Pub Date : 2025-02-24DOI: 10.1103/physrevd.111.034035
Halil Mutuk
This study reexamines the spectroscopic parameters of light-flavor diquarks within the framework of quantum chromodynamics sum rules (QCDSR) using the inverse matrix method. Conventional QCDSR analyses are based on assumptions such as quark-hadron duality and continuum models, which introduce a degree of systematic uncertainty. The inverse matrix method circumvents these assumptions by reformulating the problem as an inverse integral equation and expanding the unknown spectral density using orthogonal Laguerre polynomials. This method allows for a direct determination of spectral densities, thereby enhancing the precision of predictions regarding resonance masses and decay constants. By employing this methodology with regard to light-flavor diquarks (sq and ud), it is possible to extract the associated masses and decay constants. The results indicate that the masses of diquarks with quantum numbers JP=0+ and JP=0− are nearly degenerate. We compare our results regarding masses and decay constants with those of other theoretical predictions, which could prove a useful complementary tool in interpretation. Our results are consistent with those in the literature and can be shown as evidence for the consistency of the method. The results achieved in this study highlight the potential of the inverse matrix method as a robust tool for exploring nonperturbative QCD phenomena and elucidating the internal structure of exotic hadronic systems. Published by the American Physical Society2025
{"title":"Revisiting light-flavor diquarks in the inverse matrix method of QCD sum rules","authors":"Halil Mutuk","doi":"10.1103/physrevd.111.034035","DOIUrl":"https://doi.org/10.1103/physrevd.111.034035","url":null,"abstract":"This study reexamines the spectroscopic parameters of light-flavor diquarks within the framework of quantum chromodynamics sum rules (QCDSR) using the inverse matrix method. Conventional QCDSR analyses are based on assumptions such as quark-hadron duality and continuum models, which introduce a degree of systematic uncertainty. The inverse matrix method circumvents these assumptions by reformulating the problem as an inverse integral equation and expanding the unknown spectral density using orthogonal Laguerre polynomials. This method allows for a direct determination of spectral densities, thereby enhancing the precision of predictions regarding resonance masses and decay constants. By employing this methodology with regard to light-flavor diquarks (s</a:mi>q</a:mi></a:mrow></a:math> and <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>u</c:mi><c:mi>d</c:mi></c:math>), it is possible to extract the associated masses and decay constants. The results indicate that the masses of diquarks with quantum numbers <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msup><e:mi>J</e:mi><e:mi>P</e:mi></e:msup><e:mo>=</e:mo><e:msup><e:mn>0</e:mn><e:mo>+</e:mo></e:msup></e:math> and <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msup><g:mi>J</g:mi><g:mi>P</g:mi></g:msup><g:mo>=</g:mo><g:msup><g:mn>0</g:mn><g:mo>−</g:mo></g:msup></g:math> are nearly degenerate. We compare our results regarding masses and decay constants with those of other theoretical predictions, which could prove a useful complementary tool in interpretation. Our results are consistent with those in the literature and can be shown as evidence for the consistency of the method. The results achieved in this study highlight the potential of the inverse matrix method as a robust tool for exploring nonperturbative QCD phenomena and elucidating the internal structure of exotic hadronic systems. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"48 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-24DOI: 10.1103/physrevd.111.035021
Christopher D. Carone, Noah L. Donald
It has recently been suggested that tuning toward the boundary of the positivity domain of the scalar potential may explain the separation between the electroweak scale and the unification scale in a grand unified theory. Here, we explore the possibility that the same type of tuning might account for the generation of the electroweak scale from a much lighter dynamically generated scale in a dark sector. We present a model that realizes this idea and provides a proof of principle that the same dark sector can include a viable dark matter candidate. Published by the American Physical Society2025
