l:mrow></l:math> superlattices, suggesting that the precise nature of domain walls in the ultrathin <o:math xmlns:o="http://www.w3.org/1998/Math/MathML" display="inline"><o:mrow><o:msub><o:mrow><o:mi>PbTiO</o:mi></o:mrow><o:mn>3</o:mn></o:msub></o:mrow></o:math> layers is more intricate than previously thought and deserves further attention. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:co
在各种氧化物异质结构中观察到意想不到的极化结构,如涡旋、天幕和介子,这对广泛接受的铁电畴壁是伊辛样的观点提出了挑战。最近在PbTiO3/SrTiO3超晶格中报道了PbTiO3 180°畴壁中的Bloch组分,并与畴壁手性有关。虽然这打开了令人兴奋的前景,但这种Bloch组件的普遍性仍有待进一步探索。在这项工作中,我们对PbTiO3/SrTiO3超晶格中的畴壁进行了全面的研究,包括第一原理和第二原理计算、相场模拟、漫射散射计算和基于同步加速器的漫射x射线散射。我们的理论计算强调了先前预测的PbTiO3/SrTiO3超晶格中180°畴壁的Bloch极化可能比最初认为的对边界条件更敏感,并且并不总是预期会出现。利用较大系统的漫射散射计算,我们开发了一种通过漫射x射线散射测量来探测这些超晶格中畴壁复杂结构的方法。通过这种方法,我们研究了在畴壁处退极化驱动的铁电极化旋转。我们的实验结果与我们对实际畴周期的理论预测一致,在PbTiO3/SrTiO3超晶格的180°畴壁中心没有发现任何Bloch成分的特征,这表明超薄PbTiO3层中畴壁的精确性质比以前认为的要复杂,值得进一步关注。2024年由美国物理学会出版
{"title":"Assessing the Ubiquity of Bloch Domain Walls in Ferroelectric Lead Titanate Superlattices","authors":"Edoardo Zatterin, Petr Ondrejkovic, Louis Bastogne, Céline Lichtensteiger, Ludovica Tovaglieri, Daniel A. Chaney, Alireza Sasani, Tobias Schülli, Alexei Bosak, Steven Leake, Pavlo Zubko, Philippe Ghosez, Jirka Hlinka, Jean-Marc Triscone, Marios Hadjimichael","doi":"10.1103/physrevx.14.041052","DOIUrl":"https://doi.org/10.1103/physrevx.14.041052","url":null,"abstract":"The observation of unexpected polarization textures such as vortices, skyrmions, and merons in various oxide heterostructures has challenged the widely accepted picture of ferroelectric domain walls as being Ising-like. Bloch components in the 180° domain walls of PbTiO&lt;/a:mi&gt;&lt;/a:mrow&gt;3&lt;/a:mn&gt;&lt;/a:msub&gt;&lt;/a:mrow&gt;&lt;/a:math&gt; have recently been reported in &lt;c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;c:mrow&gt;&lt;c:msub&gt;&lt;c:mrow&gt;&lt;c:mi&gt;PbTiO&lt;/c:mi&gt;&lt;/c:mrow&gt;&lt;c:mn&gt;3&lt;/c:mn&gt;&lt;/c:msub&gt;&lt;c:mo stretchy=\"false\"&gt;/&lt;/c:mo&gt;&lt;c:msub&gt;&lt;c:mrow&gt;&lt;c:mi&gt;SrTiO&lt;/c:mi&gt;&lt;/c:mrow&gt;&lt;c:mn&gt;3&lt;/c:mn&gt;&lt;/c:msub&gt;&lt;/c:mrow&gt;&lt;/c:math&gt; superlattices and linked to domain wall chirality. While this opens exciting perspectives, the ubiquity of this Bloch component remains to be further explored. In this work, we present a comprehensive investigation of domain walls in &lt;f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;f:mrow&gt;&lt;f:msub&gt;&lt;f:mrow&gt;&lt;f:mi&gt;PbTiO&lt;/f:mi&gt;&lt;/f:mrow&gt;&lt;f:mn&gt;3&lt;/f:mn&gt;&lt;/f:msub&gt;&lt;f:mo stretchy=\"false\"&gt;/&lt;/f:mo&gt;&lt;f:msub&gt;&lt;f:mrow&gt;&lt;f:mi&gt;SrTiO&lt;/f:mi&gt;&lt;/f:mrow&gt;&lt;f:mn&gt;3&lt;/f:mn&gt;&lt;/f:msub&gt;&lt;/f:mrow&gt;&lt;/f:math&gt; superlattices, involving a combination of first- and second-principles calculations, phase-field simulations, diffuse scattering calculations, and synchrotron-based diffuse x-ray scattering. Our theoretical calculations highlight that the previously predicted Bloch polarization in the 180° domain walls in &lt;i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;i:mrow&gt;&lt;i:msub&gt;&lt;i:mrow&gt;&lt;i:mi&gt;PbTiO&lt;/i:mi&gt;&lt;/i:mrow&gt;&lt;i:mn&gt;3&lt;/i:mn&gt;&lt;/i:msub&gt;&lt;i:mo stretchy=\"false\"&gt;/&lt;/i:mo&gt;&lt;i:msub&gt;&lt;i:mrow&gt;&lt;i:mi&gt;SrTiO&lt;/i:mi&gt;&lt;/i:mrow&gt;&lt;i:mn&gt;3&lt;/i:mn&gt;&lt;/i:msub&gt;&lt;/i:mrow&gt;&lt;/i:math&gt; superlattices might be more sensitive to the boundary conditions than initially thought and is not always expected to appear. Employing diffuse scattering calculations for larger systems, we develop a method to probe the complex structure of domain walls in these superlattices via diffuse x-ray scattering measurements. Through this approach, we investigate depolarization-driven ferroelectric polarization rotation at the domain walls. Our experimental findings, consistent with our theoretical predictions for realistic domain periods, do not reveal any signatures of a Bloch component in the centers of the 180° domain walls of &lt;l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;l:mrow&gt;&lt;l:msub&gt;&lt;l:mrow&gt;&lt;l:mi&gt;PbTiO&lt;/l:mi&gt;&lt;/l:mrow&gt;&lt;l:mn&gt;3&lt;/l:mn&gt;&lt;/l:msub&gt;&lt;l:mo stretchy=\"false\"&gt;/&lt;/l:mo&gt;&lt;l:msub&gt;&lt;l:mrow&gt;&lt;l:mi&gt;SrTiO&lt;/l:mi&gt;&lt;/l:mrow&gt;&lt;l:mn&gt;3&lt;/l:mn&gt;&lt;/l:msub&gt;&lt;/l:mrow&gt;&lt;/l:math&gt; superlattices, suggesting that the precise nature of domain walls in the ultrathin &lt;o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;o:mrow&gt;&lt;o:msub&gt;&lt;o:mrow&gt;&lt;o:mi&gt;PbTiO&lt;/o:mi&gt;&lt;/o:mrow&gt;&lt;o:mn&gt;3&lt;/o:mn&gt;&lt;/o:msub&gt;&lt;/o:mrow&gt;&lt;/o:math&gt; layers is more intricate than previously thought and deserves further attention. &lt;jats:supplementary-material&gt; &lt;jats:copyright-statement&gt;Published by the American Physical Society&lt;/jats:co","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"116 1","pages":""},"PeriodicalIF":12.5,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1