首页 > 最新文献

Physical Review D最新文献

英文 中文
Three-dimensional calculations of positron creation in supercritical collisions of heavy nuclei 重核超临界碰撞中正电子产生的三维计算
IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-21 DOI: 10.1103/physrevd.111.016018
N. K. Dulaev, D. A. Telnov, V. M. Shabaev, Y. S. Kozhedub, X. Ma, I. A. Maltsev, R. V. Popov, I. I. Tupitsyn
Energy-angle differential and total probabilities of positron creation in slow supercritical collisions of two identical heavy nuclei are calculated beyond the monopole approximation. The time-dependent Dirac equation (TDDE) for positrons is solved using the generalized pseudospectral method in modified prolate spheroidal coordinates, which are well suited for description of close collisions in two-center quantum systems. In the frame of reference where the quasimolecular axis is fixed, the rotational coupling term is added to the Hamiltonian. Unlike our previous calculations, we do not discard this term and retain it when solving the TDDE. Both three-dimensional angle-resolved and angle-integrated energy distributions of outgoing positrons are obtained. Three-dimensional angle-resolved distributions exhibit a high degree of isotropy. For the collision energies in the interval 6 to 8MeV/u, the influence of the rotational coupling on the distributions and total positron creation probabilities is quite small. Published by the American Physical Society 2025
在单极子近似之外,计算了两个相同重核慢速超临界碰撞中正电子产生的能量角微分和总概率。利用广义伪谱法在修正的长时间球坐标系下求解正电子的时间相关狄拉克方程,该方程非常适合描述双中心量子系统的紧密碰撞。在准分子轴固定的参考系中,将转动耦合项加入到哈密顿量中。与之前的计算不同,在求解TDDE时,我们没有丢弃这一项,而是保留了它。得到了出射正电子的三维角分辨和角积分能量分布。三维角分辨分布表现出高度的各向同性。在6 ~ 8MeV/u的碰撞能量范围内,旋转耦合对正电子分布和总产生概率的影响很小。2025年由美国物理学会出版
{"title":"Three-dimensional calculations of positron creation in supercritical collisions of heavy nuclei","authors":"N. K. Dulaev, D. A. Telnov, V. M. Shabaev, Y. S. Kozhedub, X. Ma, I. A. Maltsev, R. V. Popov, I. I. Tupitsyn","doi":"10.1103/physrevd.111.016018","DOIUrl":"https://doi.org/10.1103/physrevd.111.016018","url":null,"abstract":"Energy-angle differential and total probabilities of positron creation in slow supercritical collisions of two identical heavy nuclei are calculated beyond the monopole approximation. The time-dependent Dirac equation (TDDE) for positrons is solved using the generalized pseudospectral method in modified prolate spheroidal coordinates, which are well suited for description of close collisions in two-center quantum systems. In the frame of reference where the quasimolecular axis is fixed, the rotational coupling term is added to the Hamiltonian. Unlike our previous calculations, we do not discard this term and retain it when solving the TDDE. Both three-dimensional angle-resolved and angle-integrated energy distributions of outgoing positrons are obtained. Three-dimensional angle-resolved distributions exhibit a high degree of isotropy. For the collision energies in the interval 6 to 8</a:mn></a:mtext></a:mtext>MeV</a:mi>/</a:mo>u</a:mi></a:mrow></a:math>, the influence of the rotational coupling on the distributions and total positron creation probabilities is quite small. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"105 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spherically symmetric Earth models yield no net electron spin 球对称地球模型不产生净电子自旋
IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-21 DOI: 10.1103/physrevd.111.015015
N. B. Clayburn, A. Glassford, A. Leiker, T. Uelmen, J. F. Lin, L. R. Hunter
Terrestrial experiments that use electrons in Earth as a spin-polarized source have been demonstrated to provide strong bounds on exotic long-range spin-spin and spin-velocity interactions. These bounds constrain the coupling strength of many proposed ultralight bosonic dark-matter candidates. Recently, it was pointed out that a monopole-dipole coupling between the Sun and the spin-polarized electrons of Earth would result in a modification of the precession of the perihelion of Earth. Using an estimate for the net spin polarization of Earth and experimental bounds on Earth’s perihelion precession, interesting constraints were placed on the magnitude of this monopole-dipole coupling. Here we investigate the spin associated with Earth’s electrons. We find that there are about 6×1041 spin-polarized electrons in the mantle and crust of Earth oriented antiparallel to their local magnetic field. However, when integrated over any spherically symmetric Earth model, we find that the vector sum of these spins is zero. In order to establish a lower bound on the magnitude of the net spin along Earth’s rotation axis we have investigated three of the largest breakdowns of Earth’s spherical symmetry: the large low shear-velocity provinces of the mantle, the crustal composition, and the oblate spheroid of Earth. From these investigations we conclude that there are at least 5×1038 spin-polarized electrons aligned antiparallel to Earth’s rotation axis. This analysis suggests that the bounds on the monopole-dipole coupling that were extracted from Earth’s perihelion precession need to be relaxed by a factor of about 2000. Published by the American Physical Society 2025