{"title":"Tuning toward the edge of a dark abyss: Implications of a tuning paradigm on the hierarchy between the weak and dark matter scales","authors":"Christopher D. Carone, Noah L. Donald","doi":"10.1103/physrevd.111.035021","DOIUrl":"https://doi.org/10.1103/physrevd.111.035021","url":null,"abstract":"It has recently been suggested that tuning toward the boundary of the positivity domain of the scalar potential may explain the separation between the electroweak scale and the unification scale in a grand unified theory. Here, we explore the possibility that the same type of tuning might account for the generation of the electroweak scale from a much lighter dynamically generated scale in a dark sector. We present a model that realizes this idea and provides a proof of principle that the same dark sector can include a viable dark matter candidate. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"31 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-24DOI: 10.1103/physrevd.111.046024
Pietro Benetti Genolini, Jerome P. Gauntlett, Yusheng Jiao, Alice Lüscher, James Sparks
We introduce a general class of toric gravitational instantons in D=4, N=2 gauged supergravity, namely Euclidean supersymmetric solutions with U(1)2 isometry. Such solutions are specified by a “supergravity labeled polytope,” where the labels encode the four-manifold topology, the choice of magnetic fluxes, and certain signs associated with the Killing spinor. Equivariant localization allows us to write down the gravitational free energy for such a solution, assuming it exists, and study its properties. These results open the way for a systematic study of holography in this setting, where the dual large N field theories are defined on the boundary three-manifolds, which are (squashed) lens spaces L(p,q) or generalizations with orbifold singularities. Published by the American Physical Society2025
{"title":"Toric gravitational instantons in gauged supergravity","authors":"Pietro Benetti Genolini, Jerome P. Gauntlett, Yusheng Jiao, Alice Lüscher, James Sparks","doi":"10.1103/physrevd.111.046024","DOIUrl":"https://doi.org/10.1103/physrevd.111.046024","url":null,"abstract":"We introduce a general class of toric gravitational instantons in D</a:mi>=</a:mo>4</a:mn></a:math>, <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi mathvariant=\"script\">N</c:mi><c:mo>=</c:mo><c:mn>2</c:mn></c:math> gauged supergravity, namely Euclidean supersymmetric solutions with <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mi>U</f:mi><f:mo stretchy=\"false\">(</f:mo><f:mn>1</f:mn><f:msup><f:mo stretchy=\"false\">)</f:mo><f:mn>2</f:mn></f:msup></f:math> isometry. Such solutions are specified by a “supergravity labeled polytope,” where the labels encode the four-manifold topology, the choice of magnetic fluxes, and certain signs associated with the Killing spinor. Equivariant localization allows us to write down the gravitational free energy for such a solution, assuming it exists, and study its properties. These results open the way for a systematic study of holography in this setting, where the dual large <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mi>N</j:mi></j:math> field theories are defined on the boundary three-manifolds, which are (squashed) lens spaces <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:mi>L</l:mi><l:mo stretchy=\"false\">(</l:mo><l:mi>p</l:mi><l:mo>,</l:mo><l:mi>q</l:mi><l:mo stretchy=\"false\">)</l:mo></l:math> or generalizations with orbifold singularities. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"27 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-24DOI: 10.1103/physrevd.111.035023
Syuhei Iguro, Ulrich Nierste, Emil Overduin, Maurice Schüßler
