Pub Date : 2025-01-22DOI: 10.1103/physrevd.111.013005
G. Martinelli, S. Simula, L. Vittorio
We present a simple approach to the study of semileptonic B→D*ℓνℓ decays based on the angular distributions of the final state particles only. Our approach is model independent and never requires the knowledge of |Vcb|. By studying such distributions in the case of light leptons, a comparison between results from different datasets from the Belle and BelleII Collaborations and between data and Standard Model calculations is also given for several interesting quantities. A good consistency is observed between some of the experimental results and the theoretical predictions. Published by the American Physical Society2025
{"title":"What we can learn from the angular differential rates from semileptonic B→D*ℓνℓ decays","authors":"G. Martinelli, S. Simula, L. Vittorio","doi":"10.1103/physrevd.111.013005","DOIUrl":"https://doi.org/10.1103/physrevd.111.013005","url":null,"abstract":"We present a simple approach to the study of semileptonic B</a:mi>→</a:mo>D</a:mi></a:mrow>*</a:mo></a:mrow></a:msup>ℓ</a:mo>ν</a:mi></a:mrow>ℓ</a:mo></a:mrow></a:msub></a:mrow></a:math> decays based on the angular distributions of the final state particles only. Our approach is model independent and never requires the knowledge of <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mo stretchy=\"false\">|</d:mo><d:msub><d:mi>V</d:mi><d:mrow><d:mi>c</d:mi><d:mi>b</d:mi></d:mrow></d:msub><d:mo stretchy=\"false\">|</d:mo></d:math>. By studying such distributions in the case of light leptons, a comparison between results from different datasets from the Belle and BelleII Collaborations and between data and Standard Model calculations is also given for several interesting quantities. A good consistency is observed between some of the experimental results and the theoretical predictions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"15 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1103/physrevd.111.023037
Charlie Hoy, Stephen Fairhurst, Ilya Mandel
The latest binary black hole population estimates argue for a subpopulation of unequal component mass binaries with spins that are likely small but isotropically distributed. This implies a nonzero probability of detecting spin-induced orbital precession and higher order multipole moments in the observed gravitational-wave signals. In this work we directly calculate the probability for precession and higher-order multipoles in each significant gravitational-wave candidate observed by the LIGO-Virgo-KAGRA collaborations. We find that only one event shows substantial evidence for precession: GW200129_065458, and two events show substantial evidence for higher-order multipoles: GW190412 and GW190814; any evidence for precession and higher-order multipole moments in other gravitational-wave signals is consistent with random fluctuations caused by noise. We then compare our observations with expectations from population models, and confirm that current population estimates from the LIGO-Virgo-KAGRA collaborations accurately predict the number of observed events with significant evidence for precession and higher-order multipoles. In particular, we find that this population model predicts that a binary with significant evidence for precession will occur once in every ∼50 detections, and a binary with significant evidence for higher-order multipoles will occur once in every ∼70 observations. However, we emphasize that since substantial evidence for precession and higher-order multipoles have only been observed in three events, any population model that includes a subpopulation of binaries yielding ∼2% of events with detectable precession and higher-order multipole moments will likely be consistent with the data. Published by the American Physical Society2025