利用地球上的电子作为自旋极化源的地面实验已被证明可以提供奇异的远程自旋-自旋和自旋速度相互作用的强边界。这些边界限制了许多提出的超轻玻色子暗物质候选者的耦合强度。最近,有人指出太阳与地球的自旋极化电子之间的单极-偶极耦合会导致地球近日点进动的改变。利用对地球净自旋极化的估计和地球近日点进动的实验界限,对这种单极-偶极耦合的大小施加了有趣的限制。这里我们研究与地球电子有关的自旋。我们发现在地球的地幔和地壳中有大约6×1041的自旋极化电子,它们的方向与它们的磁场方向相反。然而,当对任何球对称地球模型进行积分时,我们发现这些自旋的矢量和为零。为了确定沿地球自转轴的净自转幅度的下限,我们研究了地球球形对称性的三个最大破坏:地幔的大的低剪切速度区、地壳成分和地球的扁球体。从这些研究中,我们得出结论,至少有5×1038自旋极化电子与地球自转轴反平行。这一分析表明,从地球近日点进动中提取的单极-偶极耦合的界限需要放宽约2000倍。2025年由美国物理学会出版
{"title":"Spherically symmetric Earth models yield no net electron spin","authors":"N. B. Clayburn, A. Glassford, A. Leiker, T. Uelmen, J. F. Lin, L. R. Hunter","doi":"10.1103/physrevd.111.015015","DOIUrl":"https://doi.org/10.1103/physrevd.111.015015","url":null,"abstract":"Terrestrial experiments that use electrons in Earth as a spin-polarized source have been demonstrated to provide strong bounds on exotic long-range spin-spin and spin-velocity interactions. These bounds constrain the coupling strength of many proposed ultralight bosonic dark-matter candidates. Recently, it was pointed out that a monopole-dipole coupling between the Sun and the spin-polarized electrons of Earth would result in a modification of the precession of the perihelion of Earth. Using an estimate for the net spin polarization of Earth and experimental bounds on Earth’s perihelion precession, interesting constraints were placed on the magnitude of this monopole-dipole coupling. Here we investigate the spin associated with Earth’s electrons. We find that there are about 6</a:mn>×</a:mo>10</a:mn>41</a:mn></a:msup></a:math> spin-polarized electrons in the mantle and crust of Earth oriented antiparallel to their local magnetic field. However, when integrated over any spherically symmetric Earth model, we find that the vector sum of these spins is zero. In order to establish a lower bound on the magnitude of the net spin along Earth’s rotation axis we have investigated three of the largest breakdowns of Earth’s spherical symmetry: the large low shear-velocity provinces of the mantle, the crustal composition, and the oblate spheroid of Earth. From these investigations we conclude that there are at least <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mn>5</c:mn><c:mo>×</c:mo><c:msup><c:mn>10</c:mn><c:mn>38</c:mn></c:msup></c:math> spin-polarized electrons aligned antiparallel to Earth’s rotation axis. This analysis suggests that the bounds on the monopole-dipole coupling that were extracted from Earth’s perihelion precession need to be relaxed by a factor of about 2000. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"32 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Particle production in a toy model: Multiplicity distribution and entropy 玩具模型中的粒子产生:多重分布和熵
IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-21 DOI: 10.1103/physrevd.111.016019
Eugene Levin
In this paper we found the multiplicity distribution of the produced dipoles in the final state for dipole-dipole scattering in the zero dimension toy models. This distribution shows the great differences from the distributions of partons in the wave function of the projectile. However, in spite of this difference the entropy of the produced dipoles turns out to be the same as the entropy of the dipoles in the wave function. This fact is not surprising since in the parton approach only dipoles in the hadron wave function which can be produced at t=+∞ and measured by the detectors. We can also confirm the result of Kharzeev and Levin that this entropy is equal to SE=ln(xG(x)), where we denote by xG the mean multiplicity of the dipoles in the deep inelastic scattering. The evolution equations for σn are derived. Published by the American Physical Society 2025
本文研究了零维玩具模型中偶极子-偶极子散射最终态产生的偶极子的多重分布。这种分布与弹体波函数的部分分布有很大的不同。然而,尽管存在这种差异,产生的偶极子的熵与波函数中偶极子的熵是相同的。这一事实并不令人惊讶,因为在部分子方法中,强子波函数中只有偶极子可以在t=+∞时产生并由探测器测量。我们还可以证实Kharzeev和Levin的结果,即该熵等于SE=ln(xG(x)),其中我们用xG表示深非弹性散射中偶极子的平均多重性。推导了σn的演化方程。2025年由美国物理学会出版
{"title":"Particle production in a toy model: Multiplicity distribution and entropy","authors":"Eugene Levin","doi":"10.1103/physrevd.111.016019","DOIUrl":"https://doi.org/10.1103/physrevd.111.016019","url":null,"abstract":"In this paper we found the multiplicity distribution of the produced dipoles in the final state for dipole-dipole scattering in the zero dimension toy models. This distribution shows the great differences from the distributions of partons in the wave function of the projectile. However, in spite of this difference the entropy of the produced dipoles turns out to be the same as the entropy of the dipoles in the wave function. This fact is not surprising since in the parton approach only dipoles in the hadron wave function which can be produced at t</a:mi>=</a:mo>+</a:mo>∞</a:mi></a:math> and measured by the detectors. We can also confirm the result of Kharzeev and Levin that this entropy is equal to <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>S</c:mi><c:mi>E</c:mi></c:msub><c:mo>=</c:mo><c:mi>ln</c:mi><c:mrow><c:mo stretchy=\"false\">(</c:mo><c:mi>x</c:mi><c:mi>G</c:mi><c:mo stretchy=\"false\">(</c:mo><c:mi>x</c:mi><c:mo stretchy=\"false\">)</c:mo><c:mo stretchy=\"false\">)</c:mo></c:mrow></c:math>, where we denote by <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>x</i:mi><i:mi>G</i:mi></i:math> the mean multiplicity of the dipoles in the deep inelastic scattering. The evolution equations for <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msub><k:mi>σ</k:mi><k:mi>n</k:mi></k:msub></k:math> are derived. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"164 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jet discrimination with a quantum complete graph neural network 基于量子完全图神经网络的射流判别
IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-21 DOI: 10.1103/physrevd.111.016020
Yi-An Chen, Kai-Feng Chen
Machine learning, particularly deep neural networks, has been widely used in high-energy physics, demonstrating remarkable results in various applications. Furthermore, the extension of machine learning to quantum computers has given rise to the emerging field of quantum machine learning. In this paper, we propose the quantum complete graph neural network (QCGNN), which is a variational quantum algorithm-based model designed for learning on complete graphs. The QCGNN with deep parametrized operators offers a polynomial speedup over its classical and quantum counterparts, leveraging the property of quantum parallelism. We investigate the application of the QCGNN with the challenging task of jet discrimination, where the jets are represented as complete graphs. Additionally, we conduct a comparative analysis with classical models to establish a performance benchmark. Published by the American Physical Society 2025
机器学习,特别是深度神经网络,在高能物理中得到了广泛的应用,并在各种应用中取得了显著的成果。此外,机器学习向量子计算机的延伸也催生了量子机器学习这一新兴领域。本文提出了量子完全图神经网络(QCGNN),它是一种基于变分量子算法的完全图学习模型。利用量子并行性的特性,具有深度参数化算子的QCGNN比经典算子和量子算子具有多项式加速。我们研究了QCGNN的应用,其中具有挑战性的任务是射流识别,其中射流表示为完全图。此外,我们还与经典模型进行了比较分析,以建立性能基准。2025年由美国物理学会出版
{"title":"Jet discrimination with a quantum complete graph neural network","authors":"Yi-An Chen, Kai-Feng Chen","doi":"10.1103/physrevd.111.016020","DOIUrl":"https://doi.org/10.1103/physrevd.111.016020","url":null,"abstract":"Machine learning, particularly deep neural networks, has been widely used in high-energy physics, demonstrating remarkable results in various applications. Furthermore, the extension of machine learning to quantum computers has given rise to the emerging field of quantum machine learning. In this paper, we propose the quantum complete graph neural network (QCGNN), which is a variational quantum algorithm-based model designed for learning on complete graphs. The QCGNN with deep parametrized operators offers a polynomial speedup over its classical and quantum counterparts, leveraging the property of quantum parallelism. We investigate the application of the QCGNN with the challenging task of jet discrimination, where the jets are represented as complete graphs. Additionally, we conduct a comparative analysis with classical models to establish a performance benchmark. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"137 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modular family symmetry in fluxed GUTs 含通量GUTs中的模族对称
IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-17 DOI: 10.1103/physrevd.111.015012
Vasileios Basiouris, Miguel Crispim Romão, Stephen F. King, George K. Leontaris
We discuss modular family symmetry in effective theories based on generic properties of bottom-up local F-theory inspired grand unified theories (GUTs) broken by fluxes, which we refer to as fluxed GUTs. We argue that the Yukawa couplings will depend on the complex structure moduli of the matter curves in such a way that they can be modular forms associated with these symmetries. To illustrate the approach, we analyze in detail a concrete local fluxed SU(5) GUT with modular S4 family symmetry. Published by the American Physical Society 2025
基于被通量破缺的自下而上局部f理论启发的大统一理论(GUTs)的一般性质,讨论了有效理论中的模族对称性。我们认为汤川耦合将以这样一种方式依赖于物质曲线的复杂结构模,即它们可以是与这些对称性相关的模形式。为了说明这种方法,我们详细地分析了一个具有模S4族对称的具体的局部通量SU(5) GUT。2025年由美国物理学会出版
{"title":"Modular family symmetry in fluxed GUTs","authors":"Vasileios Basiouris, Miguel Crispim Romão, Stephen F. King, George K. Leontaris","doi":"10.1103/physrevd.111.015012","DOIUrl":"https://doi.org/10.1103/physrevd.111.015012","url":null,"abstract":"We discuss modular family symmetry in effective theories based on generic properties of bottom-up local F-theory inspired grand unified theories (GUTs) broken by fluxes, which we refer to as fluxed GUTs. We argue that the Yukawa couplings will depend on the complex structure moduli of the matter curves in such a way that they can be modular forms associated with these symmetries. To illustrate the approach, we analyze in detail a concrete local fluxed S</a:mi>U</a:mi>(</a:mo>5</a:mn>)</a:mo></a:mrow></a:math> GUT with modular <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mi>S</e:mi><e:mn>4</e:mn></e:msub></e:math> family symmetry. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"37 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetic nucleon form factors in the extended vector meson dominance model 扩展矢量介子优势模型中的电磁核子形式因子
IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-17 DOI: 10.1103/physrevd.111.013004
K. S. Kuzmin, N. M. Levashko, M. I. Krivoruchenko