Charge-parity (C</a:mi>P</a:mi></a:math>) asymmetries in charm decays are extremely suppressed in the Standard Model and may well be dominated by new-physics contributions. The LHCb Collaboration reported the results of direct <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:mi>C</c:mi><c:mi>P</c:mi></c:math> asymmetry measurements in <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline"><e:mrow><e:msup><e:mrow><e:mi>D</e:mi></e:mrow><e:mrow><e:mn>0</e:mn></e:mrow></e:msup><e:mo stretchy="false">→</e:mo><e:msup><e:mrow><e:mi>K</e:mi></e:mrow><e:mrow><e:mo>+</e:mo></e:mrow></e:msup><e:msup><e:mrow><e:mi>K</e:mi></e:mrow><e:mrow><e:mo>−</e:mo></e:mrow></e:msup></e:mrow></e:math> and <h:math xmlns:h="http://www.w3.org/1998/Math/MathML" display="inline"><h:msup><h:mi>D</h:mi><h:mn>0</h:mn></h:msup><h:mo stretchy="false">→</h:mo><h:msup><h:mi>π</h:mi><h:mo>+</h:mo></h:msup><h:msup><h:mi>π</h:mi><h:mo>−</h:mo></h:msup></h:math> decays with unprecedented accuracy: <k:math xmlns:k="http://www.w3.org/1998/Math/MathML" display="inline"><k:msub><k:mi>a</k:mi><k:mrow><k:mi>C</k:mi><k:mi>P</k:mi></k:mrow></k:msub><k:mo stretchy="false">(</k:mo><k:msup><k:mi>K</k:mi><k:mo>+</k:mo></k:msup><k:msup><k:mi>K</k:mi><k:mo>−</k:mo></k:msup><k:mo stretchy="false">)</k:mo><k:mo>=</k:mo><k:mo stretchy="false">(</k:mo><k:mn>7.7</k:mn><k:mo>±</k:mo><k:mn>5.7</k:mn><k:mo stretchy="false">)</k:mo><k:mo>×</k:mo><k:msup><k:mn>10</k:mn><k:mrow><k:mo>−</k:mo><k:mn>4</k:mn></k:mrow></k:msup></k:math> and <q:math xmlns:q="http://www.w3.org/1998/Math/MathML" display="inline"><q:mrow><q:msub><q:mrow><q:mi>a</q:mi></q:mrow><q:mrow><q:mi>C</q:mi><q:mi>P</q:mi></q:mrow></q:msub><q:mo stretchy="false">(</q:mo><q:msup><q:mrow><q:mi>π</q:mi></q:mrow><q:mrow><q:mo>+</q:mo></q:mrow></q:msup><q:msup><q:mrow><q:mi>π</q:mi></q:mrow><q:mrow><q:mo>−</q:mo></q:mrow></q:msup><q:mo stretchy="false">)</q:mo><q:mo>=</q:mo><q:mo stretchy="false">(</q:mo><q:mn>23.2</q:mn><q:mo>±</q:mo><q:mn>6.1</q:mn><q:mo stretchy="false">)</q:mo><q:mo>×</q:mo><q:msup><q:mrow><q:mn>10</q:mn></q:mrow><q:mrow><q:mo>−</q:mo><q:mn>4</q:mn></q:mrow></q:msup></q:mrow></q:math>, with the latter quantity inferred from the precise measurement of <w:math xmlns:w="http://www.w3.org/1998/Math/MathML" display="inline"><w:mrow><w:mi mathvariant="normal">Δ</w:mi><w:msub><w:mrow><w:mi>a</w:mi></w:mrow><w:mrow><w:mi>C</w:mi><w:mi>P</w:mi></w:mrow></w:msub><w:mo>=</w:mo><w:msub><w:mrow><w:mi>a</w:mi></w:mrow><w:mrow><w:mi>C</w:mi><w:mi>P</w:mi></w:mrow></w:msub><w:mo stretchy="false">(</w:mo><w:msup><w:mrow><w:mi>K</w:mi></w:mrow><w:mrow><w:mo>+</w:mo></w:mrow></w:msup><w:msup><w:mrow><w:mi>K</w:mi></w:mrow><w:mrow><w:mo>−</w:mo></w:mrow></w:msup><w:mo stretchy="false">)</w:mo><w:mo>−</w:mo><w:msub><w:mrow><w:mi>a</w:mi></w:mrow><w:mrow><w:mi>C</w:mi><w:mi>P</w:mi></w:mrow></w:msub><w:mo stretchy="false">(</w:mo><w:msup><w:mrow><w:mi>π</w:mi></w:mrow><w:mrow><w:mo>+</w:mo></w:mrow></w:msup><w:ms
{"title":"SU(3)F sum rules for CP asymmetries of D(s) decays","authors":"Syuhei Iguro, Ulrich Nierste, Emil Overduin, Maurice Schüßler","doi":"10.1103/physrevd.111.035023","DOIUrl":"https://doi.org/10.1103/physrevd.111.035023","url":null,"abstract":"Charge-parity (C</a:mi>P</a:mi></a:math>) asymmetries in charm decays are extremely suppressed in the Standard Model and may well be dominated by new-physics contributions. The LHCb Collaboration reported the results of direct <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>C</c:mi><c:mi>P</c:mi></c:math> asymmetry measurements in <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:msup><e:mrow><e:mi>D</e:mi></e:mrow><e:mrow><e:mn>0</e:mn></e:mrow></e:msup><e:mo stretchy=\"false\">→</e:mo><e:msup><e:mrow><e:mi>K</e:mi></e:mrow><e:mrow><e:mo>+</e:mo></e:mrow></e:msup><e:msup><e:mrow><e:mi>K</e:mi></e:mrow><e:mrow><e:mo>−</e:mo></e:mrow></e:msup></e:mrow></e:math> and <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:msup><h:mi>D</h:mi><h:mn>0</h:mn></h:msup><h:mo stretchy=\"false\">→</h:mo><h:msup><h:mi>π</h:mi><h:mo>+</h:mo></h:msup><h:msup><h:mi>π</h:mi><h:mo>−</h:mo></h:msup></h:math> decays with unprecedented accuracy: <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msub><k:mi>a</k:mi><k:mrow><k:mi>C</k:mi><k:mi>P</k:mi></k:mrow></k:msub><k:mo stretchy=\"false\">(</k:mo><k:msup><k:mi>K</k:mi><k:mo>+</k:mo></k:msup><k:msup><k:mi>K</k:mi><k:mo>−</k:mo></k:msup><k:mo stretchy=\"false\">)</k:mo><k:mo>=</k:mo><k:mo stretchy=\"false\">(</k:mo><k:mn>7.7</k:mn><k:mo>±</k:mo><k:mn>5.7</k:mn><k:mo stretchy=\"false\">)</k:mo><k:mo>×</k:mo><k:msup><k:mn>10</k:mn><k:mrow><k:mo>−</k:mo><k:mn>4</k:mn></k:mrow></k:msup></k:math> and <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mrow><q:msub><q:mrow><q:mi>a</q:mi></q:mrow><q:mrow><q:mi>C</q:mi><q:mi>P</q:mi></q:mrow></q:msub><q:mo