{"title":"Rarity of precession and higher-order multipoles in gravitational waves from merging binary black holes","authors":"Charlie Hoy, Stephen Fairhurst, Ilya Mandel","doi":"10.1103/physrevd.111.023037","DOIUrl":"https://doi.org/10.1103/physrevd.111.023037","url":null,"abstract":"The latest binary black hole population estimates argue for a subpopulation of unequal component mass binaries with spins that are likely small but isotropically distributed. This implies a nonzero probability of detecting spin-induced orbital precession and higher order multipole moments in the observed gravitational-wave signals. In this work we directly calculate the probability for precession and higher-order multipoles in each significant gravitational-wave candidate observed by the LIGO-Virgo-KAGRA collaborations. We find that only one event shows substantial evidence for precession: GW200129_065458, and two events show substantial evidence for higher-order multipoles: GW190412 and GW190814; any evidence for precession and higher-order multipole moments in other gravitational-wave signals is consistent with random fluctuations caused by noise. We then compare our observations with expectations from population models, and confirm that current population estimates from the LIGO-Virgo-KAGRA collaborations accurately predict the number of observed events with significant evidence for precession and higher-order multipoles. In particular, we find that this population model predicts that a binary with significant evidence for precession will occur once in every ∼</a:mo>50</a:mn></a:math> detections, and a binary with significant evidence for higher-order multipoles will occur once in every <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mo>∼</c:mo><c:mn>70</c:mn></c:math> observations. However, we emphasize that since substantial evidence for precession and higher-order multipoles have only been observed in three events, any population model that includes a subpopulation of binaries yielding <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mo>∼</e:mo><e:mn>2</e:mn><e:mo>%</e:mo></e:math> of events with detectable precession and higher-order multipole moments will likely be consistent with the data. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"62 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1103/physrevd.111.025016
Yi-Da Li, Qing Wang
We propose a new method to calculate perturbatively the isospectral Hermitian theory for the PT-symmetric iϕ3 quantum field theory in d dimensions, whose result is local. The result of the new method in 1 dimension reproduces our previous result in the ix3 quantum mechanics, and the new method can be seen as a generalization of our previous method to quantum field theory. We also find the isospectral local Hermitian theory has the same form in all dimensions and differs in coefficients only, and our previous results in quantum mechanics can be used directly to determine the form of the isospectral local Hermitian quantum field theory. Published by the American Physical Society2025
{"title":"Isospectral local Hermitian theory for the PT -symmetric iϕ3 quantum field theory","authors":"Yi-Da Li, Qing Wang","doi":"10.1103/physrevd.111.025016","DOIUrl":"https://doi.org/10.1103/physrevd.111.025016","url":null,"abstract":"We propose a new method to calculate perturbatively the isospectral Hermitian theory for the P</a:mi>T</a:mi></a:mrow></a:math>-symmetric <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>i</e:mi><e:msup><e:mi>ϕ</e:mi><e:mn>3</e:mn></e:msup></e:math> quantum field theory in <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>d</g:mi></g:math> dimensions, whose result is local. The result of the new method in 1 dimension reproduces our previous result in the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>i</i:mi><i:msup><i:mi>x</i:mi><i:mn>3</i:mn></i:msup></i:math> quantum mechanics, and the new method can be seen as a generalization of our previous method to quantum field theory. We also find the isospectral local Hermitian theory has the same form in all dimensions and differs in coefficients only, and our previous results in quantum mechanics can be used directly to determine the form of the isospectral local Hermitian quantum field theory. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"119 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1103/physrevd.111.014022
A. Feijoo, V. Mantovani Sarti, J. Nieves, A. Ramos, I. Vidaña
We study the compatibility between the K</a:mi>−</a:mo></a:msup>Λ</a:mi></a:math> correlation function, recently measured by the ALICE collaboration, and the LHCb <d:math xmlns:d="http://www.w3.org/1998/Math/MathML" display="inline"><d:msup><d:mi>K</d:mi><d:mo>−</d:mo></d:msup><d:mi mathvariant="normal">Λ</d:mi></d:math> invariant mass distribution obtained in the <g:math xmlns:g="http://www.w3.org/1998/Math/MathML" display="inline"><g:msubsup><g:mi mathvariant="normal">Ξ</g:mi><g:mi>b</g:mi><g:mo>−</g:mo></g:msubsup><g:mo stretchy="false">→</g:mo><g:mi>J</g:mi><g:mo>/</g:mo><g:mi>ψ</g:mi><g:mi mathvariant="normal">Λ</g:mi><g:msup><g:mi>K</g:mi><g:mo>−</g:mo></g:msup></g:math> decay. The <l:math