Pub Date : 2025-01-22DOI: 10.1103/physrevd.111.014508
Yu Meng, Chuan Liu, Teng Wang, Haobo Yan
We present a model-independent method to calculate the radiative transition without the momentum extrapolation for the off shell transition factors. The on shell transition factor is directly obtained from the lattice hadronic function. We apply the method to calculate the charmonium radiative transition J/ψ→γηc. After a continuous extrapolation under three lattice spacings, we obtain the on shell transition factor as V(0)=1.90(4), where the error is the statistical error that already takes into account the a2 error in the continuous extrapolation. Finally, we determine the branching fraction of J/ψ→γηc as Br(J/ψ→γηc)=2.49(11)lat(5)exp%, where the second error comes from the uncertainty of J/ψ total decay width 92.6(1.7) keV. Published by the American Physical Society2025
{"title":"Lattice study of J/ψ→γηc using a method without momentum extrapolation","authors":"Yu Meng, Chuan Liu, Teng Wang, Haobo Yan","doi":"10.1103/physrevd.111.014508","DOIUrl":"https://doi.org/10.1103/physrevd.111.014508","url":null,"abstract":"We present a model-independent method to calculate the radiative transition without the momentum extrapolation for the off shell transition factors. The on shell transition factor is directly obtained from the lattice hadronic function. We apply the method to calculate the charmonium radiative transition J</a:mi>/</a:mo>ψ</a:mi>→</a:mo>γ</a:mi>η</a:mi>c</a:mi></a:msub></a:math>. After a continuous extrapolation under three lattice spacings, we obtain the on shell transition factor as <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mi>V</d:mi><d:mo stretchy=\"false\">(</d:mo><d:mn>0</d:mn><d:mo stretchy=\"false\">)</d:mo><d:mo>=</d:mo><d:mn>1.90</d:mn><d:mo stretchy=\"false\">(</d:mo><d:mn>4</d:mn><d:mo stretchy=\"false\">)</d:mo></d:math>, where the error is the statistical error that already takes into account the <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:msup><j:mi>a</j:mi><j:mn>2</j:mn></j:msup></j:math> error in the continuous extrapolation. Finally, we determine the branching fraction of <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:mi>J</l:mi><l:mo>/</l:mo><l:mi>ψ</l:mi><l:mo stretchy=\"false\">→</l:mo><l:mi>γ</l:mi><l:msub><l:mi>η</l:mi><l:mi>c</l:mi></l:msub></l:math> as <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>Br</o:mi><o:mo stretchy=\"false\">(</o:mo><o:mi>J</o:mi><o:mo>/</o:mo><o:mi>ψ</o:mi><o:mo stretchy=\"false\">→</o:mo><o:mi>γ</o:mi><o:msub><o:mi>η</o:mi><o:mi>c</o:mi></o:msub><o:mo stretchy=\"false\">)</o:mo><o:mo>=</o:mo><o:mn>2.49</o:mn><o:mo stretchy=\"false\">(</o:mo><o:mn>11</o:mn><o:msub><o:mo stretchy=\"false\">)</o:mo><o:mi>lat</o:mi></o:msub><o:mo stretchy=\"false\">(</o:mo><o:mn>5</o:mn><o:msub><o:mo stretchy=\"false\">)</o:mo><o:mi>exp</o:mi></o:msub><o:mo>%</o:mo></o:math>, where the second error comes from the uncertainty of <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:mi>J</x:mi><x:mo>/</x:mo><x:mi>ψ</x:mi></x:math> total decay width 92.6(1.7) keV. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"14 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1103/physrevd.111.015016
Sally Dawson, Matthew Forslund, Pier Paolo Giardino
Some of the most precise measurements of Higgs boson couplings are from the Higgs decays to 4 leptons, where deviations from the Standard Model predictions can be quantified in the framework of the Standard Model effective field theory (SMEFT). In this work, we present a complete next-to-leading order (NLO) SMEFT electroweak calculation of the rate for H→ℓ+ℓ−Z which we combine with the NLO SMEFT result for Z→ℓ+ℓ− to obtain the NLO rate for the H→4 lepton process in the narrow width approximation. The NLO calculation provides sensitivity to a wide range of SMEFT operators that do not contribute to the rate at lowest order and demonstrates the importance of including correlations between the effects of different operators when extracting limits on SMEFT parameters. We show that the extraction of the Higgs trilinear coupling from the decay H→ℓ+ℓ−Z,Z→ℓ+ℓ− in the narrow width approximation strongly depends on the contributions of other operators that first occur at NLO. Published by the American Physical Society2025