stretchy=\"false\">(</q:mo><q:msup><q:mrow><q:mi>π</q:mi></q:mrow><q:mrow><q:mo>+</q:mo></q:mrow></q:msup><q:msup><q:mrow><q:mi>π</q:mi></q:mrow><q:mrow><q:mo>−</q:mo></q:mrow></q:msup><q:mo stretchy=\"false\">)</q:mo><q:mo>=</q:mo><q:mo stretchy=\"false\">(</q:mo><q:mn>23.2</q:mn><q:mo>±</q:mo><q:mn>6.1</q:mn><q:mo stretchy=\"false\">)</q:mo><q:mo>×</q:mo><q:msup><q:mrow><q:mn>10</q:mn></q:mrow><q:mrow><q:mo>−</q:mo><q:mn>4</q:mn></q:mrow></q:msup></q:mrow></q:math>, with the latter quantity inferred from the precise measurement of <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mrow><w:mi mathvariant=\"normal\">Δ</w:mi><w:msub><w:mrow><w:mi>a</w:mi></w:mrow><w:mrow><w:mi>C</w:mi><w:mi>P</w:mi></w:mrow></w:msub><w:mo>=</w:mo><w:msub><w:mrow><w:mi>a</w:mi></w:mrow><w:mrow><w:mi>C</w:mi><w:mi>P</w:mi></w:mrow></w:msub><w:mo stretchy=\"false\">(</w:mo><w:msup><w:mrow><w:mi>K</w:mi></w:mrow><w:mrow><w:mo>+</w:mo></w:mrow></w:msup><w:msup><w:mrow><w:mi>K</w:mi></w:mrow><w:mrow><w:mo>−</w:mo></w:mrow></w:msup><w:mo stretchy=\"false\">)</w:mo><w:mo>−</w:mo><w:msub><w:mrow><w:mi>a</w:mi></w:mrow><w:mrow><w:mi>C</w:mi><w:mi>P</w:mi></w:mrow></w:msub><w:mo stretchy=\"false\">(</w:mo><w:msup><w:mrow><w:mi>π</w:mi></w:mrow><w:mrow><w:mo>+</w:mo></w:mrow></w:msup><w:ms","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"21 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143477604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-24DOI: 10.1103/physrevd.111.033006
Seisho Abe
Understanding nuclear effects is essential for improving the sensitivity of neutrino oscillation measurements. Validating nuclear models solely through neutrino scattering data is challenging due to limited statistics and the broad energy spectrum of neutrinos. In contrast, electron scattering experiments provide abundant high-precision data with various monochromatic energies and angles. Since both neutrinos and electrons interact via electroweak interactions, the same nuclear models can be applied to simulate both interactions. Thus, high-precision electron scattering data is essential for validating the nuclear models used in neutrino experiments. To enable this, the author has introduced a new electron scattering framework in the neutrino event generator, covering two interaction modes: quasielastic (QE) and single pion production. predictions of QE agree well with numerical calculations, supporting the validity of this implementation. From comparisons with predictions and inclusive electron scattering data, the momentum-dependent removal energy correction is derived, addressing effects beyond the plane wave impulse approximation. This correction is applied to neutrino interactions, observing significant changes in charged lepton kinematics. Notably, the reconstructed neutrino energy distribution shows a peak shift of approximately 20–30 MeV, which is crucial for accurately measuring neutrino oscillation parameters. Published by the American Physical Society2025
{"title":"Implementation and investigation of electron-nucleus scattering in the neut neutrino event generator","authors":"Seisho Abe","doi":"10.1103/physrevd.111.033006","DOIUrl":"https://doi.org/10.1103/physrevd.111.033006","url":null,"abstract":"Understanding nuclear effects is essential for improving the sensitivity of neutrino oscillation measurements. Validating nuclear models solely through neutrino scattering data is challenging due to limited statistics and the broad energy spectrum of neutrinos. In contrast, electron scattering experiments provide abundant high-precision data with various monochromatic energies and angles. Since both neutrinos and electrons interact via electroweak interactions, the same nuclear models can be applied to simulate both interactions. Thus, high-precision electron scattering data is essential for validating the nuclear models used in neutrino experiments. To enable this, the author has introduced a new electron scattering framework in the neutrino event generator, covering two interaction modes: quasielastic (QE) and single pion production. predictions of QE agree well with numerical calculations, supporting the validity of this implementation. From comparisons with predictions and inclusive electron scattering data, the momentum-dependent removal energy correction is derived, addressing effects beyond the plane wave impulse approximation. This correction is applied to neutrino interactions, observing significant changes in charged lepton kinematics. Notably, the reconstructed neutrino energy distribution shows a peak shift of approximately 20–30 MeV, which is crucial for accurately measuring neutrino oscillation parameters. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"12 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143477605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-24DOI: 10.1103/physrevd.111.034037