xmlns:l="http://www.w3.org/1998/Math/MathML" display="inline"><l:msup><l:mi>K</l:mi><l:mo>−</l:mo></l:msup><l:mi mathvariant="normal">Λ</l:mi></l:math> invariant mass distribution associated with the <o:math xmlns:o="http://www.w3.org/1998/Math/MathML" display="inline"><o:msubsup><o:mi mathvariant="normal">Ξ</o:mi><o:mi>b</o:mi><o:mo>−</o:mo></o:msubsup></o:math> decay has been calculated within the framework of unitary effective field theories using two models, one of them constrained by the <r:math xmlns:r="http://www.w3.org/1998/Math/MathML" display="inline"><r:msup><r:mi>K</r:mi><r:mo>−</r:mo></r:msup><r:mi mathvariant="normal">Λ</r:mi></r:math> correlation function. We consider two degenerate pentaquark <u:math xmlns:u="http://www.w3.org/1998/Math/MathML" display="inline"><u:msub><u:mi>P</u:mi><u:mrow><u:mi>c</u:mi><u:mi>s</u:mi></u:mrow></u:msub></u:math> states in the <w:math xmlns:w="http://www.w3.org/1998/Math/MathML" display="inline"><w:mi>J</w:mi><w:mo>/</w:mo><w:mi>ψ</w:mi><w:mi mathvariant="normal">Λ</w:mi></w:math> scattering amplitude which allows us to investigate their impact on both the <z:math xmlns:z="http://www.w3.org/1998/Math/MathML" display="inline"><z:msup><z:mi>K</z:mi><z:mo>−</z:mo></z:msup><z:mi mathvariant="normal">Λ</z:mi></z:math> and <cb:math xmlns:cb="http://www.w3.org/1998/Math/MathML" display="inline"><cb:mi>J</cb:mi><cb:mo>/</cb:mo><cb:mi>ψ</cb:mi><cb:mi mathvariant="normal">Λ</cb:mi></cb:math> mass distributions assuming different spin-parity quantum numbers and multiplicity. Without any fitting procedure, the <fb:math xmlns:fb="http://www.w3.org/1998/Math/MathML" display="inline"><fb:msup><fb:mi>K</fb:mi><fb:mo>−</fb:mo></fb:msup><fb:mi mathvariant="normal">Λ</fb:mi></fb:math> model is able to better reproduce the experimental <ib:math xmlns:ib="http://www.w3.org/1998/Math/MathML" display="inline"><ib:msup><ib:mi>K</ib:mi><ib:mo>−</ib:mo></ib:msup><ib:mi mathvariant="normal">Λ</ib:mi></ib:math> mass spectrum in the energy region above 1680 MeV as compared to previous unitarized scattering amplitudes constrained to a large amount of experimental data in the neutral <lb:math xmlns:lb="http://www.w3.org/1998/Math/MathML" display="inline"><lb:mi>S</lb:mi><lb:mo>=</lb:mo><lb:mo>−</lb:mo><lb:mn>1</lb:mn></lb:math> meson-bar
{"title":"Bridging correlation and spectroscopy measurements to access the hadron interaction behind molecular states: The case of the Ξ(1620) and Ξ(1690) in the K−Λ system","authors":"A. Feijoo, V. Mantovani Sarti, J. Nieves, A. Ramos, I. Vidaña","doi":"10.1103/physrevd.111.014022","DOIUrl":"https://doi.org/10.1103/physrevd.111.014022","url":null,"abstract":"We study the compatibility between the K</a:mi>−</a:mo></a:msup>Λ</a:mi></a:math> correlation function, recently measured by the ALICE collaboration, and the LHCb <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:msup><d:mi>K</d:mi><d:mo>−</d:mo></d:msup><d:mi mathvariant=\"normal\">Λ</d:mi></d:math> invariant mass distribution obtained in the <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msubsup><g:mi mathvariant=\"normal\">Ξ</g:mi><g:mi>b</g:mi><g:mo>−</g:mo></g:msubsup><g:mo stretchy=\"false\">→</g:mo><g:mi>J</g:mi><g:mo>/</g:mo><g:mi>ψ</g:mi><g:mi mathvariant=\"normal\">Λ</g:mi><g:msup><g:mi>K</g:mi><g:mo>−</g:mo></g:msup></g:math> decay. The <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:msup><l:mi>K</l:mi><l:mo>−</l:mo></l:msup><l:mi mathvariant=\"normal\">Λ</l:mi></l:math> invariant mass distribution associated with the <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:msubsup><o:mi mathvariant=\"normal\">Ξ</o:mi><o:mi>b</o:mi><o:mo>−</o:mo></o:msubsup></o:math> decay has been calculated within the framework of unitary effective field theories using two models, one of them constrained by the <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:msup><r:mi>K</r:mi><r:mo>−</r:mo></r:msup><r:mi mathvariant=\"normal\">Λ</r:mi></r:math> correlation function. We consider two degenerate pentaquark <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:msub><u:mi>P</u:mi><u:mrow><u:mi>c</u:mi><u:mi>s</u:mi></u:mrow></u:msub></u:math> states in the <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi>J</w:mi><w:mo>/</w:mo><w:mi>ψ</w:mi><w:mi mathvariant=\"normal\">Λ</w:mi></w:math> scattering amplitude which allows us to investigate their impact on both the <z:math xmlns:z=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><z:msup><z:mi>K</z:mi><z:mo>−</z:mo></z:msup><z:mi