{"title":"NLO SMEFT electroweak corrections to Higgs boson decays to four leptons in the narrow width approximation","authors":"Sally Dawson, Matthew Forslund, Pier Paolo Giardino","doi":"10.1103/physrevd.111.015016","DOIUrl":"https://doi.org/10.1103/physrevd.111.015016","url":null,"abstract":"Some of the most precise measurements of Higgs boson couplings are from the Higgs decays to 4 leptons, where deviations from the Standard Model predictions can be quantified in the framework of the Standard Model effective field theory (SMEFT). In this work, we present a complete next-to-leading order (NLO) SMEFT electroweak calculation of the rate for H</a:mi>→</a:mo>ℓ</a:mo>+</a:mo></a:msup>ℓ</a:mo>−</a:mo></a:msup>Z</a:mi></a:math> which we combine with the NLO SMEFT result for <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mi>Z</d:mi><d:mo stretchy=\"false\">→</d:mo><d:msup><d:mo>ℓ</d:mo><d:mo>+</d:mo></d:msup><d:msup><d:mo>ℓ</d:mo><d:mo>−</d:mo></d:msup></d:math> to obtain the NLO rate for the <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mi>H</g:mi><g:mo stretchy=\"false\">→</g:mo><g:mn>4</g:mn></g:mrow></g:math> lepton process in the narrow width approximation. The NLO calculation provides sensitivity to a wide range of SMEFT operators that do not contribute to the rate at lowest order and demonstrates the importance of including correlations between the effects of different operators when extracting limits on SMEFT parameters. We show that the extraction of the Higgs trilinear coupling from the decay <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mi>H</j:mi><j:mo stretchy=\"false\">→</j:mo><j:msup><j:mo>ℓ</j:mo><j:mo>+</j:mo></j:msup><j:msup><j:mo>ℓ</j:mo><j:mo>−</j:mo></j:msup><j:mi>Z</j:mi><j:mo>,</j:mo><j:mi>Z</j:mi><j:mo stretchy=\"false\">→</j:mo><j:msup><j:mo>ℓ</j:mo><j:mo>+</j:mo></j:msup><j:msup><j:mo>ℓ</j:mo><j:mo>−</j:mo></j:msup></j:math> in the narrow width approximation strongly depends on the contributions of other operators that first occur at NLO. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"33 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1103/physrevd.111.022004
André Lohde, Daniel Voigt, Oliver Gerberding
Ground-based gravitational wave detectors use laser interferometry to detect the minuscule distance change between test masses caused by gravitational waves. Stray light that scatters back into the interferometer causes transient signals that can cover the same frequency range as a potential gravitational wave signal. This scattered light noise is a potentially limiting factor in current and future detectors thus making it relevant to find new ways to mitigate it. Here, we demonstrate experimentally a technique for the subtraction of scattered light noise from the displacement readout of a Michelson interferometer. It is based on using a balanced homodyne detector at both the symmetric and the antisymmetric port. While we have been able to demonstrate a noise reduction of 13.2 dB, the readout scheme seems to be only limited by the associated noise couplings, i.e., shot noise and the coupling of laser noise. We also discuss challenges for using the dual balanced homodyne detection scheme in more complex interferometer topologies, which could lead to improvements in scattered light noise mitigation of gravitational wave detectors. Published by the American Physical Society2025