Francesco Giovanni Celiberto, Gabriele Gatto
We study the semi-inclusive hadroproduction of doubly bottomed tetraquarks (Xbb¯qq¯) as well as fully bottomed ones (T4b), to which we collectively refer as “bottomoniumlike” states. We rely upon the variable-flavor number-scheme fragmentation at leading power, where a single parton perturbatively splits into the corresponding Fock state, which then hadronizes into the color-neutral, observed tetraquark. To this end, we build new sets of /-evo consistent, hadron-structure oriented collinear fragmentation functions, which we name and parametrizations. They extend and supersede the corresponding versions recently derived in previous works. The first family describes the fragmentation of doubly heavy tetraquarks and is based on an improved version of the Suzuki model for the heavy-quark channel. The second family depicts the fragmentation of fully heavy tetraquarks and embodies initial-scale inputs for gluon and heavy-quark channels, both of them calculated by the hands of potential nonrelativistic QCD. As a phenomenological application, we provide novel predictions for tetraquark-plus-jet high-energy distributions, computed within the NLL/NLO+ hybrid factorization from (sym), at 14 and 100 TeV FCC. Published by the American Physical Society2025
{"title":"Bottomoniumlike states in proton collisions: Fragmentation and resummation","authors":"Francesco Giovanni Celiberto, Gabriele Gatto","doi":"10.1103/physrevd.111.034037","DOIUrl":"https://doi.org/10.1103/physrevd.111.034037","url":null,"abstract":"We study the semi-inclusive hadroproduction of doubly bottomed tetraquarks (X</a:mi>b</a:mi>b</a:mi>¯</a:mo></a:mover>q</a:mi>q</a:mi>¯</a:mo></a:mover></a:mrow></a:msub></a:math>) as well as fully bottomed ones (<g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msub><g:mi>T</g:mi><g:mrow><g:mn>4</g:mn><g:mi>b</g:mi></g:mrow></g:msub></g:math>), to which we collectively refer as “bottomoniumlike” states. We rely upon the variable-flavor number-scheme fragmentation at leading power, where a single parton perturbatively splits into the corresponding Fock state, which then hadronizes into the color-neutral, observed tetraquark. To this end, we build new sets of /-evo consistent, hadron-structure oriented collinear fragmentation functions, which we name and parametrizations. They extend and supersede the corresponding versions recently derived in previous works. The first family describes the fragmentation of doubly heavy tetraquarks and is based on an improved version of the Suzuki model for the heavy-quark channel. The second family depicts the fragmentation of fully heavy tetraquarks and embodies initial-scale inputs for gluon and heavy-quark channels, both of them calculated by the hands of potential nonrelativistic QCD. As a phenomenological application, we provide novel predictions for tetraquark-plus-jet high-energy distributions, computed within the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:mi>NLL</i:mi><i:mo>/</i:mo><i:msup><i:mrow><i:mi>NLO</i:mi></i:mrow><i:mrow><i:mo>+</i:mo></i:mrow></i:msup></i:mrow></i:math> hybrid factorization from (sym), at 14 and 100 TeV FCC. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"128 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-24DOI: 10.1103/physrevd.111.046022
Evgeny Sobko
We consider half-BPS Wilson loops in N=2 long circular quiver gauge theories at large N with continuous limit shape of ’t Hooft couplings. In the limit of an infinite number of nodes L, the solution to the localization matrix model is given by Wigner semicircles for any profile of couplings. Higher-order corrections in 1/L can be calculated iteratively. Combining large L with a strong coupling regime, we identify a double scaling limit that describes dynamics along a fifth dimension, which emerges dynamically from the quiver diagram. We solve the resulting integro-differential equation exactly for a certain range of parameters. Published by the American Physical Society2025