mathvariant=\"normal\">Λ</z:mi></z:math> and <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:mi>J</cb:mi><cb:mo>/</cb:mo><cb:mi>ψ</cb:mi><cb:mi mathvariant=\"normal\">Λ</cb:mi></cb:math> mass distributions assuming different spin-parity quantum numbers and multiplicity. Without any fitting procedure, the <fb:math xmlns:fb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fb:msup><fb:mi>K</fb:mi><fb:mo>−</fb:mo></fb:msup><fb:mi mathvariant=\"normal\">Λ</fb:mi></fb:math> model is able to better reproduce the experimental <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:msup><ib:mi>K</ib:mi><ib:mo>−</ib:mo></ib:msup><ib:mi mathvariant=\"normal\">Λ</ib:mi></ib:math> mass spectrum in the energy region above 1680 MeV as compared to previous unitarized scattering amplitudes constrained to a large amount of experimental data in the neutral <lb:math xmlns:lb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lb:mi>S</lb:mi><lb:mo>=</lb:mo><lb:mo>−</lb:mo><lb:mn>1</lb:mn></lb:math> meson-bar","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"74 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1103/physrevd.111.024050
Panagiota Kolitsidou, Jonathan E. Thompson, Mark Hannam
Many current models for the gravitational-wave signal from precessing black-hole binaries neglect an asymmetry in the ±m multipoles. The asymmetry is weak, but is responsible for out-of-plane recoil, which for the final black hole can be several thousand km/s. In this work we show that the multipole asymmetry is also necessary to accurately measure the black-hole spins. We consider synthetic signals calculated from the numerical relativity surrogate model ur7dq4, which includes the multipole asymmetry, and measure the signal parameters using two versions of the same model, one with and one without the multipole asymmetry included. We find that in high signal-to-noise-ratio observations where the spin magnitude and direction can in principle be measured accurately, neglecting the multipole asymmetry can result in biased measurements of these quantities. Measurements of the black-hole masses and the standard aligned-spin combination χeff are not in general strongly affected. As an illustration of the impact of the multipole asymmetry on a real signal we consider the LIGO-Virgo-KAGRA observation GW200129_065458, and find that the inclusion of the multipole asymmetry is necessary to identify the binary as unequal mass and a high in-plane spin in the primary. Published by the American Physical Society2025
{"title":"Impact of antisymmetric contributions to signal multipoles in the measurement of black-hole spins","authors":"Panagiota Kolitsidou, Jonathan E. Thompson, Mark Hannam","doi":"10.1103/physrevd.111.024050","DOIUrl":"https://doi.org/10.1103/physrevd.111.024050","url":null,"abstract":"Many current models for the gravitational-wave signal from precessing black-hole binaries neglect an asymmetry in the ±</a:mo>m</a:mi></a:math> multipoles. The asymmetry is weak, but is responsible for out-of-plane recoil, which for the final black hole can be several thousand <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mi>km</c:mi><c:mo>/</c:mo><c:mi mathvariant=\"normal\">s</c:mi></c:mrow></c:math>. In this work we show that the multipole asymmetry is also necessary to accurately measure the black-hole spins. We consider synthetic signals calculated from the numerical relativity surrogate model ur7dq4, which includes the multipole asymmetry, and measure the signal parameters using two versions of the same model, one with and one without the multipole asymmetry included. We find that in high signal-to-noise-ratio observations where the spin magnitude and direction can in principle be measured accurately, neglecting the multipole asymmetry can result in biased measurements of these quantities. Measurements of the black-hole masses and the standard aligned-spin combination <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:msub><f:mi>χ</f:mi><f:mi>eff</f:mi></f:msub></f:math> are not in general strongly affected. As an illustration of the impact of the multipole asymmetry on a real signal we consider the LIGO-Virgo-KAGRA observation GW200129_065458, and find that the inclusion of the multipole asymmetry is necessary to identify the binary as unequal mass and a high in-plane spin in the primary. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"15 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1103/physrevd.111.014021
T. G. Khunjua, K. G. Klimenko, R. N. Zhokhov