An extended vector meson dominance model is developed to describe electromagnetic nucleon form factors. The model includes families of the ρ- and ω-mesons with the associated radial excitations. The free parameters of the model are determined using a global statistical analysis of experimental data on the electromagnetic nucleon form factors in space- and timelike regions of transferred momenta. The vector meson masses and widths are equal to their empirical values, while the residues of form factors at the poles corresponding to the ground states of the ρ- and ω-mesons are consistent with the findings of both the Frazer-Fulco unitarity relations and the Bonn potential for coupling constants of the ρ- and ω-mesons with nucleons. Theoretical constraints imposed on the model include the quark counting rules, the Okubo-Zweig-Iizuka rule, the scaling law of Sachs form factors at moderate momentum transfers, and the suppression of Sachs form factors near the nucleon–antinucleon threshold. A reasonable description of the nucleon form factors in the experimentally accessible range of transferred momenta, as well as the electric and magnetic nucleon radii and Zemach radii, is obtained. Published by the American Physical Society 2025
建立了一个扩展的矢量介子优势模型来描述电磁核子的形状因子。该模型包括具有相关径向激励的ρ介子和ω介子族。利用对传递动量的空、时类区域的电磁核子形态因子的实验数据进行全局统计分析,确定了模型的自由参数。矢量介子质量和宽度等于它们的经验值,而ρ-介子和ω-介子基态对应的形式因子在极点的残差与Frazer-Fulco统一关系和ρ-介子和ω-介子与核子耦合常数的波恩势的结果一致。对模型施加的理论约束包括夸克计数规则、okuho - zweig - iizuka规则、中等动量转移下Sachs形式因子的标度定律以及在核子-反核子阈值附近Sachs形式因子的抑制。得到了在实验可及的转移动量范围内的核子形状因子,以及核子的电半径和磁半径和泽马赫半径的合理描述。2025年由美国物理学会出版
{"title":"Electromagnetic nucleon form factors in the extended vector meson dominance model","authors":"K. S. Kuzmin, N. M. Levashko, M. I. Krivoruchenko","doi":"10.1103/physrevd.111.013004","DOIUrl":"https://doi.org/10.1103/physrevd.111.013004","url":null,"abstract":"An extended vector meson dominance model is developed to describe electromagnetic nucleon form factors. The model includes families of the ρ</a:mi></a:math>- and <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>ω</c:mi></c:math>-mesons with the associated radial excitations. The free parameters of the model are determined using a global statistical analysis of experimental data on the electromagnetic nucleon form factors in space- and timelike regions of transferred momenta. The vector meson masses and widths are equal to their empirical values, while the residues of form factors at the poles corresponding to the ground states of the <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>ρ</e:mi></e:math>- and <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>ω</g:mi></g:math>-mesons are consistent with the findings of both the Frazer-Fulco unitarity relations and the Bonn potential for coupling constants of the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>ρ</i:mi></i:math>- and <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>ω</k:mi></k:math>-mesons with nucleons. Theoretical constraints imposed on the model include the quark counting rules, the Okubo-Zweig-Iizuka rule, the scaling law of Sachs form factors at moderate momentum transfers, and the suppression of Sachs form factors near the nucleon–antinucleon threshold. A reasonable description of the nucleon form factors in the experimentally accessible range of transferred momenta, as well as the electric and magnetic nucleon radii and Zemach radii, is obtained. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"30 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mass spectra of full-heavy and double-heavy tetraquark states in the conventional quark model 传统夸克模型中全重和双重四夸克态的质谱
IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-17 DOI: 10.1103/physrevd.111.014018
Qi Meng, Guang-Juan Wang, Makoto Oka
A comprehensive study of the S</a:mi></a:math>-wave heavy tetraquark states with identical quarks and antiquarks, specifically <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:mi>Q</c:mi><c:mi>Q</c:mi><c:msup><c:mover accent="true"><c:mi>Q</c:mi><c:mo stretchy="false">¯</c:mo></c:mover><c:mo>′</c:mo></c:msup><c:msup><c:mover accent="true"><c:mi>Q</c:mi><c:mo stretchy="false">¯</c:mo></c:mover><c:mo>′</c:mo></c:msup></c:math> (<i:math xmlns:i="http://www.w3.org/1998/Math/MathML" display="inline"><i:mi>Q</i:mi><i:mo>,</i:mo><i:msup><i:mi>Q</i:mi><i:mo>′</i:mo></i:msup><i:mo>=</i:mo><i:mi>c</i:mi></i:math>, <k:math xmlns:k="http://www.w3.org/1998/Math/MathML" display="inline"><k:mrow><k:mi>b</k:mi></k:mrow></k:math>), <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"><m:mi>Q</m:mi><m:mi>Q</m:mi><m:mover accent="true"><m:mi>s</m:mi><m:mo stretchy="false">¯</m:mo></m:mover><m:mover accent="true"><m:mi>s</m:mi><m:mo stretchy="false">¯</m:mo></m:mover><m:mo>/</m:mo><m:mover accent="true"><m:mi>Q</m:mi><m:mo stretchy="false">¯</m:mo></m:mover><m:mover accent="true"><m:mi>Q</m:mi><m:mo stretchy="false">¯</m:mo></m:mover><m:mi>s</m:mi><m:mi>s</m:mi></m:math>, and <w:math xmlns:w="http://www.w3.org/1998/Math/MathML" display="inline"><w:mi>Q</w:mi><w:mi>Q</w:mi><w:mover accent="true"><w:mi>q</w:mi><w:mo stretchy="false">¯</w:mo></w:mover><w:mover