{"title":"Continuous quiver gauge theories","authors":"Evgeny Sobko","doi":"10.1103/physrevd.111.046022","DOIUrl":"https://doi.org/10.1103/physrevd.111.046022","url":null,"abstract":"We consider half-BPS Wilson loops in N</a:mi>=</a:mo>2</a:mn></a:math> long circular quiver gauge theories at large <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mi>N</d:mi></d:math> with continuous limit shape of ’t Hooft couplings. In the limit of an infinite number of nodes <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mi>L</f:mi></f:math>, the solution to the localization matrix model is given by Wigner semicircles for any profile of couplings. Higher-order corrections in <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:mn>1</h:mn><h:mo>/</h:mo><h:mi>L</h:mi></h:math> can be calculated iteratively. Combining large <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mi>L</j:mi></j:math> with a strong coupling regime, we identify a double scaling limit that describes dynamics along a fifth dimension, which emerges dynamically from the quiver diagram. We solve the resulting integro-differential equation exactly for a certain range of parameters. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"247 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-24DOI: 10.1103/physrevd.111.036032
Hemant Prasad, Jan T. Sobczyk, Artur M. Ankowski, J. Luis Bonilla, Rwik Dharmapal Banerjee, Krzysztof M. Graczyk, Beata E. Kowal
We present the implementation and results of a new model for the n-particle n-hole () contribution in the NuWro event generator, grounded in the theoretical framework established by the Valencia group in 2020. For the component, we introduce a novel nucleon sampling function with tunable parameters to approximate correlations in the momenta of outgoing nucleons. These parameters are calibrated by comparing our results to those of the Valencia model across a range of incoming neutrino energies. In addition, our model incorporates a distinct contribution from the mechanism. We discuss the differences between the new NuWro implementation, the original Valencia model, and the previous NuWro version, focusing on the distribution of outgoing nucleon momenta. Finally, we assess the impact of the hadronic model on experimental analyses involving hadronic observables. Published by the American Physical Society2025
{"title":"New multinucleon knockout model in the NuWro Monte Carlo generator","authors":"Hemant Prasad, Jan T. Sobczyk, Artur M. Ankowski, J. Luis Bonilla, Rwik Dharmapal Banerjee, Krzysztof M. Graczyk, Beata E. Kowal","doi":"10.1103/physrevd.111.036032","DOIUrl":"https://doi.org/10.1103/physrevd.111.036032","url":null,"abstract":"We present the implementation and results of a new model for the n</a:mi></a:math>-particle <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>n</c:mi></c:math>-hole () contribution in the NuWro event generator, grounded in the theoretical framework established by the Valencia group in 2020. For the component, we introduce a novel nucleon sampling function with tunable parameters to approximate correlations in the momenta of outgoing nucleons. These parameters are calibrated by comparing our results to those of the Valencia model across a range of incoming neutrino energies. In addition, our model incorporates a distinct contribution from the mechanism. We discuss the differences between the new NuWro implementation, the original Valencia model, and the previous NuWro version, focusing on the distribution of outgoing nucleon momenta. Finally, we assess the impact of the hadronic model on experimental analyses involving hadronic observables. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"177 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-21DOI: 10.1103/physrevd.111.046019
Adolfo Guarino, Colin Sterckx, Mario Trigiante