In this paper, the symmetry properties of the phase diagram of dense quark matter composed of u and d quarks with two or three colors has been investigated in the framework of massless (3+1)-dimensional Nambu–Jona-Lasinio (NJL) and QCD models. It turns out that in the presence of baryon μB, isospin μI, chiral μ5, and chiral isospin μI5 chemical potentials the Lagrangians of these models are invariant under the so-called dual transformations. Consequently, the entire NJL model (or QCD) thermodynamic potentials are dually symmetric. In particular, it means that in the total (μB,μI,μ5,μI5)-phase portraits of these models the chiral symmetry-breaking (CSB) and charged pion condensation (PC) phases are arranged dually conjugated (or symmetrical) to each other (in the case of three-color models), whereas in the case of two-color quark matter, these models predict the entire phase structure in which there are dual symmetries between CSB, charged PC, and baryon superfluid phases. Published by the American Physical Society2025
{"title":"Dual symmetries of dense three- and two-color QCD and some QCD-like NJL models","authors":"T. G. Khunjua, K. G. Klimenko, R. N. Zhokhov","doi":"10.1103/physrevd.111.014021","DOIUrl":"https://doi.org/10.1103/physrevd.111.014021","url":null,"abstract":"In this paper, the symmetry properties of the phase diagram of dense quark matter composed of u</a:mi></a:math> and <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>d</c:mi></c:math> quarks with two or three colors has been investigated in the framework of massless (<e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mn>3</e:mn><e:mo>+</e:mo><e:mn>1</e:mn></e:mrow></e:math>)-dimensional Nambu–Jona-Lasinio (NJL) and QCD models. It turns out that in the presence of baryon <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msub><g:mi>μ</g:mi><g:mi>B</g:mi></g:msub></g:math>, isospin <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msub><i:mi>μ</i:mi><i:mi>I</i:mi></i:msub></i:math>, chiral <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msub><k:mi>μ</k:mi><k:mn>5</k:mn></k:msub></k:math>, and chiral isospin <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msub><m:mi>μ</m:mi><m:mrow><m:mi>I</m:mi><m:mn>5</m:mn></m:mrow></m:msub></m:math> chemical potentials the Lagrangians of these models are invariant under the so-called dual transformations. Consequently, the entire NJL model (or QCD) thermodynamic potentials are dually symmetric. In particular, it means that in the total <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mo stretchy=\"false\">(</o:mo><o:msub><o:mi>μ</o:mi><o:mi>B</o:mi></o:msub><o:mo>,</o:mo><o:msub><o:mi>μ</o:mi><o:mi>I</o:mi></o:msub><o:mo>,</o:mo><o:msub><o:mi>μ</o:mi><o:mn>5</o:mn></o:msub><o:mo>,</o:mo><o:msub><o:mi>μ</o:mi><o:mrow><o:mi>I</o:mi><o:mn>5</o:mn></o:mrow></o:msub><o:mo stretchy=\"false\">)</o:mo></o:math>-phase portraits of these models the chiral symmetry-breaking (CSB) and charged pion condensation (PC) phases are arranged dually conjugated (or symmetrical) to each other (in the case of three-color models), whereas in the case of two-color quark matter, these models predict the entire phase structure in which there are dual symmetries between CSB, charged PC, and baryon superfluid phases. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"31 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1103/physrevd.111.016021
Brenda B. Malabarba, K. P. Khemchandani, A. Martínez Torres, Seung-il Nam
In view of the renewing experimental interest for searching strangeness +</a:mo>1</a:mn></a:math> baryons at J-PARC, we study the existence of light baryon resonances with strangeness <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:mrow><c:mo>+</c:mo><c:mn>1</c:mn></c:mrow></c:math> generated in the <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline"><e:mrow><e:mi>K</e:mi><e:mo>−</e:mo><e:mo stretchy="false">(</e:mo><e:msup><e:mrow><e:mi>N</e:mi></e:mrow><e:mrow><e:mo>*</e:mo></e:mrow></e:msup><e:mo>/</e:mo><e:msup><e:mrow><e:mi mathvariant="normal">Δ</e:mi></e:mrow><e:mrow><e:mo>*</e:mo></e:mrow></e:msup><e:mo stretchy="false">)</e:mo></e:mrow></e:math> system, where <j:math xmlns:j="http://www.w3.org/1998/Math/MathML" display="inline"><j:msup><j:mi>N</j:mi><j:mo>*</j:mo></j:msup></j:math> represents either <l:math xmlns:l="http://www.w3.org/1998/Math/MathML" display="inline"><l:mrow><l:msup><l:mrow><l:mi>N</l:mi></l:mrow><l:mrow><l:mo>*</l:mo></l:mrow></l:msup><l:mo