{"title":"Dual balanced readout for scattered light noise mitigation in Michelson interferometers","authors":"André Lohde, Daniel Voigt, Oliver Gerberding","doi":"10.1103/physrevd.111.022004","DOIUrl":"https://doi.org/10.1103/physrevd.111.022004","url":null,"abstract":"Ground-based gravitational wave detectors use laser interferometry to detect the minuscule distance change between test masses caused by gravitational waves. Stray light that scatters back into the interferometer causes transient signals that can cover the same frequency range as a potential gravitational wave signal. This scattered light noise is a potentially limiting factor in current and future detectors thus making it relevant to find new ways to mitigate it. Here, we demonstrate experimentally a technique for the subtraction of scattered light noise from the displacement readout of a Michelson interferometer. It is based on using a balanced homodyne detector at both the symmetric and the antisymmetric port. While we have been able to demonstrate a noise reduction of 13.2 dB, the readout scheme seems to be only limited by the associated noise couplings, i.e., shot noise and the coupling of laser noise. We also discuss challenges for using the dual balanced homodyne detection scheme in more complex interferometer topologies, which could lead to improvements in scattered light noise mitigation of gravitational wave detectors. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"59 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1103/physrevd.111.025017
Reiko Liu, Wen-Jie Ma
We derive the celestial optical theorem from the S-matrix unitarity, which provides nonperturbative bootstrap equations of conformal partial wave (CPW) coefficients. This theorem implies that the imaginary parts of CPW coefficients exhibit a positivity property. By making certain analyticity assumptions and using the celestial optical theorem, we derive nonperturbative constraints concerning the analytic structure of CPW coefficients. We discover that the CPW coefficients of four massless particles must and can only have simple poles located at specific positions. The CPW coefficients involving massive particles exhibit double-trace poles, indicating the existence of double-trace operators in nonperturbative celestial conformal field theory. It is worth noting that, in contrast to AdS/CFT, the conformal dimensions of double-trace operators do not have anomalous dimensions. Published by the American Physical Society2025
{"title":"Celestial optical theorem","authors":"Reiko Liu, Wen-Jie Ma","doi":"10.1103/physrevd.111.025017","DOIUrl":"https://doi.org/10.1103/physrevd.111.025017","url":null,"abstract":"We derive the celestial optical theorem from the S</a:mi></a:mrow></a:math>-matrix unitarity, which provides nonperturbative bootstrap equations of conformal partial wave (CPW) coefficients. This theorem implies that the imaginary parts of CPW coefficients exhibit a positivity property. By making certain analyticity assumptions and using the celestial optical theorem, we derive nonperturbative constraints concerning the analytic structure of CPW coefficients. We discover that the CPW coefficients of four massless particles must and can only have simple poles located at specific positions. The CPW coefficients involving massive particles exhibit double-trace poles, indicating the existence of double-trace operators in nonperturbative celestial conformal field theory. It is worth noting that, in contrast to AdS/CFT, the conformal dimensions of double-trace operators do not have anomalous dimensions. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"18 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1103/physrevd.111.015017
Gustavo F. S. Alves, P. S. Bhupal Dev, Kevin J. Kelly, Pedro A. N. Machado