accent="true"><w:mi>q</w:mi><w:mo stretchy="false">¯</w:mo></w:mover><w:mo>/</w:mo><w:mover accent="true"><w:mi>Q</w:mi><w:mo stretchy="false">¯</w:mo></w:mover><w:mover accent="true"><w:mi>Q</w:mi><w:mo stretchy="false">¯</w:mo></w:mover><w:mi>q</w:mi><w:mi>q</w:mi></w:math> (<gb:math xmlns:gb="http://www.w3.org/1998/Math/MathML" display="inline"><gb:mrow><gb:mi>q</gb:mi><gb:mo>=</gb:mo><gb:mi>u</gb:mi></gb:mrow></gb:math>, <ib:math xmlns:ib="http://www.w3.org/1998/Math/MathML" display="inline"><ib:mrow><ib:mi>d</ib:mi></ib:mrow></ib:math>), are studied in a unified constituent quark model. This model contains the one-gluon exchange and confinement potentials. The latter is modeled as the sum of all two-body linear potentials. We employ the Gaussian expansion method to solve the full four-body Schrödinger equations, and search bound and resonant states using the complex-scaling method. We then identify 3 bound and 62 resonant states. The bound states are all <kb:math xmlns:kb="http://www.w3.org/1998/Math/MathML" display="inline"><kb:mi>Q</kb:mi><kb:mi>Q</kb:mi><kb:mover accent="true"><kb:mi>q</kb:mi><kb:mo stretchy="false">¯</kb:mo></kb:mover><kb:mover accent="true"><kb:mi>q</kb:mi><kb:mo stretchy="false">¯</kb:mo></kb:mover></kb:math> states with the isospin and spin-parity quantum numbers <qb:math xmlns:qb="http://www.w3.org/1998/Math/MathML" display="inline"><qb:mi>I</qb:mi><qb:mo stretchy="false">(</qb:mo><qb:msup><qb:mi>J</qb:mi><qb:mi>P</qb:mi></qb:msup><qb:mo stretchy="false">)</qb:mo><qb:mo>=</qb:mo><qb:mn>0</qb:mn><qb:mo stretchy="false">(</qb:mo><qb:msup><qb:mn>
在统一组成夸克模型中,全面研究了具有相同夸克和反夸克的s波重四夸克态QQQ¯‘ Q¯’ (Q,Q ' =c, b)、QQs¯s¯/Q¯Q¯ss和QQQ¯Q¯/Q¯Q¯qq (Q =u, d)。该模型包含单胶子交换势和约束势。后者被建模为所有两体线性势的和。我们采用高斯展开法求解完整的四体Schrödinger方程,并使用复标度法搜索界态和共振态。然后我们确定了3个束缚态和62个共振态。束缚态都是同位旋和自旋宇称量子数I(JP)=0(1+)的QQq¯q¯态:两个束缚态bbq¯q¯,结合能分别为153 MeV和4 MeV,低于BB*阈值,以及一个较浅的ccq¯q¯态,距离DD*阈值为- 15 MeV。较深的bbq¯q¯束缚态与晶格QCD预测一致,而ccq¯q¯束缚态仍然具有比最近由LHCb合作观察到的Tcc+大得多的结合能。当I=1时,QQQ¯‘ Q¯’、QQs¯s¯和QQQ¯Q¯没有边界状态。我们的分析表明,随着质量比(mQ/mQ)的增大,束缚态QQQ¯‘ Q¯’更有可能存在。对这些态进行实验研究将丰富我们对强子光谱学的理解,并探索四夸克内部的约束机制。2025年由美国物理学会出版
{"title":"Mass spectra of full-heavy and double-heavy tetraquark states in the conventional quark model","authors":"Qi Meng, Guang-Juan Wang, Makoto Oka","doi":"10.1103/physrevd.111.014018","DOIUrl":"https://doi.org/10.1103/physrevd.111.014018","url":null,"abstract":"A comprehensive study of the S&lt;/a:mi&gt;&lt;/a:math&gt;-wave heavy tetraquark states with identical quarks and antiquarks, specifically &lt;c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;c:mi&gt;Q&lt;/c:mi&gt;&lt;c:mi&gt;Q&lt;/c:mi&gt;&lt;c:msup&gt;&lt;c:mover accent=\"true\"&gt;&lt;c:mi&gt;Q&lt;/c:mi&gt;&lt;c:mo stretchy=\"false\"&gt;¯&lt;/c:mo&gt;&lt;/c:mover&gt;&lt;c:mo&gt;′&lt;/c:mo&gt;&lt;/c:msup&gt;&lt;c:msup&gt;&lt;c:mover accent=\"true\"&gt;&lt;c:mi&gt;Q&lt;/c:mi&gt;&lt;c:mo stretchy=\"false\"&gt;¯&lt;/c:mo&gt;&lt;/c:mover&gt;&lt;c:mo&gt;′&lt;/c:mo&gt;&lt;/c:msup&gt;&lt;/c:math&gt; (&lt;i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;i:mi&gt;Q&lt;/i:mi&gt;&lt;i:mo&gt;,&lt;/i:mo&gt;&lt;i:msup&gt;&lt;i:mi&gt;Q&lt;/i:mi&gt;&lt;i:mo&gt;′&lt;/i:mo&gt;&lt;/i:msup&gt;&lt;i:mo&gt;=&lt;/i:mo&gt;&lt;i:mi&gt;c&lt;/i:mi&gt;&lt;/i:math&gt;, &lt;k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;k:mrow&gt;&lt;k:mi&gt;b&lt;/k:mi&gt;&lt;/k:mrow&gt;&lt;/k:math&gt;), &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;m:mi&gt;Q&lt;/m:mi&gt;&lt;m:mi&gt;Q&lt;/m:mi&gt;&lt;m:mover accent=\"true\"&gt;&lt;m:mi&gt;s&lt;/m:mi&gt;&lt;m:mo stretchy=\"false\"&gt;¯&lt;/m:mo&gt;&lt;/m:mover&gt;&lt;m:mover accent=\"true\"&gt;&lt;m:mi&gt;s&lt;/m:mi&gt;&lt;m:mo stretchy=\"false\"&gt;¯&lt;/m:mo&gt;&lt;/m:mover&gt;&lt;m:mo&gt;/&lt;/m:mo&gt;&lt;m:mover accent=\"true\"&gt;&lt;m:mi&gt;Q&lt;/m:mi&gt;&lt;m:mo stretchy=\"false\"&gt;¯&lt;/m:mo&gt;&lt;/m:mover&gt;&lt;m:mover accent=\"true\"&gt;&lt;m:mi&gt;Q&lt;/m:mi&gt;&lt;m:mo stretchy=\"false\"&gt;¯&lt;/m:mo&gt;&lt;/m:mover&gt;&lt;m:mi&gt;s&lt;/m:mi&gt;&lt;m:mi&gt;s&lt;/m:mi&gt;&lt;/m:math&gt;, and &lt;w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;w:mi&gt;Q&lt;/w:mi&gt;&lt;w:mi&gt;Q&lt;/w:mi&gt;&lt;w:mover accent=\"true\"&gt;&lt;w:mi&gt;q&lt;/w:mi&gt;&lt;w:mo stretchy=\"false\"&gt;¯&lt;/w:mo&gt;&lt;/w:mover&gt;&lt;w:mover accent=\"true\"&gt;&lt;w:mi&gt;q&lt;/w:mi&gt;&lt;w:mo stretchy=\"false\"&gt;¯&lt;/w:mo&gt;&lt;/w:mover&gt;&lt;w:mo&gt;/&lt;/w:mo&gt;&lt;w:mover accent=\"true\"&gt;&lt;w:mi&gt;Q&lt;/w:mi&gt;&lt;w:mo stretchy=\"false\"&gt;¯&lt;/w:mo&gt;&lt;/w:mover&gt;&lt;w:mover accent=\"true\"&gt;&lt;w:mi&gt;Q&lt;/w:mi&gt;&lt;w:mo stretchy=\"false\"&gt;¯&lt;/w:mo&gt;&lt;/w:mover&gt;&lt;w:mi&gt;q&lt;/w:mi&gt;&lt;w:mi&gt;q&lt;/w:mi&gt;&lt;/w:math&gt; (&lt;gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;gb:mrow&gt;&lt;gb:mi&gt;q&lt;/gb:mi&gt;&lt;gb:mo&gt;=&lt;/gb:mo&gt;&lt;gb:mi&gt;u&lt;/gb:mi&gt;&lt;/gb:mrow&gt;&lt;/gb:math&gt;, &lt;ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;ib:mrow&gt;&lt;ib:mi&gt;d&lt;/ib:mi&gt;&lt;/ib:mrow&gt;&lt;/ib:math&gt;), are studied in a unified constituent quark model. This model contains the one-gluon exchange and confinement potentials. The latter is modeled as