stretchy="false">(</l:mo><l:mn>1535</l:mn><l:mo stretchy="false">)</l:mo><l:mo>/</l:mo><l:msup><l:mrow><l:mi>N</l:mi></l:mrow><l:mrow><l:mo>*</l:mo></l:mrow></l:msup><l:mo stretchy="false">(</l:mo><l:mn>1650</l:mn><l:mo stretchy="false">)</l:mo><l:mo>/</l:mo><l:msup><l:mrow><l:mi>N</l:mi></l:mrow><l:mrow><l:mo>*</l:mo></l:mrow></l:msup><l:mo stretchy="false">(</l:mo><l:mn>1700</l:mn><l:mo stretchy="false">)</l:mo></l:mrow></l:math>, and <t:math xmlns:t="http://www.w3.org/1998/Math/MathML" display="inline"><t:msup><t:mi mathvariant="normal">Δ</t:mi><t:mo>*</t:mo></t:msup></t:math> corresponds to <w:math xmlns:w="http://www.w3.org/1998/Math/MathML" display="inline"><w:mi mathvariant="normal">Δ</w:mi><w:mo stretchy="false">(</w:mo><w:mn>1620</w:mn><w:mo stretchy="false">)</w:mo></w:math>. The description of the properties of the aforementioned states requires considering the dynamics involved in the coupled pseudoscalar-baryon (PB) and vector-baryon (VB) systems with strangeness <bb:math xmlns:bb="http://www.w3.org/1998/Math/MathML" display="inline"><bb:mi>S</bb:mi><bb:mo>=</bb:mo><bb:mn>0</bb:mn></bb:math> in the <db:math xmlns:db="http://www.w3.org/1998/Math/MathML" display="inline"><db:mi>s</db:mi></db:math> wave. For the purpose of our current study, we consider the PB and VB channels to which the mentioned <fb:math xmlns:fb="http://www.w3.org/1998/Math/MathML" display="inline"><fb:msup><fb:mi>N</fb:mi><fb:mo>*</fb:mo></fb:msup></fb:math> and <hb:math xmlns:hb="http://www.w3.org/1998/Math/MathML" display="inline"><hb:msup><hb:mi mathvariant="normal">Δ</hb:mi><hb:mo>*</hb:mo></hb:msup></hb:math> resonances couple and solve the Faddeev equations for the coupled channel system <kb:math xmlns:kb="http://www.w3.org/1998/Math/MathML" display="inline"><kb:mi>K</kb:mi></kb:math>-PB, <mb:math xmlns:mb="http://www.w3.org/1998/Math/MathML" display="inline"><mb:mi>K</mb:mi></mb:math>-VB, with all interactions being in the <ob:math xmlns:ob="http://www
{"title":"Strangeness +1 light multiquark baryons","authors":"Brenda B. Malabarba, K. P. Khemchandani, A. Martínez Torres, Seung-il Nam","doi":"10.1103/physrevd.111.016021","DOIUrl":"https://doi.org/10.1103/physrevd.111.016021","url":null,"abstract":"In view of the renewing experimental interest for searching strangeness +</a:mo>1</a:mn></a:math> baryons at J-PARC, we study the existence of light baryon resonances with strangeness <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mo>+</c:mo><c:mn>1</c:mn></c:mrow></c:math> generated in the <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mi>K</e:mi><e:mo>−</e:mo><e:mo stretchy=\"false\">(</e:mo><e:msup><e:mrow><e:mi>N</e:mi></e:mrow><e:mrow><e:mo>*</e:mo></e:mrow></e:msup><e:mo>/</e:mo><e:msup><e:mrow><e:mi mathvariant=\"normal\">Δ</e:mi></e:mrow><e:mrow><e:mo>*</e:mo></e:mrow></e:msup><e:mo stretchy=\"false\">)</e:mo></e:mrow></e:math> system, where <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:msup><j:mi>N</j:mi><j:mo>*</j:mo></j:msup></j:math> represents either <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:mrow><l:msup><l:mrow><l:mi>N</l:mi></l:mrow><l:mrow><l:mo>*</l:mo></l:mrow></l:msup><l:mo stretchy=\"false\">(</l:mo><l:mn>1535</l:mn><l:mo stretchy=\"false\">)</l:mo><l:mo>/</l:mo><l:msup><l:mrow><l:mi>N</l:mi></l:mrow><l:mrow><l:mo>*</l:mo></l:mrow></l:msup><l:mo stretchy=\"false\">(</l:mo><l:mn>1650</l:mn><l:mo stretchy=\"false\">)</l:mo><l:mo>/</l:mo><l:msup><l:mrow><l:mi>N</l:mi></l:mrow><l:mrow><l:mo>*</l:mo></l:mrow></l:msup><l:mo stretchy=\"false\">(</l:mo><l:mn>1700</l:mn><l:mo stretchy=\"false\">)</l:mo></l:mrow></l:math>, and <t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><t:msup><t:mi mathvariant=\"normal\">Δ</t:mi><t:mo>*</t:mo></t:msup></t:math> corresponds to <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi mathvariant=\"normal\">Δ</w:mi><w:mo stretchy=\"false\">(</w:mo><w:mn>1620</w:mn><w:mo stretchy=\"false\">)</w:mo></w:math>. The description of the properties of the aforementioned states requires considering the dynamics involved in the coupled pseudoscalar-baryon (PB) and vector-baryon (VB) systems with strangeness <bb:math xmlns:bb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><bb:mi>S</bb:mi><bb:mo>=</bb:mo><bb:mn>0</bb:mn></bb:math> in the <db:math xmlns:db=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><db:mi>s</db:mi></db:math> wave. For the purpose of our current study, we consider the PB and VB channels to which the mentioned <fb:math