Fetching techniques from generalized geometry and exceptional field theory, we develop a new method to identify consistent subsectors of four-dimensional gauged maximal supergravities that possess a (locally) geometric embedding in type IIB or 11D supergravity. We show that a subsector that is invariant under a structure group GS⊂E7(7) can define a consistent truncation, even when GS is not part of the symmetry of the gauged maximal supergravity. As an illustration of the method, type IIB supergravity on S1×S5 is shown to admit a consistent truncation to pure N=4, D=4 gauged supergravity. Explicit uplift formulae are presented which provide a type IIB alternative to the M-theory embedding constructed by Cvetic, Lu, and Pope 25 years ago. Published by the American Physical Society2025
{"title":"Consistent N=4 , D=4 truncation of type IIB supergravity on S1×S5","authors":"Adolfo Guarino, Colin Sterckx, Mario Trigiante","doi":"10.1103/physrevd.111.046019","DOIUrl":"https://doi.org/10.1103/physrevd.111.046019","url":null,"abstract":"Fetching techniques from generalized geometry and exceptional field theory, we develop a new method to identify consistent subsectors of four-dimensional gauged maximal supergravities that possess a (locally) geometric embedding in type IIB or 11D supergravity. We show that a subsector that is invariant under a structure group G</a:mi></a:mrow>S</a:mi></a:mrow></a:msub>⊂</a:mo>E</a:mi></a:mrow>7</a:mn>(</a:mo>7</a:mn>)</a:mo></a:mrow></a:msub></a:mrow></a:math> can define a consistent truncation, even when <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:msub><h:mi mathvariant=\"normal\">G</h:mi><h:mi mathvariant=\"normal\">S</h:mi></h:msub></h:math> is not part of the symmetry of the gauged maximal supergravity. As an illustration of the method, type IIB supergravity on <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:msup><l:mi mathvariant=\"normal\">S</l:mi><l:mn>1</l:mn></l:msup><l:mo>×</l:mo><l:msup><l:mi mathvariant=\"normal\">S</l:mi><l:mn>5</l:mn></l:msup></l:math> is shown to admit a consistent truncation to pure <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:mi mathvariant=\"script\">N</p:mi><p:mo>=</p:mo><p:mn>4</p:mn></p:math>, <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>D</s:mi><s:mo>=</s:mo><s:mn>4</s:mn></s:math> gauged supergravity. Explicit uplift formulae are presented which provide a type IIB alternative to the M-theory embedding constructed by Cvetic, Lu, and Pope 25 years ago. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"36 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143470901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We calculate the gravitational waves (GWs) produced by primordial black holes (PBHs) in the presence of the inflaton condensate in the early Universe. Combining the GW production from the evaporation process, the gravitational scattering of the inflaton itself, and the density fluctuations due to the inhomogeneous distribution of PBHs, we propose for the first time a complete coherent analysis of the spectrum, revealing three peaks, one for each source. Three frequency ranges (∼kHz, GHz, and PHz, respectively) are expected, each giving rise to a similar GW peak amplitude ΩGW. We also compare our predictions with current and future GWs detection experiments. Published by the American Physical Society2025
{"title":"Gravitational wave production during reheating: From the inflaton to primordial black holes","authors":"Mathieu Gross, Yann Mambrini, Essodjolo Kpatcha, Maria Olalla Olea-Romacho, Rishav Roshan","doi":"10.1103/physrevd.111.035020","DOIUrl":"https://doi.org/10.1103/physrevd.111.035020","url":null,"abstract":"We calculate the gravitational waves (GWs) produced by primordial black holes (PBHs) in the presence of the inflaton condensate in the early Universe. Combining the GW production from the evaporation process, the gravitational scattering of the inflaton itself, and the density fluctuations due to the inhomogeneous distribution of PBHs, we propose for the first time a complete coherent analysis of the spectrum, revealing three peaks, one for each source. Three frequency ranges (∼</a:mo>kHz</a:mi></a:math>, GHz, and PHz, respectively) are expected, each giving rise to a similar GW peak amplitude <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi mathvariant=\"normal\">Ω</c:mi><c:mi>GW</c:mi></c:msub></c:math>. We also compare our predictions with current and future GWs detection experiments. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"4 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143470865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}