the sum of all two-body linear potentials. We employ the Gaussian expansion method to solve the full four-body Schrödinger equations, and search bound and resonant states using the complex-scaling method. We then identify 3 bound and 62 resonant states. The bound states are all &lt;kb:math xmlns:kb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;kb:mi&gt;Q&lt;/kb:mi&gt;&lt;kb:mi&gt;Q&lt;/kb:mi&gt;&lt;kb:mover accent=\"true\"&gt;&lt;kb:mi&gt;q&lt;/kb:mi&gt;&lt;kb:mo stretchy=\"false\"&gt;¯&lt;/kb:mo&gt;&lt;/kb:mover&gt;&lt;kb:mover accent=\"true\"&gt;&lt;kb:mi&gt;q&lt;/kb:mi&gt;&lt;kb:mo stretchy=\"false\"&gt;¯&lt;/kb:mo&gt;&lt;/kb:mover&gt;&lt;/kb:math&gt; states with the isospin and spin-parity quantum numbers &lt;qb:math xmlns:qb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;qb:mi&gt;I&lt;/qb:mi&gt;&lt;qb:mo stretchy=\"false\"&gt;(&lt;/qb:mo&gt;&lt;qb:msup&gt;&lt;qb:mi&gt;J&lt;/qb:mi&gt;&lt;qb:mi&gt;P&lt;/qb:mi&gt;&lt;/qb:msup&gt;&lt;qb:mo stretchy=\"false\"&gt;)&lt;/qb:mo&gt;&lt;qb:mo&gt;=&lt;/qb:mo&gt;&lt;qb:mn&gt;0&lt;/qb:mn&gt;&lt;qb:mo stretchy=\"false\"&gt;(&lt;/qb:mo&gt;&lt;qb:msup&gt;&lt;qb:mn&gt;","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"45 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current status of the light neutralino thermal dark matter in the phenomenological MSSM 现象学MSSM中轻中性中微子热暗物质的现状
IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-17 DOI: 10.1103/physrevd.111.015014
Rahool Kumar Barman, Genevieve Bélanger, Biplob Bhattacherjee, Rohini Godbole, Rhitaja Sengupta
In a previous publication, we studied the parameter space of the phenomenological minimal Supersymmetric standard model with a light neutralino thermal dark matter (Mχ˜10≤Mh/2) and observed that the recent results from the dark matter and collider experiments put strong constraints on this scenario. In this work, we present in detail the arguments behind the robustness of this result against scanning over the large number of parameters in phenomenological minimal Supersymmetric standard model. The Run 3 of LHC will be crucial in probing the surviving regions of the parameter space. We further investigate the impact of light staus on our parameter space and also provide benchmarks that can be interesting for Run 3 of LHC. We analyze these benchmarks at the LHC using the machine learning framework of . Finally, we also discuss the effect of nonstandard cosmology on the parameter space. Published by the American Physical Society 2025
在之前的一篇论文中,我们研究了具有轻中性中微子热暗物质(Mχ ~ 10≤Mh/2)的现象学最小超对称标准模型的参数空间,并观察到暗物质和对撞机实验的最新结果对这种情况有很强的约束。在这项工作中,我们详细介绍了在现象学最小超对称标准模型中扫描大量参数时该结果的鲁棒性背后的论据。大型强子对撞机的第3次运行对于探测参数空间的幸存区域至关重要。我们进一步研究了光状态对参数空间的影响,并为LHC的第3次运行提供了有趣的基准测试。我们在大型强子对撞机上使用机器学习框架来分析这些基准。最后,讨论了非标准宇宙学对参数空间的影响。2025年由美国物理学会出版
{"title":"Current status of the light neutralino thermal dark matter in the phenomenological MSSM","authors":"Rahool Kumar Barman, Genevieve Bélanger, Biplob Bhattacherjee, Rohini Godbole, Rhitaja Sengupta","doi":"10.1103/physrevd.111.015014","DOIUrl":"https://doi.org/10.1103/physrevd.111.015014","url":null,"abstract":"In a previous publication, we studied the parameter space of the phenomenological minimal Supersymmetric standard model with a light neutralino thermal dark matter (M</a:mi></a:mrow>χ</a:mi></a:mrow>˜</a:mo></a:mrow></a:mover></a:mrow>1</a:mn></a:mrow>0</a:mn></a:mrow></a:msubsup></a:mrow></a:msub>≤</a:mo>M</a:mi></a:mrow>h</a:mi></a:mrow></a:msub>/</a:mo>2</a:mn></a:mrow></a:math>) and observed that the recent results from the dark matter and collider experiments put strong constraints on this scenario. In this work, we present in detail the arguments behind the robustness of this result against scanning over the large number of parameters in phenomenological minimal Supersymmetric standard model. The Run 3 of LHC will be crucial in probing the surviving regions of the parameter space. We further investigate the impact of light staus on our parameter space and also provide benchmarks that can be interesting for Run 3 of LHC. We analyze these benchmarks at the LHC using the machine learning framework of . Finally, we also discuss the effect of nonstandard cosmology on the parameter space. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"55 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indirect production of doubly charmed tetraquark Tcc at high energy colliders 在高能对撞机上间接产生双粲四夸克Tcc
IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-17 DOI: 10.1103/physrevd.111.014019
Juan-Juan Niu, Bin-Bin Shi, Zheng-Kui Tao, Hong-Hao Ma