xmlns:fb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fb:msup><fb:mi>N</fb:mi><fb:mo>*</fb:mo></fb:msup></fb:math> and <hb:math xmlns:hb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><hb:msup><hb:mi mathvariant=\"normal\">Δ</hb:mi><hb:mo>*</hb:mo></hb:msup></hb:math> resonances couple and solve the Faddeev equations for the coupled channel system <kb:math xmlns:kb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kb:mi>K</kb:mi></kb:math>-PB, <mb:math xmlns:mb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mb:mi>K</mb:mi></mb:math>-VB, with all interactions being in the <ob:math xmlns:ob=\"http://www","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"3 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1103/physrevd.111.023531
Luis A. Escamilla, Supriya Pan, Eleonora Di Valentino, Andronikos Paliathanasis, José Alberto Vázquez, Weiqiang Yang
The main aim of this work is to use a model-independent approach, along with late-time observational probes, to reconstruct the dark energy (DE) equation of state wDE(z). Our analysis showed that, for a late time universe, wDE deviates from being a constant but in contrast exhibits an oscillatory behavior, hence both quintessence (wDE>−1) and phantom (wDE<−1) regimes are equally allowed. In order to portray this oscillatory behavior, we explored various parametrizations for the equation of state and identified the closest approximation based on the goodness of fit with the data and the Bayesian evidence analysis. Our findings indicated that while all considered oscillating DE parametrizations provide a better fit to the data, when compared to the cosmological constant, they are penalized in the Bayesian evidence analysis due to the additional free parameters. Overall, the present article demonstrates that, in the low redshift regime, the equation of state of the DE prefers to be dynamical and oscillating. We anticipate that future cosmological probes will take a stand in this direction. Published by the American Physical Society2025
{"title":"Testing an oscillatory behavior of dark energy","authors":"Luis A. Escamilla, Supriya Pan, Eleonora Di Valentino, Andronikos Paliathanasis, José Alberto Vázquez, Weiqiang Yang","doi":"10.1103/physrevd.111.023531","DOIUrl":"https://doi.org/10.1103/physrevd.111.023531","url":null,"abstract":"The main aim of this work is to use a model-independent approach, along with late-time observational probes, to reconstruct the dark energy (DE) equation of state w</a:mi></a:mrow>DE</a:mi></a:mrow></a:msub>(</a:mo>z</a:mi>)</a:mo></a:mrow></a:math>. Our analysis showed that, for a late time universe, <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mi>w</e:mi><e:mrow><e:mi>DE</e:mi></e:mrow></e:msub></e:math> deviates from being a constant but in contrast exhibits an oscillatory behavior, hence both quintessence (<g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msub><g:mi>w</g:mi><g:mrow><g:mi>DE</g:mi></g:mrow></g:msub><g:mo>></g:mo><g:mo>−</g:mo><g:mn>1</g:mn></g:math>) and phantom (<i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msub><i:mi>w</i:mi><i:mrow><i:mi>DE</i:mi></i:mrow></i:msub><i:mo><</i:mo><i:mo>−</i:mo><i:mn>1</i:mn></i:math>) regimes are equally allowed. In order to portray this oscillatory behavior, we explored various parametrizations for the equation of state and identified the closest approximation based on the goodness of fit with the data and the Bayesian evidence analysis. Our findings indicated that while all considered oscillating DE parametrizations provide a better fit to the data, when compared to the cosmological constant, they are penalized in the Bayesian evidence analysis due to the additional free parameters. Overall, the present article demonstrates that, in the low redshift regime, the equation of state of the DE prefers to be dynamical and oscillating. We anticipate that future cosmological probes will take a stand in this direction. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"25 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1103/physrevd.111.014506
Szabolcs Borsányi, Zoltán Fodor, Jana N. Guenther, Ruben Kara, Paolo Parotto, Attila Pásztor, Ludovica Pirelli, Chik Him Wong