Heavy neutral leptons (HNLs), depending on their mass and mixing, can be efficiently produced in meson decays from the target or absorber in short- to medium-baseline accelerator neutrino experiments, leaving detectable signals through their decays inside the neutrino detectors. We show that the currently running ICARUS experiment at Fermilab can reconstruct the HNL mass and explore new HNL parameter space in the mass range of 70–190 MeV. The mass reconstruction is enabled by two ingredients: (i) simple two-body kinematics of HNL production from stopped kaon decays at the NuMI absorber, followed by HNL decay into a charged-lepton pair and neutrino at the detector, and (ii) high resolution of Liquid Argon Time Projection Chamber (LArTPC) detectors in reconstructing final state particles. Our mass reconstruction method is robust under realistic energy resolution and angular smearing of the charged leptons, and is applicable to any LArTPC detector. We also discuss the synergy between ICARUS and future facilities like DUNE near detector and PIP-II beam dump in probing the HNL parameter space. Published by the American Physical Society2025
{"title":"Mass reconstruction of heavy neutral leptons from stopped mesons","authors":"Gustavo F. S. Alves, P. S. Bhupal Dev, Kevin J. Kelly, Pedro A. N. Machado","doi":"10.1103/physrevd.111.015017","DOIUrl":"https://doi.org/10.1103/physrevd.111.015017","url":null,"abstract":"Heavy neutral leptons (HNLs), depending on their mass and mixing, can be efficiently produced in meson decays from the target or absorber in short- to medium-baseline accelerator neutrino experiments, leaving detectable signals through their decays inside the neutrino detectors. We show that the currently running ICARUS experiment at Fermilab can reconstruct the HNL mass and explore new HNL parameter space in the mass range of 70–190 MeV. The mass reconstruction is enabled by two ingredients: (i) simple two-body kinematics of HNL production from stopped kaon decays at the NuMI absorber, followed by HNL decay into a charged-lepton pair and neutrino at the detector, and (ii) high resolution of Liquid Argon Time Projection Chamber (LArTPC) detectors in reconstructing final state particles. Our mass reconstruction method is robust under realistic energy resolution and angular smearing of the charged leptons, and is applicable to any LArTPC detector. We also discuss the synergy between ICARUS and future facilities like DUNE near detector and PIP-II beam dump in probing the HNL parameter space. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"51 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1103/physrevd.111.015020
Andrew Fowlie, Gonzalo Herrera
We uncover two precise interpretations of traditional electroweak fine-tuning (FT) measures that were historically missed. : the traditional FT measure shows the change in plausibility of a model in which a parameter was exchanged for the Z boson mass relative to an untuned model in light of the Z boson mass measurement. the traditional FT measure shows the exponential of the extra information, measured in nats, relative to an untuned model that you must supply about a parameter in order to fit the Z mass. We derive the mathematical results underlying these interpretations, and explain them using examples from weak scale supersymmetry. These new interpretations allow us to rigorously define FT in particle physics and beyond, shed fresh light on the status of extensions to the Standard Model and, lastly, allow us to precisely reinterpret historical and recent studies using traditional FT measures. Published by the American Physical Society2025
{"title":"Precise interpretations of traditional fine-tuning measures","authors":"Andrew Fowlie, Gonzalo Herrera","doi":"10.1103/physrevd.111.015020","DOIUrl":"https://doi.org/10.1103/physrevd.111.015020","url":null,"abstract":"We uncover two precise interpretations of traditional electroweak fine-tuning (FT) measures that were historically missed. : the traditional FT measure shows the change in plausibility of a model in which a parameter was exchanged for the Z</a:mi></a:math> boson mass relative to an untuned model in light of the <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>Z</c:mi></c:math> boson mass measurement. the traditional FT measure shows the exponential of the extra information, measured in nats, relative to an untuned model that you must supply about a parameter in order to fit the <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>Z</e:mi></e:math> mass. We derive the mathematical results underlying these interpretations, and explain them using examples from weak scale supersymmetry. These new interpretations allow us to rigorously define FT in particle physics and beyond, shed fresh light on the status of extensions to the Standard Model and, lastly, allow us to precisely reinterpret historical and recent studies using traditional FT measures. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"50 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1103/physrevd.111.l021703
Joon-Hwi Kim
It is shown that a complex coordinate transformation maps the Taub-Newman-Unti-Tamburino instanton metric to a Kerr-Schild metric. This metric involves a semi-infinite line defect as the gravitational analog of the Dirac string, much like the original metric. Moreover, it facilitates three versions of classical double copy correspondence with the self-dual dyon in electromagnetism, one of which involves a nonlocal operator. The relevance to the Newman-Janis algorithm is briefly noted. Published by the American Physical Society2025
{"title":"Single Kerr-Schild metric for Taub-NUT instanton","authors":"Joon-Hwi Kim","doi":"10.1103/physrevd.111.l021703","DOIUrl":"https://doi.org/10.1103/physrevd.111.l021703","url":null,"abstract":"It is shown that a complex coordinate transformation maps the Taub-Newman-Unti-Tamburino instanton metric to a Kerr-Schild metric. This metric involves a semi-infinite line defect as the gravitational analog of the Dirac string, much like the original metric. Moreover, it facilitates three versions of classical double copy correspondence with the self-dual dyon in electromagnetism, one of which involves a nonlocal operator. The relevance to the Newman-Janis algorithm is briefly noted. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"104 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1103/physrevd.111.016022
Y. L. Wang, H. J. Zhao, Y. K. Hsiao
We explore the two-body nonleptonic weak decays of Ω</a:mi>c</a:mi>0</a:mn></a:msubsup></a:math> into final states <d:math xmlns:d="http://www.w3.org/1998/Math/MathML" display="inline"><d:msup><d:mi mathvariant="bold">B</d:mi><d:mrow><d:mo stretchy="false">(</d:mo><d:mo>*</d:mo><d:mo stretchy="false">)</d:mo></d:mrow></d:msup><d:mi>M</d:mi></d:math> and <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" display="inline"><i:msup><i:mi mathvariant="bold">B</i:mi><i:mrow><i:mo stretchy="false">(</i:mo><i:mo>*</i:mo><i:mo stretchy="false">)</i:mo></i:mrow></i:msup><i:mi>V</i:mi></i:math>, where <n:math xmlns:n="http://www.w3.org/1998/Math/MathML" display="inline"><n:msup><n:mi mathvariant="bold">B</n:mi><n:mrow><n:mo stretchy="false">(</n:mo><n:mo>*</n:mo><n:mo stretchy="false">)</n:mo></n:mrow></n:msup></n:math> denotes an octet (a decuplet) baryon and <s:math xmlns:s="http://www.w3.org/1998/Math/MathML" display="inline"><s:mi>M</s:mi><s:mo stretchy="false">(</s:mo><s:mi>V</s:mi><s:mo stretchy="false">)</s:mo></s:math> represents a pseudoscalar (vector) meson. We employ the topological <w:math xmlns:w="http://www.w3.org/1998/Math/MathML" display="inline"><w:mi>S</w:mi><w:mi>U</w:mi><w:mo stretchy="false">(</w:mo><w:mn>3</w:mn><w:msub><w:mo stretchy="false">)</w:mo><w:mi>f</w:mi></w:msub></w:math> approach to depict and parametrize the W</ab:mi></ab:math>-emission and <cb:math xmlns:cb="http://www.w3.org/1998/Math/MathML" display="inline"><cb:mi>W</cb:mi></cb:math>-exchange processes. We find that the topological parameters can be associated and combined, making them extractable for calculation. Consequently, we explain the partially measured branching fractions relative to <eb:math xmlns:eb="http://www.w3.org/1998/Math/MathML" display="inline"><eb:mi mathvariant="script">B</eb:mi><eb:mo stretchy="false">(</eb:mo><eb:msubsup><eb:mi mathvariant="normal">Ω</eb:mi><eb:mi>c</eb:mi><eb:mn>0</eb:mn></eb:msubsup><eb:mo