The indirect production mechanisms of doubly charmed tetraquark T</a:mi>c</a:mi>c</a:mi></a:mrow></a:msub></a:math> through three decay channels, <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:mrow><c:mi>Higgs</c:mi><c:mo stretchy="false">/</c:mo><c:msup><c:mrow><c:mi>Z</c:mi></c:mrow><c:mrow><c:mn>0</c:mn></c:mrow></c:msup><c:mo stretchy="false">→</c:mo><c:mo stretchy="false">⟨</c:mo><c:mi>c</c:mi><c:mi>c</c:mi><c:msub><c:mrow><c:mo stretchy="false">⟩</c:mo></c:mrow><c:mrow><c:mover accent="true"><c:mrow><c:mn>3</c:mn></c:mrow><c:mrow><c:mo stretchy="false">¯</c:mo></c:mrow></c:mover></c:mrow></c:msub><c:mo>+</c:mo><c:mover accent="true"><c:mrow><c:mi>c</c:mi></c:mrow><c:mrow><c:mo stretchy="false">¯</c:mo></c:mrow></c:mover><c:mo>+</c:mo><c:mover accent="true"><c:mrow><c:mi>c</c:mi></c:mrow><c:mrow><c:mo stretchy="false">¯</c:mo></c:mrow></c:mover><c:mo stretchy="false">→</c:mo><c:msubsup><c:mrow><c:mi>T</c:mi></c:mrow><c:mrow><c:mi>c</c:mi><c:mi>c</c:mi></c:mrow><c:mrow><c:mover accent="true"><c:mrow><c:mi>q</c:mi></c:mrow><c:mrow><c:mo stretchy="false">¯</c:mo></c:mrow></c:mover><c:mover accent="true"><c:mrow><c:msup><c:mrow><c:mi>q</c:mi></c:mrow><c:mrow><c:mo>′</c:mo></c:mrow></c:msup></c:mrow><c:mrow><c:mo stretchy="true">¯</c:mo></c:mrow></c:mover></c:mrow></c:msubsup><c:mo>+</c:mo><c:mover accent="true"><c:mrow><c:mi>c</c:mi></c:mrow><c:mrow><c:mo stretchy="false">¯</c:mo></c:mrow></c:mover><c:mo>+</c:mo><c:mover accent="true"><c:mrow><c:mi>c</c:mi></c:mrow><c:mrow><c:mo stretchy="false">¯</c:mo></c:mrow></c:mover></c:mrow></c:math> and <x:math xmlns:x="http://www.w3.org/1998/Math/MathML" display="inline"><x:msup><x:mi>W</x:mi><x:mo>+</x:mo></x:msup><x:mo stretchy="false">→</x:mo><x:mo stretchy="false">⟨</x:mo><x:mi>c</x:mi><x:mi>c</x:mi><x:msub><x:mo stretchy="false">⟩</x:mo><x:mover accent="true"><x:mn>3</x:mn><x:mo stretchy="false">¯</x:mo></x:mover></x:msub><x:mo>+</x:mo><x:mover accent="true"><x:mi>c</x:mi><x:mo stretchy="false">¯</x:mo></x:mover><x:mo>+</x:mo><x:mover accent="true"><x:mi>s</x:mi><x:mo stretchy="false">¯</x:mo></x:mover><x:mo stretchy="false">→</x:mo><x:msubsup><x:mi>T</x:mi><x:mrow><x:mi>c</x:mi><x:mi>c</x:mi></x:mrow><x:mrow><x:mover accent="true"><x:mi>q</x:mi><x:mo stretchy="false">¯</x:mo></x:mover><x:mover accent="true"><x:msup><x:mi>q</x:mi><x:mo>′</x:mo></x:msup><x:mo stretchy="true">¯</x:mo></x:mover></x:mrow></x:msubsup><x:mo>+</x:mo><x:mover accent="true"><x:mi>c</x:mi><x:mo stretchy="false">¯</x:mo></x:mover><x:mo>+</x:mo><x:mover accent="true"><x:mi>s</x:mi><x:mo stretchy="false">¯</x:mo></x:mover></x:math>, are analyzed within the framework of nonrelativistic QCD. The intermediate <rb:math xmlns:rb="http://www.w3.org/1998/Math/MathML" display="inline"><rb:mo stretchy="false">⟨</rb:mo><rb:mi>c</rb:mi><rb:mi>c</rb:mi><rb:msub><rb:mo stretchy="false">⟩</rb:mo><rb:mover accent="true"><rb:mn>3</rb:mn><rb:mo stretchy="false">¯</rb:mo></rb:mover></rb:msub></rb:math> diquark cluster i
在非相对论性QCD的框架内,分析了双粲四夸克Tcc通过Higgs/Z0→⟨cc⟩3¯+c¯+c¯→Tccq¯q′¯+c¯+c¯和W+→⟨cc⟩3¯+c¯+s¯→Tccq¯q′¯+c¯+s¯三个衰减通道的间接产生机制。彩色反三重态中的中间⟨cc⟩3¯重夸克簇通过从真空捕获两个轻反夸克(q¯和q′¯)的碎片化过程演变成四夸克分量。将考虑的双粲四夸克分量(包括Tccu¯u¯、Tccu¯d¯、Tccu¯d¯、Tccu¯s¯和Tccd¯s¯)相加后,可以分别在大型强子对撞机和环形正负电子对撞机(CEPC)上预测Tcc的衰变宽度、分支比和每年产生的事件。还讨论了微分分布和理论不确定性的两个主要来源。结果表明,每年通过W+衰变产生的Tcc事件为1.80×105,比在大型强子对撞机上通过希格斯衰变(1.11×103)和Z0衰变(4.81×103)产生的事件大近2个数量级。然而,在CEPC, Tcc的最大贡献是通过Z0衰变,大约1.63×106。每年在CEPC通过希格斯和W+衰变分别产生4.79×10−1和2.03×102 Tcc事件。2025年由美国物理学会出版
{"title":"Indirect production of doubly charmed tetraquark Tcc at high energy colliders","authors":"Juan-Juan Niu, Bin-Bin Shi, Zheng-Kui Tao, Hong-Hao Ma","doi":"10.1103/physrevd.111.014019","DOIUrl":"https://doi.org/10.1103/physrevd.111.014019","url":null,"abstract":"The indirect production mechanisms of doubly charmed tetraquark T&lt;/a:mi&gt;c&lt;/a:mi&gt;c&lt;/a:mi&gt;&lt;/a:mrow&gt;&lt;/a:msub&gt;&lt;/a:math&gt; through three decay channels, &lt;c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;c:mrow&gt;&lt;c:mi&gt;Higgs&lt;/c:mi&gt;&lt;c:mo stretchy=\"false\"&gt;/&lt;/c:mo&gt;&lt;c:msup&gt;&lt;c:mrow&gt;&lt;c:mi&gt;Z&lt;/c:mi&gt;&lt;/c:mrow&gt;&lt;c:mrow&gt;&lt;c:mn&gt;0&lt;/c:mn&gt;&lt;/c:mrow&gt;&lt;/c:msup&gt;&lt;c:mo stretchy=\"false\"&gt;→&lt;/c:mo&gt;&lt;c:mo stretchy=\"false\"&gt;⟨&lt;/c:mo&gt;&lt;c:mi&gt;c&lt;/c:mi&gt;&lt;c:mi&gt;c&lt;/c:mi&gt;&lt;c:msub&gt;&lt;c:mrow&gt;&lt;c:mo stretchy=\"false\"&gt;⟩&lt;/c:mo&gt;&lt;/c:mrow&gt;&lt;c:mrow&gt;&lt;c:mover accent=\"true\"&gt;&lt;c:mrow&gt;&lt;c:mn&gt;3&lt;/c:mn&gt;&lt;/c:mrow&gt;&lt;c:mrow&gt;&lt;c:mo stretchy=\"false\"&gt;¯&lt;/c:mo&gt;&lt;/c:mrow&gt;&lt;/c:mover&gt;&lt;/c:mrow&gt;&lt;/c:msub&gt;&lt;c:mo&gt;+&lt;/c:mo&gt;&lt;c:mover accent=\"true\"&gt;&lt;c:mrow&gt;&lt;c:mi&gt;c&lt;/c:mi&gt;&lt;/c:mrow&gt;&lt;c:mrow&gt;&lt;c:mo stretchy=\"false\"&gt;¯&lt;/c:mo&gt;&lt;/c:mrow&gt;&lt;/c:mover&gt;&lt;c:mo&gt;+&lt;/c:mo&gt;&lt;c:mover accent=\"true\"&gt;&lt;c:mrow&gt;&lt;c:mi&gt;c&lt;/c:mi&gt;&lt;/c:mrow&gt;&lt;c:mrow&gt;&lt;c:mo stretchy=\"false\"&gt;¯&lt;/c:mo&gt;&lt;/c:mrow&gt;&lt;/c:mover&gt;&lt;c:mo stretchy=\"false\"&gt;→&lt;/c:mo&gt;&lt;c:msubsup&gt;&lt;c:mrow&gt;&lt;c:mi&gt;T&lt;/c:mi&gt;&lt;/c:mrow&gt;&lt;c:mrow&gt;&lt;c:mi&gt;c&lt;/c:mi&gt;&lt;c:mi&gt;c&lt;/c:mi&gt;&lt;/c:mrow&gt;&lt;c:mrow&gt;&lt;c:mover accent=\"true\"&gt;&lt;c:mrow&gt;&lt;c:mi&gt;q&lt;/c:mi&gt;&lt;/c:mrow&gt;&lt;c:mrow&gt;&lt;c:mo stretchy=\"false\"&gt;¯&lt;/c:mo&gt;&lt;/c:mrow&gt;&lt;/c:mover&gt;&lt;c:mover accent=\"true\"&gt;&lt;c:mrow&gt;&lt;c:msup&gt;&lt;c:mrow&gt;&lt;c:mi&gt;q&lt;/c:mi&gt;&lt;/c:mrow&gt;&lt;c:mrow&gt;&lt;c:mo&gt;′&lt;/c:mo&gt;&lt;/c:mrow&gt;&lt;/c:msup&gt;&lt;/c:mrow&gt;&lt;c:mrow&gt;&lt;c:mo stretchy=\"true\"&gt;¯&lt;/c:mo&gt;&lt;/c:mrow&gt;&lt;/c:mover&gt;&lt;/c:mrow&gt;&lt;/c:msubsup&gt;&lt;c:mo&gt;+&lt;/c:mo&gt;&lt;c:mover