The crossover from hadronic to quark matter is understood to be both a deconfinement as well as a chiral symmetry–restoring transition. The precise definition of these aspects may be ambiguous. Here we use the static quark free energy and its temperature derivative as proxies for deconfinement and the chiral condensate and its mass derivatives for the chiral transition. At zero baryochemical potential, and infinite volume, the chiral and deconfinement crossover temperatures almost agree. However, as we vary the spatial volume of the simulation, we observe that chiral and deconfinement-related observables have a qualitatively different chemical potential and volume dependence. In general, deconfinement-related observables have a milder volume dependence. Furthermore, while the deconfinement transition appears to get broader with increasing μB, the width as well as the strength of the chiral transition is approximately constant. Our results are based on simulations at zero and imaginary chemical potentials using 4-stout-improved staggered fermions with Nτ=12 time slices and physical quark masses. Published by the American Physical Society2025
{"title":"Chiral versus deconfinement properties of the QCD crossover: Differences in the volume and chemical potential dependence from the lattice","authors":"Szabolcs Borsányi, Zoltán Fodor, Jana N. Guenther, Ruben Kara, Paolo Parotto, Attila Pásztor, Ludovica Pirelli, Chik Him Wong","doi":"10.1103/physrevd.111.014506","DOIUrl":"https://doi.org/10.1103/physrevd.111.014506","url":null,"abstract":"The crossover from hadronic to quark matter is understood to be both a deconfinement as well as a chiral symmetry–restoring transition. The precise definition of these aspects may be ambiguous. Here we use the static quark free energy and its temperature derivative as proxies for deconfinement and the chiral condensate and its mass derivatives for the chiral transition. At zero baryochemical potential, and infinite volume, the chiral and deconfinement crossover temperatures almost agree. However, as we vary the spatial volume of the simulation, we observe that chiral and deconfinement-related observables have a qualitatively different chemical potential and volume dependence. In general, deconfinement-related observables have a milder volume dependence. Furthermore, while the deconfinement transition appears to get broader with increasing μ</a:mi>B</a:mi></a:msub></a:math>, the width as well as the strength of the chiral transition is approximately constant. Our results are based on simulations at zero and imaginary chemical potentials using 4-stout-improved staggered fermions with <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>N</c:mi><c:mi>τ</c:mi></c:msub><c:mo>=</c:mo><c:mn>12</c:mn></c:math> time slices and physical quark masses. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"205 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We apply machine learning to understand fundamental aspects of holographic duality, specifically the entropies obtained from the apparent and event horizon areas. We show that simple features of only the time series of the pressure anisotropy, namely the values and half-widths of the maxima and minima, the times these are attained, and the times of the first zeroes can predict the areas of the apparent and event horizons in the dual bulk geometry at all times with a fixed maximum length (10) of the input vector. We also argue that the entropy functions are the measures of information that need to be extracted from simple one-point functions to reconstruct specific aspects of correlation functions of the dual state with the best possible approximations. Published by the American Physical Society2025
{"title":"Learning holographic horizons","authors":"Vishnu Jejjala, Sukrut Mondkar, Ayan Mukhopadhyay, Rishi Raj","doi":"10.1103/physrevd.111.026016","DOIUrl":"https://doi.org/10.1103/physrevd.111.026016","url":null,"abstract":"We apply machine learning to understand fundamental aspects of holographic duality, specifically the entropies obtained from the apparent and event horizon areas. We show that simple features of only the time series of the pressure anisotropy, namely the values and half-widths of the maxima and minima, the times these are attained, and the times of the first zeroes can predict the areas of the apparent and event horizons in the dual bulk geometry at all times with a fixed maximum length (10) of the input vector. We also argue that the entropy functions are the measures of information that need to be extracted from simple one-point functions to reconstruct specific aspects of correlation functions of the dual state with the best possible approximations. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"32 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}