stretchy="false">→</eb:mo><eb:msup><eb:mi mathvariant="normal">Ω</eb:mi><eb:mo>−</eb:mo></eb:msup><eb:msup><eb:mi>π</eb:mi><eb:mo>+</eb:mo></eb:msup><eb:mo stretchy="false">)</eb:mo></eb:math>, recombined or kept as the following ratios: <mb:math xmlns:mb="http://www.w3.org/1998/Math/MathML" display="inline"><mb:mi mathvariant="script">B</mb:mi><mb:mo stretchy="false">(</mb:mo><mb:msubsup><mb:mi mathvariant="normal">Ω</mb:mi><mb:mi>c</mb:mi><mb:mn>0</mb:mn></mb:msubsup><mb:mo stretchy="false">→</mb:mo><mb:msup><mb:mi mathvariant="normal">Ξ</mb:mi><mb:mrow><mb:mo>*</mb:mo><mb:mn>0</mb:mn></mb:mrow></mb:msup><mb:msup><mb:mover accent="true"><mb:mi>K</mb:mi><mb:mo stretchy="false">¯</mb:mo></mb:mover><mb:mrow><mb:mo>*</mb:mo><mb:mn>0</mb:mn></mb:mrow></mb:msup><mb:mo stretchy="false">)</mb:mo><mb:mo>/</mb:mo><mb:mi mathvariant="script">B</mb:mi><mb:mo stretchy="false">(</mb:mo><mb:msubsup><mb:mi mathvariant="normal">Ω</mb:mi><mb:mi>c</mb:mi><mb:mn>0</mb:mn></mb:msubsup><mb:mo stretchy="false">→</mb:mo><mb:msup><mb:mi mathvariant="normal">Ω</mb
{"title":"Topological SU(3)f approach for two-body Ωc weak decays","authors":"Y. L. Wang, H. J. Zhao, Y. K. Hsiao","doi":"10.1103/physrevd.111.016022","DOIUrl":"https://doi.org/10.1103/physrevd.111.016022","url":null,"abstract":"We explore the two-body nonleptonic weak decays of Ω</a:mi>c</a:mi>0</a:mn></a:msubsup></a:math> into final states <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:msup><d:mi mathvariant=\"bold\">B</d:mi><d:mrow><d:mo stretchy=\"false\">(</d:mo><d:mo>*</d:mo><d:mo stretchy=\"false\">)</d:mo></d:mrow></d:msup><d:mi>M</d:mi></d:math> and <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msup><i:mi mathvariant=\"bold\">B</i:mi><i:mrow><i:mo stretchy=\"false\">(</i:mo><i:mo>*</i:mo><i:mo stretchy=\"false\">)</i:mo></i:mrow></i:msup><i:mi>V</i:mi></i:math>, where <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:msup><n:mi mathvariant=\"bold\">B</n:mi><n:mrow><n:mo stretchy=\"false\">(</n:mo><n:mo>*</n:mo><n:mo stretchy=\"false\">)</n:mo></n:mrow></n:msup></n:math> denotes an octet (a decuplet) baryon and <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>M</s:mi><s:mo stretchy=\"false\">(</s:mo><s:mi>V</s:mi><s:mo stretchy=\"false\">)</s:mo></s:math> represents a pseudoscalar (vector) meson. We employ the topological <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi>S</w:mi><w:mi>U</w:mi><w:mo stretchy=\"false\">(</w:mo><w:mn>3</w:mn><w:msub><w:mo stretchy=\"false\">)</w:mo><w:mi>f</w:mi></w:msub></w:math> approach to depict and parametrize the W</ab:mi></ab:math>-emission and <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:mi>W</cb:mi></cb:math>-exchange processes. We find that the topological parameters can be associated and combined, making them extractable for calculation. Consequently, we explain the partially measured branching fractions relative to <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi mathvariant=\"script\">B</eb:mi><eb:mo stretchy=\"false\">(</eb:mo><eb:msubsup><eb:mi mathvariant=\"normal\">Ω</eb:mi><eb:mi>c</eb:mi><eb:mn>0</eb:mn></eb:msubsup><eb:mo stretchy=\"false\">→</eb:mo><eb:msup><eb:mi mathvariant=\"normal\">Ω</eb:mi><eb:mo>−</eb:mo></eb:msup><eb:msup><eb:mi>π</eb:mi><eb:mo>+</eb:mo></eb:msup><eb:mo stretchy=\"false\">)</eb:mo></eb:math>, recombined or kept as the following ratios: <mb:math xmlns:mb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mb:mi mathvariant=\"script\">B</mb:mi><mb:mo stretchy=\"false\">(</mb:mo><mb:msubsup><mb:mi mathvariant=\"normal\">Ω</mb:mi><mb:mi>c</mb:mi><mb:mn>0</mb:mn></mb:msubsup><mb:mo stretchy=\"false\">→</mb:mo><mb:msup><mb:mi mathvariant=\"normal\">Ξ</mb:mi><mb:mrow><mb:mo>*</mb:mo><mb:mn>0</mb:mn></mb:mrow></mb:msup><mb:msup><mb:mover accent=\"true\"><mb:mi>K</mb:mi><mb:mo stretchy=\"false\">¯</mb:mo></mb:mover><mb:mrow><mb:mo>*</mb:mo><mb:mn>0</mb:mn></mb:mrow></mb:msup><mb:mo stretchy=\"false\">)</mb:mo><mb:mo>/</mb:mo><mb:mi mathvariant=\"script\">B</mb:mi><mb:mo stretchy=\"false\">(</mb:mo><mb:msubsup><mb:mi mathvariant=\"normal\">Ω</mb:mi><mb:mi>c</mb:mi><mb:mn>0</mb:mn></mb:msubsup><mb:mo stretchy=\"false\">→</mb:mo><mb:msup><mb:mi mathvariant=\"normal\">Ω</mb","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"3 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1103/physrevd.111.l021901