accent=\"true\"&gt;&lt;c:mrow&gt;&lt;c:mi&gt;c&lt;/c:mi&gt;&lt;/c:mrow&gt;&lt;c:mrow&gt;&lt;c:mo stretchy=\"false\"&gt;¯&lt;/c:mo&gt;&lt;/c:mrow&gt;&lt;/c:mover&gt;&lt;c:mo&gt;+&lt;/c:mo&gt;&lt;c:mover accent=\"true\"&gt;&lt;c:mrow&gt;&lt;c:mi&gt;c&lt;/c:mi&gt;&lt;/c:mrow&gt;&lt;c:mrow&gt;&lt;c:mo stretchy=\"false\"&gt;¯&lt;/c:mo&gt;&lt;/c:mrow&gt;&lt;/c:mover&gt;&lt;/c:mrow&gt;&lt;/c:math&gt; and &lt;x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;x:msup&gt;&lt;x:mi&gt;W&lt;/x:mi&gt;&lt;x:mo&gt;+&lt;/x:mo&gt;&lt;/x:msup&gt;&lt;x:mo stretchy=\"false\"&gt;→&lt;/x:mo&gt;&lt;x:mo stretchy=\"false\"&gt;⟨&lt;/x:mo&gt;&lt;x:mi&gt;c&lt;/x:mi&gt;&lt;x:mi&gt;c&lt;/x:mi&gt;&lt;x:msub&gt;&lt;x:mo stretchy=\"false\"&gt;⟩&lt;/x:mo&gt;&lt;x:mover accent=\"true\"&gt;&lt;x:mn&gt;3&lt;/x:mn&gt;&lt;x:mo stretchy=\"false\"&gt;¯&lt;/x:mo&gt;&lt;/x:mover&gt;&lt;/x:msub&gt;&lt;x:mo&gt;+&lt;/x:mo&gt;&lt;x:mover accent=\"true\"&gt;&lt;x:mi&gt;c&lt;/x:mi&gt;&lt;x:mo stretchy=\"false\"&gt;¯&lt;/x:mo&gt;&lt;/x:mover&gt;&lt;x:mo&gt;+&lt;/x:mo&gt;&lt;x:mover accent=\"true\"&gt;&lt;x:mi&gt;s&lt;/x:mi&gt;&lt;x:mo stretchy=\"false\"&gt;¯&lt;/x:mo&gt;&lt;/x:mover&gt;&lt;x:mo stretchy=\"false\"&gt;→&lt;/x:mo&gt;&lt;x:msubsup&gt;&lt;x:mi&gt;T&lt;/x:mi&gt;&lt;x:mrow&gt;&lt;x:mi&gt;c&lt;/x:mi&gt;&lt;x:mi&gt;c&lt;/x:mi&gt;&lt;/x:mrow&gt;&lt;x:mrow&gt;&lt;x:mover accent=\"true\"&gt;&lt;x:mi&gt;q&lt;/x:mi&gt;&lt;x:mo stretchy=\"false\"&gt;¯&lt;/x:mo&gt;&lt;/x:mover&gt;&lt;x:mover accent=\"true\"&gt;&lt;x:msup&gt;&lt;x:mi&gt;q&lt;/x:mi&gt;&lt;x:mo&gt;′&lt;/x:mo&gt;&lt;/x:msup&gt;&lt;x:mo stretchy=\"true\"&gt;¯&lt;/x:mo&gt;&lt;/x:mover&gt;&lt;/x:mrow&gt;&lt;/x:msubsup&gt;&lt;x:mo&gt;+&lt;/x:mo&gt;&lt;x:mover accent=\"true\"&gt;&lt;x:mi&gt;c&lt;/x:mi&gt;&lt;x:mo stretchy=\"false\"&gt;¯&lt;/x:mo&gt;&lt;/x:mover&gt;&lt;x:mo&gt;+&lt;/x:mo&gt;&lt;x:mover accent=\"true\"&gt;&lt;x:mi&gt;s&lt;/x:mi&gt;&lt;x:mo stretchy=\"false\"&gt;¯&lt;/x:mo&gt;&lt;/x:mover&gt;&lt;/x:math&gt;, are analyzed within the framework of nonrelativistic QCD. The intermediate &lt;rb:math xmlns:rb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;rb:mo stretchy=\"false\"&gt;⟨&lt;/rb:mo&gt;&lt;rb:mi&gt;c&lt;/rb:mi&gt;&lt;rb:mi&gt;c&lt;/rb:mi&gt;&lt;rb:msub&gt;&lt;rb:mo stretchy=\"false\"&gt;⟩&lt;/rb:mo&gt;&lt;rb:mover accent=\"true\"&gt;&lt;rb:mn&gt;3&lt;/rb:mn&gt;&lt;rb:mo stretchy=\"false\"&gt;¯&lt;/rb:mo&gt;&lt;/rb:mover&gt;&lt;/rb:msub&gt;&lt;/rb:math&gt; diquark cluster i","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"25 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise determination of the Pomeron intercept via a scaling entropy analysis 通过尺度熵分析精确确定波美龙截距
IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-16 DOI: 10.1103/physrevd.111.014017
L. S. Moriggi, M. V. T. Machado
In this work, we confront the geometrical scaling properties of inclusive deep inelastic scattering cross section (e+p→e+X) with the scaling entropy obtained from event multiplicity. We show that these two quantities are equivalent in the kinematic range probed by H1 Collaboration data. We propose that scaling entropy associated with partonic interactions is a more efficient way to detect scaling in experimental data. We used a combined analysis of the inclusive cross section and entropy obtained from multiplicities P(N) of final-state hadrons to accurately determine the value of the Pomeron intercept. The approach could provide new constraints for future hadron collider experiments and deepen our understanding of parton saturation. Published by the American Physical Society 2025
本文研究了包含深度非弹性散射截面(e+p→e+X)的几何标度性质和由事件多重性得到的标度熵。我们证明这两个量在H1协作数据探测的运动范围内是等价的。我们提出与部分子相互作用相关的标度熵是一种更有效的检测实验数据标度的方法。我们使用了包含截面和从最终态强子的多重性P(N)中获得的熵的综合分析来准确地确定Pomeron截距的值。该方法可以为未来的强子对撞机实验提供新的约束,并加深我们对部分子饱和的理解。2025年由美国物理学会出版
{"title":"Precise determination of the Pomeron intercept via a scaling entropy analysis","authors":"L. S. Moriggi, M. V. T. Machado","doi":"10.1103/physrevd.111.014017","DOIUrl":"https://doi.org/10.1103/physrevd.111.014017","url":null,"abstract":"In this work, we confront the geometrical scaling properties of inclusive deep inelastic scattering cross section (e</a:mi>+</a:mo>p</a:mi>→</a:mo>e</a:mi>+</a:mo>X</a:mi></a:math>) with the scaling entropy obtained from event multiplicity. We show that these two quantities are equivalent in the kinematic range probed by H1 Collaboration data. We propose that scaling entropy associated with partonic interactions is a more efficient way to detect scaling in experimental data. We used a combined analysis of the inclusive cross section and entropy obtained from multiplicities <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mi>P</d:mi><d:mo stretchy=\"false\">(</d:mo><d:mi>N</d:mi><d:mo stretchy=\"false\">)</d:mo></d:math> of final-state hadrons to accurately determine the value of the Pomeron intercept. The approach could provide new constraints for future hadron collider experiments and deepen our understanding of parton saturation. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"30 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review D
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1