Florian Ecker, Adrien Fiorucci, Daniel Grumiller
We argue there is an interesting triple-scaling limit of quantum gravity, namely when Planck’s constant scales to infinity while Newton’s constant and the speed of light tend to zero, keeping fixed the gravitational coupling GNc−4 and the combination ℏc. We refer to this limiting theory as “tantum gravity” and describe in this Letter some of its main properties and prospects for physics. Most notably, the laws of black hole thermodynamics survive this limit, which means that puzzles related to black holes and their evaporation could be addressed more easily in tantum gravity than in fully fledged quantum gravity. Published by the American Physical Society2025
{"title":"Tantum gravity","authors":"Florian Ecker, Adrien Fiorucci, Daniel Grumiller","doi":"10.1103/physrevd.111.l021901","DOIUrl":"https://doi.org/10.1103/physrevd.111.l021901","url":null,"abstract":"We argue there is an interesting triple-scaling limit of quantum gravity, namely when Planck’s constant scales to infinity while Newton’s constant and the speed of light tend to zero, keeping fixed the gravitational coupling G</a:mi>N</a:mi></a:msub>c</a:mi>−</a:mo>4</a:mn></a:mrow></a:msup></a:math> and the combination <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>ℏ</c:mi><c:mi>c</c:mi></c:math>. We refer to this limiting theory as “tantum gravity” and describe in this Letter some of its main properties and prospects for physics. Most notably, the laws of black hole thermodynamics survive this limit, which means that puzzles related to black holes and their evaporation could be addressed more easily in tantum gravity than in fully fledged quantum gravity. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"57 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nucleophobic axion models, wherein axion couplings to both protons and neutrons are simultaneously suppressed, can relax the stringent constraints from SN 1987A. However, it remains uncertain whether these models maintain their nucleophobic property under the influence of finite baryon density effects. These are especially relevant in astrophysical environments near saturation density, such as supernovae (SNe). In this study, we demonstrate that the nucleophobic solution remains viable also at finite density. Furthermore, we show that the SN axion bound relaxes significantly in nucleophobic models, even when accounting for the integration over the nonhomogeneous environment of the SN core. Published by the American Physical Society2025
{"title":"Do finite density effects jeopardize axion nucleophobia in supernovae?","authors":"Luca Di Luzio, Vincenzo Fiorentino, Maurizio Giannotti, Federico Mescia, Enrico Nardi","doi":"10.1103/physrevd.111.015018","DOIUrl":"https://doi.org/10.1103/physrevd.111.015018","url":null,"abstract":"Nucleophobic axion models, wherein axion couplings to both protons and neutrons are simultaneously suppressed, can relax the stringent constraints from SN 1987A. However, it remains uncertain whether these models maintain their nucleophobic property under the influence of finite baryon density effects. These are especially relevant in astrophysical environments near saturation density, such as supernovae (SNe). In this study, we demonstrate that the nucleophobic solution remains viable also at finite density. Furthermore, we show that the SN axion bound relaxes significantly in nucleophobic models, even when accounting for the integration over the nonhomogeneous environment of the SN core. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"13 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}